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1. Introduction
There has been much interest in game-theoretic models
of industry evolution and, in particular, in the framework
introduced by Ericson and Pakes (1995) that is at the heart
of a large and growing literature in industrial organiza-
tion and other fields (see Doraszelski and Pakes 2007 and
the references therein). Ericson and Pakes (1995) provide
a model of dynamic competition in an oligopolistic indus-
try with investment, entry, and exit. Their framework is
designed to facilitate numerical analysis of a wide variety
of phenomena that are too complex to be explored in ana-
lytically tractable models. Methods for computing Markov-
perfect equilibria are therefore a key part of this stream
of research. This paper contributes by providing a step-by-
step guide to solving dynamic stochastic games using the
homotopy method.

Computing a Markov-perfect equilibrium of a dynamic
stochastic game amounts to solving a large system of equa-
tions. To date, the Pakes and McGuire (1994) algorithm
has been used most often to compute equilibria of dynamic
oligopoly models. This backward solution method falls into
the broader class of Gaussian methods. The idea behind
Gaussian methods is that it is harder to solve a large sys-
tem of equations once than to solve smaller systems many
times, and that it may therefore be advantageous to break
up a large system into small pieces.

The drawback of Gaussian methods is that they offer no
systematic approach to computing multiple equilibria. The
potential for multiplicity in the Ericson and Pakes (1995)
framework is widely recognized; see p. 570 of Pakes and

McGuire (1994) and, more recently, the examples of mul-
tiple equilibria in the online appendix to Doraszelski and
Satterthwaite (2010) and in Besanko et al. (2010a). To
identify more than one equilibrium (for a given parame-
terization of the model), the Pakes and McGuire (1994)
algorithm must be restarted from different initial guesses.
However, different initial guesses may or may not lead to
different equilibria. A similar remark applies to the stochas-
tic approximation algorithm of Pakes and McGuire (2001),
the other widely used method for computing equilibria.

This, however, still understates the severity of the prob-
lem. When there are multiple equilibria, the trial-and-error
approach of restarting the Pakes and McGuire (1994) algo-
rithm from different initial guesses is sure to miss a sub-
stantial fraction of them, regardless of how many initial
guesses are tried: As shown by Besanko et al. (2010a),
if a dynamic stochastic game has multiple equilibria, then
some of them cannot possibly be computed by the Pakes
and McGuire (1994) algorithm. It is important, therefore,
to consider alternative algorithms that can identify multiple
equilibria and thus provide us with a more complete picture
of the set of solutions to a dynamic stochastic game.

The homotopy method allows us to explore the equilib-
rium correspondence in a systematic fashion. The homo-
topy method is a type of path-following method. Starting
from a single equilibrium that has already been computed
for a given parameterization of the model, the homotopy
algorithm traces out an entire path of equilibria by varying
one or more parameters of the model. Whenever we can
find such a path and multiple equilibria are the result of
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the path bending back on itself, then the homotopy method
is guaranteed to identify them. We note at the outset that
it is not assured that any given path includes all possible
equilibria at a given value of the parameter vector.

In this paper we discuss the theory of the homotopy
method as well as HOMPACK90, a suite of Fortran90 rou-
tines developed by Watson et al. (1997) that implements
this method. To explore the equilibrium correspondence of
a dynamic stochastic game, we set up the homotopy algo-
rithm to vary one or more parameters of the model. This
type of application is referred to as a natural-parameter
homotopy. We discuss potential problems that one may
encounter in using HOMPACK90 in this way and offer
some guidance as to how to resolve them.

We present two examples of dynamic stochastic games
and show, step by step, how to solve them using the
homotopy method. In order to use the homotopy method,
one must formulate a problem as a system of equations.
Our first example, the learning-by-doing model of Besanko
et al. (2010a), is particularly well suited for the homo-
topy method because it is straightforward to express the
equilibrium conditions as a system of equations. We dis-
cuss in detail how this is done. Moreover, we illustrate the
computational demands of the homotopy method using the
learning-by-doing model as an example.

Our second example, the quality ladder model of Pakes
and McGuire (1994), presents a complication. As invest-
ment cannot be negative, the problem that a firm has to
solve is formulated using a complementary slackness con-
dition, a combination of equalities and inequalities. We
show how to reformulate this complementary slackness
condition as a system of equations that is amenable to the
homotopy method.

In sum, this paper provides a step-by-step guide to
solving dynamic stochastic games using the homotopy
method. Our goal here is to enable the reader to start using
HOMPACK90 as quickly as possible. To this end, we also
make the code for the learning-by-doing and quality ladder
models available on our homepages. The code is accom-
panied by additional detailed instructions on how to set up
and use it.

2. The Theory of the Homotopy Method
A Markov-perfect equilibrium of a dynamic stochastic
game consists of values, i.e., expected net present values
of per-period payoffs, and policies, i.e., strategies, for each
player in each state. Values are typically characterized by
Bellman equations and policies by optimality conditions
(e.g., first-order conditions). These equilibrium conditions
depend on the parameterization of the model. Collect-
ing Bellman equations and optimality conditions for each
player in each state, the equilibrium conditions amount to
a system of equations of the form

H�x���= 0� (1)

where H� �N+1 → �N , x ∈ �N is the vector of unknown
values and policies, and 0 ∈ �N is a vector of zeros. � ∈
�0�1� is the so-called homotopy parameter.1 Depending on
the application at hand, the homotopy parameter maps into
one or more of the parameters of the model. The object of
interest is the equilibrium correspondence

H−1 = 	�x��� �H�x���= 0
�

The homotopy method aims to trace out entire paths of
equilibria in H−1 by varying both x and �.

To this end, we define a parametric path as a set of func-
tions �x�s����s�� such that �x�s����s�� ∈H−1. The points
on the path are indexed by the auxiliary variable s; as we
move along the path, s either increases or decreases mono-
tonically; however, neither x nor � necessarily vary mono-
tonically. Differentiating H�x�s����s��= 0 with respect to
s yields

H�x�s����s��
x

x′�s�+ H�x�s����s��
�

�′�s�= 0� (2)

where H�x�s����s��/x is the �N × N� Jacobian of H
with respect to x, x′�s� and H�x�s����s��/� are �N ×1�
vectors, and �′�s� is a scalar. This system of equations
captures the conditions that must be satisfied in order to
remain “on path.” As this is a system of N differential equa-
tions in N + 1 unknowns, x′i�s�, i = 1� � � � �N , and �′�s�,
it has many solutions. Although these solutions differ by
monotone transformations of s, they all describe the same
path. One solution obeys the so-called basic differential
equations

y′i�s�= �−1�i+1 det
([

H�y�s��
y

]
−i

)
�

i= 1� � � � �N + 1� (3)

where y�s� = �x�s����s��� and the notation �·�−i is used
to indicate that the ith column is removed from the
�N × �N + 1�� Jacobian H�y�s��/y of H with respect to
y. A proof that the basic differential equations (3) satisfy
the conditions (2) for remaining on path can be found in
Garcia and Zangwill (1979) and on pp. 27–28 of Zangwill
and Garcia (1981).

An implementation of the homotopy method—a homo-
topy algorithm—can be used to trace out entire paths
of equilibria by numerically solving the basic differential
equations (3). An already computed equilibrium provides
the initial condition. From there a homotopy algorithm uses
the basic differential equations to determine the next step
along the path. In this manner, it continues to follow the
path step by step.

Regularity and Smoothness Requirements. A closer
inspection of the basic differential equations (3) reveals a
potential difficulty. If the Jacobian H�y�s��/y is not of
full rank at some point y�s� on the solution path, then the
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Figure 1. Examples of solution paths if H is regular (left panel) and not regular (right panel).
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determinant of each of its square submatrices is zero. Thus,
according to the basic differential equations (3), y′i�s�= 0,
i = 1� � � � �N + 1, and the homotopy method is stuck at
point y�s�. A central condition in the mathematical liter-
ature on the homotopy method is thus that the Jacobian
must have full rank at all points on the solution path. If
so, the homotopy is called regular. More formally, H is
regular if rank�H�y�/y�= N for all y ∈H−1. The regu-
larity requirement—and a certain smoothness requirement
to be discussed below—ensures that the set of solutions
H−1 consists only of continuous paths. The left panel of
Figure 1 shows examples of possible solution paths if H
is regular: (A) paths that start at �= 0 and end at �= 1,
(B) paths that start and end at �= 0 or �= 1, (C) loops, and
(D) paths that start at �= 0 or �= 1 but never end because
x (or a component of x in the case of a vector) tends to
+
 or −
.2 The right panel of Figure 1 shows exam-
ples of solution paths that are ruled out by the regularity
requirement: (E) isolated equilibria, (F) continua of equilib-
ria, (G) branching points,3 (H) paths of infinite length that
start at �= 0 or �= 1 and converge to single points (spi-
rals), and (I) paths that start at �= 0 or �= 1 but suddenly
terminate.

In practice, it is often hard to establish regularity because
the Jacobian of a system of equations that characterizes
the equilibria of a dynamic stochastic game formulated
in the Ericson and Pakes (1995) framework tends to be
intractable. This stems partly from the fact that the Jacobian
for such a system is typically quite large because the system
includes at least two equations (Bellman equation and opti-
mality condition) for each state of the industry, and even
“small” models with few firms and few states per firm tend
to have hundreds of industry states.

The other major requirement of the homotopy method
is smoothness in the sense of differentiability. This yields
solution paths that are smooth and free of sudden turns
or kinks. Formally, if H is continuously differentiable in

addition to regular, then the set of solutions H−1 consists
only of continuously differentiable paths. This result is
known as the path theorem and essentially follows from
the implicit function theorem (see, e.g., p. 20 of Zangwill
and Garcia 1981). Moreover, for a path to be described by
the basic differential equations (3), it must be the case that
H is twice continuously differentiable in addition to reg-
ular. This result is known as the BDE theorem (see, e.g.,
pp. 27–28 of Zangwill and Garcia 1981).

The smoothness requirement is nontrivial and easily vio-
lated, for example, by nonnegativity constraints on compo-
nents of x, say because investment cannot become negative,
or by distributions with nondifferentiable cumulative dis-
tribution functions such as the uniform distribution that is
often used to model random scrap values and setup costs.
Section 5 explains how to deal with such complications.

There is a subtle difference between the homotopy
method, a mathematical theory, and the homotopy algo-
rithm, a numerical method. In theory, the homotopy method
is used to describe solution paths. In practice, a homotopy
algorithm takes discrete steps along such a path. This can
be beneficial because the homotopy algorithm may suc-
ceed in tracing out a solution path even if the regularity
and/or smoothness requirements are violated; as the homo-
topy algorithm proceeds along the solution path in discrete
steps, it may skip over points at which one or both of these
requirements are violated. However, this also can lead to a
complication. As the homotopy algorithm proceeds in dis-
crete steps, it may jump from one solution path to another,
thus failing to trace out either path in its entirety. These
issues are discussed further in §5.5.

3. The HOMPACK90 Software Package
HOMPACK90 is as a suite of Fortran90 routines that traces
out a path in

H−1 = 	y �H�y�= 0
�
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Table 1. Path-following algorithms and dense vs. sparse
Jacobian in HOMPACK90.

Dense Jacobian Sparse Jacobian

ODE-based FIXPDF FIXPDS
Normal flow FIXPNF FIXPNS
Augmented Jacobian FIXPQF FIXPQS

The notation y = �x��� ∈ �N+1 underlines that the homo-
topy method does not make a distinction between the
unknown variables x ∈�N and the homotopy parameter � ∈
�0�1�. Here we just give a brief overview that is meant to
enable the reader to start using HOMPACK90 as quickly as
possible. A detailed description of HOMPACK90 is given
in Watson et al. (1987, 1997).

To use HOMPACK90, the user must provide Fortran90
code for the system of equations and its Jacobian. In addi-
tion, the user must supply HOMPACK90 with an initial
condition in the form of a solution to the system of equa-
tions for a particular parameterization. HOMPACK90 then
traces out a solution path. HOMPACK90 offers several dif-
ferent path-following algorithms as well as storage formats
for the Jacobian of the system of equations. Table 1 gives
an overview. Below we proceed to discuss the differences
between the various path-following algorithms and storage
formats as well as ways to generate initial conditions. In
§4.3 we then compare the implications of the various path-
following algorithms and storage formats for the perfor-
mance of HOMPACK90.

The output of HOMPACK90 includes a sequence of
solutions to the system of equations, saved to binary files,4

and an exit flag that indicates a normal ending or several
kinds of failure. We discuss some of the potential problems
in §5.5.

3.1. Path-Following Algorithms

HOMPACK90 traces out a parametric path y�s� ∈ H−1 as
a sequence of points, indexed by k. The kth point in the
sequence is 	sk�yk
, where yk is understood to represent
y�sk�. The step along the path from one point to the next
starts by choosing �s = sk+1 − sk. HOMPACK90 adjusts
this step length based on the curvature of the path. Then
HOMPACK90 computes the next point yk+1 using a two-
phase method. The predictor phase generates a guess for
yk+1; the corrector phase then improves this guess using
a version of Newton’s method. The difference between
the various available path-following algorithms lies in the
implementation of the predictor and corrector phases.
ODE-Based. The predictor phase directly applies the

system of differential equations (2). It first solves the sys-
tem of linear equations

H�yk�
y

�y= 0 (4)

to obtain �y and then computes the guess for the next point
as yk+1 = yk+�y�s. As this predictor step tends to be very

precise, typically several such steps are executed before a
corrector step becomes necessary.
Normal Flow. The predictor phase uses a Hermite cubic

extrapolation from the previous two points as a guess for
the next point. Although the Hermite cubic extrapolation is
much easier to compute than solving the system of linear
equations (4), it is also much cruder. The corrector phase
is thus necessary at every step.
Augmented Jacobian. The predictor phase is the same

as in the normal flow algorithm, but the augmented
Jacobian algorithm takes a different approach to the cor-
rector phase (quasi-Newton instead of Newton steps).

3.2. Jacobian

HOMPACK90 requires the user to provide a routine that
returns the Jacobian H�y�/y at a given point y. Due to
the key role of the Jacobian in the homotopy algorithm, we
next discuss some details on ways to compute and repre-
sent it.

Numerical vs. Analytical Jacobian. The easiest way
to compute the Jacobian is to do so numerically using a
one- or two-sided finite-difference scheme (see, e.g., Chap-
ter 7 of Judd 1998). However, we found that, due to the lim-
ited precision of numerical differentiation, the ODE-based
algorithm takes small steps, and this significantly increases
the time needed to traverse an entire path; normal flow and
augmented Jacobian algorithms are more robust to impre-
cise Jacobians.

The obvious solution is to use analytical instead of
numerical differentiation, but this carries a high fixed cost
of deriving, coding, and debugging the Jacobian. Instead,
we turn to automatic differentiation, a technique for gen-
erating computer programs with statements for the compu-
tation of derivatives based on the chain rule of differential
calculus. Automatic differentiation relies on the fact that
every function, no matter how complicated, is executed on
a computer as a sequence of elementary operations (addi-
tion, multiplication, etc.) and functions (exp, sin, etc.). By
applying the chain rule over and over again to the composi-
tion of those elementary operations, one can compute, in a
completely mechanical fashion, a derivative of the function.

We use ADIFOR to automatically differentiate Fortran
code. ADIFOR is described in Bischof et al. (1996); here
we just give a brief overview.5 The input to ADIFOR is
the Fortran90 code that returns H�y� at a given point y.
ADIFOR analyzes the code and from it generates new code.
This code receives a pair of ��N + 1�× 1� vectors �y��y�
and returns the �N × 1� vector

�H= H�y�
y

�y�

Thus, we obtain the jth column of the Jacobian via a sin-
gle call to the ADIFOR-generated code with �y set to the
jth basis vector. Repeating this for j = 1� � � � �N + 1 we
assemble the entire Jacobian.
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This column-by-column approach is necessary because
the ADIFOR-generated code never computes the elements
Hi�y�/yj of the Jacobian H�y�/y explicitly, but instead
transforms �y��y� into �H in a process that parallels
the computation of H�y�. For example, if H�y1� y2� =
u�y1�v�y2� is a function of the scalars y1 and y2, where
u and v are themselves functions, then the ADIFOR-
generated code computes

�u �= u′�y1��y1�

�v �= v′�y2��y2�

�H �= u�y1��v+ v�y2��u�

Dense vs. Sparse Jacobian. In many applications,
including dynamic stochastic games, the number of equa-
tions and unknowns is large, but any given equation
involves only a small number of unknowns (because the
transitions from one state to the next are typically restricted
to a small set of “nearby” states), leading to a Jacobian
comprising mostly zeros. Such a Jacobian is called sparse
and can be more efficiently represented using a sparse
matrix storage format that consists of a list of the nonzero
elements with corresponding row and column indices rather
than as a dense matrix that consists of the entire set of
N�N + 1� elements.

Taking advantage of the sparse nature of the Jacobians
in dynamic stochastic games offers a decrease in compu-
tation time, and in fact we show in §4.3 that this decrease
is substantial. The additional efficiency comes from lower
memory requirements and faster linear algebra operations.
In addition, the Jacobian of a very large system of equa-
tions may exceed the available memory unless it is stored
as a sparse matrix.

The use of sparse Jacobians is complicated by two issues.
First, there is additional coding because the user must spec-
ify the “sparsity structure,” i.e., the row and column indices
of potentially nonzero elements. In practice, this means
going through the system of equations and identifying the
elements of y that appear in a given equation.

Second, the sparse and dense versions of the vari-
ous path-following algorithms take different approaches to
solving systems of linear equations. In all cases, the lin-
ear algebra routines in HOMPACK90 were selected for
speed, not reliability, which means that they can and do
fail for certain problems. Our experience has been that the
sparse linear solver is more likely to fail than the dense
linear solver; §5.6 provides further detail and offers some
solutions.

3.3. Initial Condition

The final input to HOMPACK90 is an initial condition
in the form of a solution to the system of equations for
the particular parameterization associated with � = 0. In
some cases, if the parameterization associated with �= 0
is trivial, the solution can be derived analytically. A good

example is the case of a zero discount rate that turns a
dynamic stochastic game into a set of disjoint static games
played out in every state. Another example is a particu-
lar parameterization that makes movements through state
space unidirectional and thus allows the game to be solved
by backwards induction (see, e.g., Judd et al. 2007).

More generally, a solution for a particular parame-
terization can be computed numerically using a number
of approaches such as Gaussian methods including (but
not limited to) the Pakes and McGuire (1994) algorithm,
other nonlinear solvers (see Ferris et al. 2007), and arti-
ficial homotopies (see Zangwill and Garcia 1981, Chap-
ter 1), which can also be implemented using HOMPACK90.
Finally, one can use a solution obtained by tracing out
a path along a different parameter as an initial condition
(see §5.1 for an example of path following along several
parameters).

4. Example 1: The Learning-by-
Doing Model

We begin with the learning-by-doing model of Besanko
et al. (2010a). The description of the model is abridged.
Please refer to Besanko et al. (2010a) for economic moti-
vation and greater detail on some derivations.

4.1. Model

Firms and States. We consider a discrete-time, infinite-
horizon stochastic game. Firm n ∈ 	1�2
 is described by its
stock of know-how (or experience) en ∈ 	1� � � � �M
. At any
point in time, the industry is completely characterized by a
vector of firms’ states e= �e1� e2� ∈ 	1� � � � �M
2. We refer
to e as the state of the industry. We use e�2� to denote the
vector �e2� e1� found by interchanging the stocks of know-
how of firms 1 and 2.

Each period, firms observe the state of the industry and
set prices for their respective goods. By making a sale, a
firm can add to its stock of know-how. At the same time,
the firm faces the possibility of organizational forgetting,
leading to the law of motion e′n = en+qn−fn, where e′n and
en are firm n’s stock of know-how in the subsequent and
current period, respectively, the random variable qn ∈ 	0�1

indicates whether firm n makes a sale, and the random
variable fn ∈ 	0�1
 represents organizational forgetting. If
qn = 1, the firm gains a unit of know-how through learning
by doing, whereas it loses a unit of know-how through
organizational forgetting if fn = 1.
Learning by Doing. Firm n’s marginal cost of produc-

tion c�en� depends on its stock of know-how en through a
learning curve with a progress ratio of � ∈ �0�1�:

c�en�=


�e n if 1� en <m�

�m if m� en �M�

where  = log2 �. Marginal cost decreases by 100�1−��
percent as the stock of know-how doubles, so that a
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lower progress ratio implies a steeper learning curve. The
marginal cost of production at the top of the learning curve,
c�1�, is �> 0, and m represents the stock of know-how at
which a firm reaches the bottom of its learning curve.
Organizational Forgetting. The probability that firm n

loses a unit of know-how through organizational forget-
ting is

��en�= Pr�fn = 1�= 1− �1− $�en�

where $ ∈ �0�1� is the forgetting rate.
Demand. Each period, one (nonstrategic) buyer enters

the market and purchases a unit of the good from one
of the two firms. The net utility of good n to a buyer is
v−pn+ &n, where pn is the price, v is the fixed component
of utility, and &n is a stochastic component that captures the
buyer’s idiosyncratic preference for good n. The buyer’s
idiosyncratic preferences �&1� &2� are unobservable to firms
and are independently and identically type 1 extreme value
distributed. The buyer purchases the good that gives it the
highest net utility, so the probability that firm n makes a
sale is given by

Dn�p�= Pr�qn = 1�= exp�v−pn�∑2
k=1 exp�v−pk�

= 1
1+ exp�pn−p−n�

�

where p= �p1� p2� is the vector of prices and we adopt the
convention of using p−n to denote the price charged by the
other firm.
State-to-State Transitions. From one period to the next,

the transition probabilities are

Pr�e′n � en� qn�=


1−��en� if e′n = en+ qn�

��en� if e′n = en+ qn− 1�

where, at the upper and lower boundaries of the state
space, we modify the transition probabilities to be
Pr�M �M�1�= 1 and Pr�1 � 1�0�= 1, respectively.
Bellman Equation and First-Order Condition. Define

Vn�e� to be the expected net present value of firm n’s
cash flows if the industry is currently in state e. The value
function Vn� 	1� � � � �M
2 →� is implicitly defined by the
Bellman equation

Vn�e�=max
pn

Dn�pn�p−n�e���pn− c�en��

+)
2∑

k=1

Dk�pn�p−n�e���Vnk�e�� (5)

where p−n�e� is the price charged by the other firm in
state e, ) ∈ �0�1� is the discount factor, and �Vnk�e� is the
expectation of firm n’s value function conditional on the

buyer purchasing the good from firm k ∈ 	1�2
 in state e
as given by

�Vn1�e�=
e1+1∑
e′1=e1

e2∑
e′2=e2−1

Vn�e
′�Pr�e′1 � e1�1�Pr�e′2 � e2�0�� (6)

�Vn2�e�=
e1∑

e′1=e1−1

e2+1∑
e′2=e2

Vn�e
′�Pr�e′1 � e1�0�Pr�e′2 � e2�1�� (7)

The policy function pn� 	1� � � � �M
2 → � specifies the
price pn�e� that firm n sets in state e. To determine it,
let hn� · � be the maximand in the Bellman equation (5).
Differentiating hn� · � with respect to pn we obtain the first-
order condition

0=Dn�pn�p−n�e���1− �pn− c�en��−)�Vnn�e�+hn� · ���
It is straightforward to show that the pricing decision pn�e�
is uniquely determined by the solution to the first-order
condition.
Equilibrium. We restrict attention to symmetric

Markov-perfect equilibria. In a symmetric equilibrium the
pricing decision taken by firm 2 in state e is identical to the
pricing decision taken by firm 1 in state e�2�, i.e., p2�e�=
p1�e

�2��, and similarly for the value function. It therefore
suffices to determine the value and policy functions of
firm 1, and we define V �e� = V1�e� and p�e� = p1�e� for
each state e. To simplify the notation, we further define
�Vk�e� = �V1k�e� to be the conditional expectation of firm
1’s value function and Dk�e�=Dk�p�e��p�e

�2��� to be the
probability that the buyer purchases from firm k ∈ 	1�2
 in
the state e.
Parameterization. We focus on the ways in which learn-

ing by doing and organizational forgetting affect pricing
behavior, and the industry dynamics implied by that behav-
ior. Besanko et al. (2010a) prove that the model has a
unique equilibrium if $= 0 or $= 1. It is therefore natural
to use the homotopy method to trace out the equilibrium
correspondence by varying $ from 0 to 1. We thus make
the forgetting rate $ a function of the homotopy parameter
� and set

$���= $start +��$end − $start��

In particular, if $start = 0 and $end = 1, then the homotopy
method traces out the equilibrium correspondence from
$�0� = 0 to $�1� = 1. To explore the role of learning by
doing, we repeat this procedure for 100 evenly spaced val-
ues of � ∈ �0�01�1�. We hold the remaining parameters
fixed at the values shown in Table 2.
System of Equations. We are now ready to describe the

equilibrium as a system of equations in the form given by
(1). Define the vector of unknown values and policies in
equilibrium as

x= �V �1�1��V �2�1������V �M�1��V �1�2������V �M�M��

p�1�1������p�M�M��′�
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Table 2. Parameter values.

Parameter M m )

Value 30 15
1

1�05
= 0�9524

Note. Learning-by-doing model.

The Bellman equation and first-order condition in state e
are

H 1
e �x���=−V �e�+D1�e��p�e�− c�e1��

+)
2∑

k=1

Dk�e��Vk�e�= 0� (8)

H 2
e �x���= 1− �1−D1�e���p�e�− c�e1��−)�V1�e�

+)
2∑

k=1

Dk�e��Vk�e�= 0� (9)

where we substitute for �V1�e� and �V2�e� using defini-
tions (6) and (7) (imposing symmetry). The collection of
Equations (8) and (9) for all states e ∈ 	1� � � � �M
2 can be
written more compactly as

H�x���=




H 1
�1�1��x���

H 1
�2�1��x���

���

H 2
�M�M��x���



= 0� (10)

where 0 ∈ �2M2
is a vector of zeros. Any solution to this

system of 2M2 equations in 2M2 unknowns x ∈ �2M2
is a

symmetric equilibrium in pure strategies (for a given value
of � ∈ �0�1�).6

4.2. Equilibrium Correspondence

Figure 2 shows the number of equilibria as a function of
the progress ratio � and the forgetting rate $. Darker shades
indicate more equilibria. The subset of parameterizations
that yield three equilibria is fairly large, and we have found
up to nine equilibria for some values of � and $. The mul-
tiple equilibria describe a rich array of pricing behaviors
that are economically meaningful and that are quite dif-
ferent in terms of implied industry structure and dynamics
(see Besanko et al. 2010a for a discussion).

Recall that we made the forgetting rate $ a function of
the homotopy parameter �. To visualize the set of equi-
libria as a correspondence of $ for a specific value of �,
we need a way to summarize each equilibrium as a sin-
gle number. The value function in the initial state �1�1� is
the value of a firm at the onset of the industry; V �1�1� is
thus an economically meaningful summary of an equilib-
rium. Because we are also interested in long-run industry
concentration, we further compute the expected Herfindahl

Figure 2. Number of equilibria.
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

ρ

 1
 3
 5
 7
 9

Note. Learning-by-doing model.

index. We proceed in two steps. First, we use the policy
function to construct the probability distribution over the
next period’s state e′ given this period’s state e, and from
it we compute the limiting (or ergodic) distribution over
states, +
. Second, we use this distribution to compute the
expected Herfindahl index

HHI
 = ∑
e∈	1� ����M
2

��D1�e��
2 + �D2�e��

2�+
�e��

Asymmetric industry structures arise and persist to the
extent that HHI
 > 0�5.

Figures 3 and 4 visualize the equilibrium correspondence
in terms of V �1�1� and HHI
, respectively, for a variety of
different progress ratios �. If the system of equations that
characterizes the equilibria is regular, then there must be a
path connecting the unique equilibria at $ = 0 and $= 1.
Multiple equilibria arise whenever this main path bends
back on itself. Similar to (A) in the left panel of Figure 1,
in the bottom-right panel of Figure 4, the path from $= 0
to $= 1 is S-shaped around $= 0�1; when the sign of �′�s�
changes from positive to negative at $= 0�1181, the path
is bending backward, and when the sign of �′�s� changes
from negative to positive at $= 0�0745, the path is bending
forward.7 Consequently, Figure 2 indicates that there are
three equilibria in the vicinity of $= 0�1 and �= 0�05.

We have also been able to identify one or more loops,
similar to (C) in the left panel of Figure 1, that are dis-
joint from the main path. These loops further add to the
multiplicity of equilibria. In the upper-left panel of Fig-
ure 4, for example, there is a loop around $= 0�1; accord-
ingly, Figure 2 indicates that there are three equilibria in
the vicinity of $ = 0�1 and � = 0�95. However, still other
loops may exist because, in order to trace out a loop, we
must first somehow compute at least one equilibrium on the
loop. Unfortunately, there is no way to determine whether
one’s search for loops—or more generally equilibria—has
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Figure 3. Initial firm value V �1�1�.
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Note. Learning-by-doing model.

Figure 4. Limiting expected Herfindahl index HHI
.
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been exhaustive. Figures 2–4 are therefore not necessarily
a complete mapping of the equilibria.

In some places, the various paths appear to intersect one
another. A case in point is the loop in the upper-left panel
of Figure 4 that appears to twice intersect the path from
$ = 0 to $ = 1. Although such an intersection seems to
resemble the branching point (G) in the right panel of Fig-
ure 1, the fact that two equilibria give rise to the same
expected Herfindahl index does not mean that the equilibria
themselves are the same. We have indeed verified that the
various solution paths do not intersect. Thus, the intersec-
tions in Figures 3 and 4 do not stem from violations of the
regularity requirement.

4.3. Performance

HOMPACK90 offers several different path-following algo-
rithms and storage formats for the Jacobian of the sys-
tem of equations. Moreover, the user can compute the
Jacobian either numerically or analytically. To highlight
the implications of these choices for the performance of
HOMPACK90, we have conducted a series of experiments.
Throughout, we focus on the main path of the equilibrium
correspondence from $= 0 to $= 1 for a progress ratio of
�= 0�75 (as shown in the upper-right panel of Figure 4).
We set the precision in HOMPACK90 to 10−10 (see §5.5
for a discussion). We use ADIFOR to analytically compute
the Jacobian. All experiments are conducted on a Linux
machine with a 64-bit 1 GHz AMD Athlon CPU and 4 GB
of RAM.

Path-Following Algorithms. A major issue is the
trade-off between robustness and computation time. Com-
putation time is the product of the number of steps it takes
to trace out the entire path and the average time per step.
This involves yet another trade-off because these two deter-
minants of computation time are affected in opposite ways
by the size of the step that the homotopy algorithm takes
from one point to the next. Optimally adjusting the step
size is a highly nontrivial problem, and the algorithm that
does this is a major part of HOMPACK90.

Turning to the choice of a specific path-following algo-
rithm, Watson et al. (1997) describe the normal flow algo-
rithm as the baseline offering a reasonable compromise
between robustness and computation time. The ODE-based
algorithm is described as the most robust, but the slowest,
and the augmented Jacobian algorithm as the least robust,
but fastest.

Table 4. Performance: “Complicated” vs. “simple” segment of path.

“Complicated” ($ ∈ �0�0�03�) “Simple” ($ ∈ �0�03�1�)
Algorithm/Jacobian Time (h:m) No. of steps Time/step (s) Time (h:m) No. of steps Time/step (s)

ODE-based/sparse, ana. 0:31 507 3�7 0:57 1�072 3�2
Normal flow/sparse, ana. 0:18 292 3�9 1:26 1�905 2�8
Aug. Jacobian/sparse, ana. 0:26 290 5�4 2:17 1�905 4�3

Note. Learning-by-doing model.

Table 3. Performance: Path-following algorithms and
dense vs. sparse Jacobian.

Time No. of Time/step
Algorithm/Jacobian (h:m) steps (s)

ODE-based/dense, ana. 22:50 1�596 51�5
Normal flow/dense, ana. 28:59 2�197 47�5
Aug. Jacobian/dense, ana. 25:25 2�250 40�7

ODE-based/sparse, ana. 1:28 1�579 03�4
Normal flow/sparse, ana. 1:44 2�197 02�9
Aug. Jacobian/sparse, ana. 2:43 2�195 04�5

Note. Learning-by-doing model.

Table 3 shows that the ODE-based algorithm is not
always slower than the other path-following algorithms. On
the contrary, in our experiments the ODE-based algorithm
turns out to be fastest: While it takes more time to complete
each step, it takes fewer steps to complete the path.

To further investigate this somewhat unexpected finding,
in Table 4 we contrast the performance of the different
path-following algorithms on separate portions of the solu-
tion path. The ODE-based algorithm is faster on the “sim-
ple” segment of the path ($ ∈ �0�03�1�) without multiplicity
and much curvature (so that the unknowns change gradu-
ally with the homotopy parameter), but slower on the “com-
plicated” segment of the path ($ ∈ �0�0�03�). The reason
may lie in the different step-size adjustment procedures of
the different path-following algorithms. Indeed, as a closer
analysis of the output of HOMPACK90 reveals, the ODE-
based algorithm takes much larger (and thus fewer) steps
than the other path-following algorithms on the “simple”
segment of the path. In contrast, on the “complicated” seg-
ment of the path, the ODE-based algorithm takes much
smaller (and thus more) steps than the other path-following
algorithms.8

Returning to Table 3, the comparison between the normal
flow and augmented Jacobian algorithms is not clear-cut
either. The dense augmented Jacobian algorithm takes less
time for each step but requires more steps, and this leads
to an overall decrease in computation time. In contrast, the
sparse augmented Jacobian algorithm takes more time for
each step but requires fewer steps, and this leads to an over-
all increase in computation time. Although the sparse aug-
mented Jacobian algorithm takes only two fewer steps than
the sparse normal flow algorithm in Table 3, Borkovsky
et al. (2007) have found that in some applications both the
dense and the sparse versions of the augmented JacobianIN
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algorithm sometimes take up to 20% fewer steps than their
normal flow counterparts.

Jacobian. As is obvious from Table 3, the dense Jaco-
bian algorithms require considerably more computation
time. A closer analysis reveals that the additional computa-
tion time required by the dense Jacobian algorithms is spent
performing linear algebra operations on the Jacobians.
Overall, this makes an overwhelmingly strong case for
using sparse Jacobians.

With regard to the dense Jacobian algorithms, we have
found that the choice between a numerical, hand-coded
analytical, or ADIFOR-generated analytical Jacobian has a
negligible effect on the time per step. This is because the
time required to compute the Jacobian is dwarfed by the
time required to solve the system of linear equations that
the algorithm must solve to compute the next step along
the path.

Turning to the sparse Jacobian algorithms, precision is a
key advantage of analytically computed Jacobians. Table 5
shows that although the ODE-based algorithm succeeds in
completing the solution path with an analytical Jacobian,
it fails to do so with a numerical Jacobian; in particular,
it spends much time tracing out a short segment of the
path and stops at $= 0�096 where it reaches the maximum
number of steps.

On the other hand, the normal flow algorithm requires
the same number of steps to complete the solution path
regardless of whether an analytical or numerical Jacobian
is used. Interestingly, the path is computed more quickly
when a numerical Jacobian is used (presumably because
computing the numerical Jacobian requires less time than
computing the analytical Jacobian due to the column-by-
column approach that ADIFOR requires to assemble to
Jacobian). Thus, it appears that the lower precision of the
numerical Jacobian is problematic for the ODE-based algo-
rithm but not for the other path-following algorithms. The
likely reason is that, in contrast to the other two path-
following algorithms, the ODE-based algorithm uses the
Jacobian not just in the corrector, but also in the predictor
phase.

Overall, our results make an overwhelmingly strong case
for using sparse Jacobians. There are also good reasons
to prefer analytical over numerical Jacobians, especially

Table 5. Performance: Path-following algorithms and
numerical vs. analytical Jacobian.

Time No. of Time/step
Algorithm/Jacobian (h:m) steps (s)

ODE-based/sparse, ana. 1:28 1�579 3�4
ODE-based/sparse, num. >6:27 >10�000 2�3

Normal flow/sparse, ana. 1:44 2�197 2�9
Normal flow/sparse, num. 1:22 2�197 2�3

Note. Learning-by-doing model.

because ADIFOR makes the process of computing ana-
lytical Jacobians very easy. Finally, we conclude that per-
formance is at least partly problem specific. We therefore
recommend conducting experiments on the particular appli-
cation at hand. The gains from experimentation can be sub-
stantial, and experimentation is virtually costless once the
system of equations and the Jacobian have been coded.

5. Example 2: The Quality Ladder Model
We next consider the quality ladder model of Pakes and
McGuire (1994). To simplify the exposition, we restrict
attention to a duopoly without entry and exit. The descrip-
tion of the model is abridged; please see Pakes and
McGuire (1994) for details.

5.1. Model

Firms and States. The state of firm n ∈ 	1�2
 is -n ∈
	1� � � � �M
 and reflects its product quality. The vector of
firms’ states is � = �-1�-2� ∈ 	1� � � � �M
2, and we use
��2� to denote the vector �-2�-1�. Each period, firms first
compete in the product market and then make investment
decisions. The state in the next period is determined by
the stochastic outcomes of these investment decisions and
an industrywide depreciation shock that stems from an
increase in the quality of an outside alternative. In partic-
ular, firm n’s state evolves according to the law of motion
-′
n = -n + .n −  , where .n ∈ 	0�1
 is a random variable

governed by firm n’s investment xn � 0, and  ∈ 	0�1
 is an
industrywide depreciation shock. If .n = 1� the investment
is successful and the quality of firm n increases by one
level. The probability of success is /xn/�1+/xn�, where
/ > 0 is a measure of the effectiveness of investment. If
 = 1, the industry is hit by a depreciation shock and the
qualities of all firms decrease by one level; this happens
with probability $ ∈ �0�1�.

Below we first describe the static model of product mar-
ket competition and then turn to investment dynamics.
Product Market Competition. The product market is

characterized by price competition with vertically differen-
tiated products. There is a continuum of consumers. Each
consumer purchases at most one unit of one product. The
utility a consumer derives from purchasing product n is
g�-n�−pn+ 1n, where

g�-n�=


-n if 1�-n �-∗�

-∗ + ln�2− exp�-∗ −-n�� if -∗ <-n �M

maps the quality of the product into the consumer’s valua-
tion for it, pn is the price, and 1n represents the consumer’s
idiosyncratic preference for product n. There is an outside
alternative, product 0, that has utility 10. Assuming that the
idiosyncratic preferences �10� 11� 12� are independently and
identically type 1 extreme value distributed, the demand for
firm n’s product is

Dn�p2��=m
exp�g�-n�−pn�

1+∑2
j=1 exp�g�-j�−pj�

�
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where p= �p1� p2� is the vector of prices and m> 0 is the
size of the market (the measure of consumers).

Firm n chooses the price pn of product n to maximize
profits. Hence, firm n’s profits in state � are

3n���=max
pn

Dn�pn�p−n���2���pn− c��

where p−n��� is the price charged by the other firm and
c � 0 is the marginal cost of production. Given a state �,
there exists a unique Nash equilibrium of the product mar-
ket game (Caplin and Nalebuff 1991). It is found easily
by numerically solving the system of first-order conditions
corresponding to firms’ profit-maximization problem. Note
that the quality ladder model differs from the learning-by-
doing model in that product market competition does not
directly affect state-to-state transitions and, hence, 3n���
can be computed before the Markov-perfect equilibria of
the dynamic stochastic game are computed via the homo-
topy method. This allows us to treat 3n��� as a primitive
in what follows.
Bellman Equation and Complementary Slackness

Condition. Define Vn��� to be the expected net present
value of firm n’s cash flows if the industry is currently in
state �. The value function Vn� 	1� � � � �M
2 →� is implic-
itly defined by the Bellman equation

Vn���=max
xn�0

3n���− xn

+)

(
/xn

1+/xn
W 1

n ���+
1

1+/xn
W 0

n ���

)
� (11)

where ) ∈ �0�1� is the discount factor and W.n
n ��� is the

expectation of firm n’s value function conditional on an
investment success (.n = 1) and failure (.n = 0), respec-
tively, as given by

W.n
n ���=

∑
 ∈	0�1
� .−n∈	0�1


$ �1− $�1− 
(

/x−n���
1+/x−n���

).−n

·
(

1
1+/x−n���

)1−.−n

×Vn�max	min	-n+ .n− �M
�1
�

max	min	-−n+ .−n− �M
�1
�� (12)

where x−n��� is the investment of the other firm in state �.
Note that the min and max operators merely enforce the
bounds of the state space.

The policy function xn� 	1� � � � �M
2 → �0�
� specifies
the investment of firm n in state �. Solving the maximiza-
tion problem on the right-hand side of the Bellman equation
(11), we obtain the complementary slackness condition

−1+)
/

�1+/xn�
2
�W 1

n ���−W 0
n ����� 0�

xn

(
− 1+)

/

�1+/xn�
2
�W 1

n ���−W 0
n ����

)
= 0� (13)

xn � 0�

The investment decision xn��� is uniquely determined by
the solution to complementary slackness condition (13) as

xn���=
−1+√

max	1�)/�W 1
n ���−W 0

n ����


/
� (14)

Equilibrium. We restrict attention to symmetric
Markov-perfect equilibria. In a symmetric equilibrium, the
investment decision taken by firm 2 in state � is identical
to the investment decision taken by firm 1 in state ��2�, i.e.,
x2���= x1��

�2��, and similarly for the value functions. It
therefore suffices to determine the value and policy func-
tions of firm 1, and we define V ���= V1��� and x���=
x1��� for each state �. Similarly, we define W.1��� =
W

.1
1 ��� for each state �.
Parameterization. We allow the homotopy algorithm to

vary / and $:[
/���

$���

]
=
[
/start

$start

]
+�

[
/end −/start

$end − $start

]
�

For example, if $start = 0 and $end = 1 while /start = /end,
then the homotopy algorithm traces out the equilibrium cor-
respondence from $�0�= 0 to $�1�= 1. In general, given
any starting and ending values for the parameter vector, the
homotopy algorithm can trace out an entire path of equi-
libria by moving along the line in parameter space that
connects the starting and ending values. The effectiveness
of investment / is a natural parameter to vary because the
equilibrium trivially involves no investment if /= 0. More-
over, this equilibrium is unique. In addition to /, we allow
the rate of depreciation $ to vary because experience sug-
gests that the rate of depreciation is often a key determinant
of industry structure and dynamics (see, e.g., Besanko and
Doraszelski 2004, Besanko et al. 2010b). Note that in the
quality ladder model the equilibrium is not unique at $= 0
(see Figure 5) and may not be unique at $= 1. We hold the
remaining parameters fixed at the values shown in Table 6.

Figure 5. Number of equilibria.
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Table 6. Parameter values.

Parameter M m c -∗ )

Value 18 5 5 12 0�925

Note. Quality ladder model.

5.2. The Zangwill and Garcia (1981) Reformulation
of the Complementary Slackness Condition

Due to the nonnegativity constraint on investment in the
quality ladder model, we obtained a complementary slack-
ness condition instead of a first-order condition as in the
learning-by-doing model in §4. To apply the homotopy
method, we must reformulate the system of equations and
inequalities in (13) as a system of equations.

Consider a general complementary slackness condition
on a scalar variable x:

A�x�� 0�

B�x�� 0� (15)

A�x�B�x�= 0�

where A�x� and B�x� are functions of x. Zangwill and
Garcia (1981, pp. 65–68) offer a reformulation of the com-
plementary slackness condition that consists entirely of
equations that are continuously differentiable to an arbitrary
degree. The idea is to introduce another scalar variable ;
and consider the system of equations

A�x�+ �max	0� ;
�k = 0� (16)

B�x�+ �max	0�−;
�k = 0� (17)

where k ∈�. From Equations (16) and (17), it follows that

; =




�−A�x��1/k if A�x� < 0�

−�−B�x��1/k if B�x� < 0�

0 if A�x�= B�x�= 0�

(18)

Using the fact that max	0�−;
 × max	0� ;
 = 0 and the
solution for ; in Equation (18), it is easy to see that the
system of Equations (16) and (17) is equivalent to the com-
plementary slackness condition in (15). Moreover, this sys-
tem is �k−1� times continuously differentiable with respect
to ; . Although we take k = 2 in what follows, we could
easily satisfy the smoothness requirement of the homotopy
method by choosing a larger value for k.

The Quality Ladder Model. The complementary
slackness condition (13) can be restated as

−�1+/x����2 +)/�W 1���−W 0����� 0�

x����−�1+/x���2 +)/�W 1���−W 0�����= 0� (19)

x���� 0�

where we use the fact that we focus on symmetric equilib-
ria in order to eliminate firm indices and multiply through
by �1+/x����2 to simplify the expression. Applying the
Zangwill and Garcia (1981) reformulation to the comple-
mentary slackness condition (19) yields the equations

−�1+/x����2+)/�W 1���−W 0����

+�max	0�;���
�k=0� (20)

−x���+�max	0�−;���
�k=0� (21)

The terms �max	0� ;���
�k and �max	0�−;���
�k
serve as slack variables that ensure that the inequali-
ties in (13) are satisfied and the fact that max	0� ;���
×
max	0�−;���
= 0 ensures that the equality in (13) holds.

We can now proceed to define the system of homotopy
equations using Equations (20) and (21) along with the
Bellman equation

−V ���+31���−x���
+)

(
/x���

1+/x���W
1���+ 1

1+/x���W
0���

)
=0� (22)

where we substitute for W 1��� and W 0��� using defini-
tion (12) (imposing symmetry). This yields a system of 3M 2

equations in the 3M2 unknowns V �1�1�� � � � � V �M�M�,
x�1�1�� � � � � x�M�M�, and ;�1�1�� � � � � ;�M�M�.

Two problems arise. First, because we have added the
slack variables, this system of equations is relatively large
with 3M 2 equations and unknowns. This leads to increased
memory requirements and computation time. Second, this
system of equations yields an extremely sparse Jacobian.
Note that the rows of the Jacobian corresponding to Equa-
tion (21) each have only one or two nonzero elements. Also
note that each column of the Jacobian corresponding to
a slack variable has only one nonzero element. We have
found that such a Jacobian tends to cause HOMPACK90’s
sparse linear equation solver to fail; this is discussed further
in §5.6.

We address these problems by solving Equation (21) for

x���= �max	0�−;���
�k� (23)

and then substituting for x��� in Equations (20) and (22).9

This reduces the system of 3M 2 equations in 3M 2

unknowns to a system of 2M2 equations in 2M2 unknowns.
Moreover, it eliminates the rows and columns of the
Jacobian that included only one or two nonzero elements;
thus, we have eliminated the excessive sparsity that tends to
cause HOMPACK90’s sparse linear equation solver to fail.

To this end, define the vector of unknowns in equilib-
rium as

x= �V �1�1��V �2�1������V �M�1��V �1�2������V �M�M��

;�1�1������;�M�M��′�
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The equations in state � are

H 1
��x���=−V ���+31���−x���

+)
(

/x���

1+/x���W
1���+ 1

1+/x���W
0���

)
=0� (24)

H 2
��x���=−�1+/x����2+)/�W 1���−W 0����

+�max	0�;���
�k=0� (25)

where we substitute for W 1��� and W 0��� using defini-
tion (12) (imposing symmetry) and for x��� using defini-
tion (23). Note that (24) and (25) are equations that are used
to construct the system of homotopy equations, whereas
(12) and (23) are simply definitional shorthands for terms
that appear in Equations (24) and (25). The collection of
Equations (24) and (25) for all states � ∈ 	1� � � � �M
2 can
be written more compactly as

H�x���=




H 1
�1�1��x���

H 1
�2�1��x���

���

H 2
�M�M��x���



= 0� (26)

where 0 ∈ �2M2
is a vector of zeros. Any solution to this

system of 2M2 equations in 2M2 unknowns, x ∈�2M2
� is a

symmetric equilibrium in pure strategies (for a given value
of � ∈ �0�1�).10 The equilibrium investment decision x���
in state � is recovered by substituting the equilibrium slack
variable ;��� into definition (23).

Our approach of replacing a model variable with a slack
variable can be taken only if one of the equations in the
Zangwill and Garcia (1981) formulation admits a closed-
form solution for a model variable. (In the case of the
quality ladder model, we solved Equation (21) for the
investment decision x���.) This is always the case if a
model variable is constrained to be above/below a constant,
as with the nonnegativity constraint in the quality ladder
model. However, it is possible that none of the equations
in the Zangwill and Garcia (1981) formulation admits a
closed-form solution for a model variable. Suppose, for
example, we impose an upper bound on the sum of firms’
investments in each state, i.e., xn�-�+ x−n�-�� L�-�, in
the quality ladder model (say because firms are compet-
ing for a scare resource). Then, in solving an equation
corresponding to (16) or (17) for xn���, one finds that
xn��� = f �;n���� x−n���� = f �;n���� xn��

�2���. That is,
the closed-form solution for firm n’s policy in state -,
xn���, is a function of its rival’s policy in state �, x−n���,
and thus its own policy in state ��2�, xn��

�2��. In this case,
it is impossible to find a closed-form solution for xn���
as a function of only ;n���, and thus it is impossible to
eliminate the model variable xn���. On the other hand, in

this case, the Jacobian of the system formulated using the
“pure” version of the Zangwill and Garcia (1981) formula-
tion is no longer as sparse, thereby reducing our motivation
for replacing a model variable with a slack variable in the
first place.

5.3. Equilibrium Correspondence

Figure 5 shows the number of equilibria as a function of the
effectiveness of investment / and the rate of depreciation $.
We have found up to three equilibria for some values of /
and $. The extent of multiplicity is not nearly as dramatic
as in the learning-by-doing model.

To visualize the equilibrium correspondence, we graph
the expected Herfindahl index

HHIT = 1
m2

∑
�∈	1� ����M
2

��D1�p���2���
2

+ �D2�p���2���
2�+T ����

where +T is the transient distribution over states in period
T ∈ 	10�100�1�000
, starting from state �1�1� in period 0.
We use transient distributions rather than the limiting dis-
tribution as in the learning-by-doing model because there
may be several closed communicating classes.11

As can be seen in Figure 6, industry concentration, both
in the short and in the long run, is affected by / and $
in nontrivial ways. Whereas the homotopy algorithm com-
putes continuous solution paths, the expected Herfindahl
indices in Figure 6 appear to change almost discontinuously
in some places. This happens because the shape of the
transient distribution, and with it the value of the expected
Herfindahl index, changes abruptly as investment in certain
states goes to zero. In particular, if investment in state �1�1�
is zero, then both firms are stuck at the lowest-possible
quality level. As soon as x�1�1� > 0, however, the indus-
try takes off, thereby giving rise to a nontrivial transient
distribution that assigns positive probability to asymmetric
industry structures. For example, with $ = 0�7 investment
rises from zero to positive around / = 2�17 to cause the
abrupt change in the expected Herfindahl index in the left
panel of Figure 6; with /= 3 investment drops from posi-
tive to zero around $= 0�74 in the right panel.

Figure 7 illustrates the ability of the homotopy algorithm
to crisscross the parameter space.12 It combines several
slices through the equilibrium correspondence to show how
the expected Herfindahl index HHI 1�000 depends jointly on
the effectiveness of investment / and the rate of deprecia-
tion $.

To illustrate why the multiplicity that is displayed in Fig-
ure 5 is not discernible in Figure 7, we discuss the three
equilibria that we have found at / = 1�8 and $= 0�05.
Across these equilibria, investment differs most in state
�15�15�, where it is 0, 0�0092, and 0�0365. Table 7 presents
the corresponding transient distributions +1�000 in a subset
of the state space around state �15�15�. The differences
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Figure 6. Transient expected Herfindahl index HHIT at T ∈ 	10�100�1�000
 along / with $ = 0�7 (left panel) and
along $ with /= 3 (right panel).
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Note. Quality ladder model.

in investment lead to qualitative differences in industry
structure; whereas the equilibria in the left and middle
panels give rise to transient distributions +1�000 with sym-
metric modal state �15�15�, the equilibrium in the right
panel gives rise to a transient distribution +1�000 with asym-
metric modal states �15�16� and �16�15�. Despite this,
the expected Herfindahl indices are virtually identical (and
equal to 0�5000) because significant differences between
the transient distributions +1�000 are limited to states in
which each firm has a quality level greater than -∗ = 12.

Figure 7. Transient expected Herfindahl index
HHI 1�000 along / and $.
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For this subset of the state space, a change in the state
has a negligible impact on product market competition and,
accordingly, on the Herfindahl index.

5.4. Scalability

To assess the scalability of HOMPACK90, we change the
number of quality levels M , and thus the number of equa-
tions 2M2, and adjust the quality cutoff -∗ accordingly. We
trace out the equilibrium correspondence along / ∈ �0�15�
with $ = 0�7 held fixed. From Table 8 it appears that the
total computation time increases more than linearly in the
number of equations. It is to be expected that the time per
step increases in the number of equations because solving
the systems of linear equations described in §3.1 becomes
more burdensome. More surprisingly, the number of steps
increases in the number of equations.

Table 7. Transient distributions +1�000 for the three
equilibria at /= 1�8 and $= 0�05.

15 16 15 16 15 16

15 0.6888 10−5 15 0�4274 0�1418 15 0�1921 0�2683
16 10−5 0 16 0�1418 0�0021 16 0�2683 0�0139

Note. Quality ladder model.

Table 8. Scalability: Normal flow algorithm with sparse
analytic Jacobian.

No. of Time No. of Time/step
M -∗ equations (h:m:s) steps (s)

9 6 162 0:00:15 931 0�02
18 12 648 0:24:27 7�608 0�19
27 18 1�458 5:08:27 21�457 0�86

Note. Quality ladder model.
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The reason is the following. Recall from §5.2 that the
quality ladder model exhibits a kink as the investment in
a state switches from zero to positive or vice versa in
response to a change in the parameter values (see Equa-
tion (14)). While the Zangwill and Garcia (1981) reformu-
lation of the complementary slackness condition smoothes
out this kink, it inevitably does so by introducing additional
curvature into the solution path. This forces the homotopy
algorithm to take small steps. Moreover, the larger the state
space, the more kinks there potentially are in the quality
ladder model and the more additional curvature is intro-
duced by the Zangwill and Garcia (1981) reformulation.
This argument implies that the homotopy algorithm should
take large steps and proceed quickly as long as the solu-
tion path does not exhibit kinks. Indeed, irrespective of the
size of the state space, the homotopy algorithm takes fewer
than a hundred steps to traverse the segment along which
investment is positive for all states; the rest of the steps are
needed to trace out the segment along which investment in
some state switches from zero to positive or vice versa.

5.5. Troubleshooting

If HOMPACK90 successfully follows a path to its end, it
indicates a normal ending (exit flag 1). The end of the
path may be associated with either � = 1 or � = 0. The
latter case, in turn, may indicate genuine multiplicity of
equilibria (see case (B) in Figure 1) or that the homotopy
algorithm “turned around” and backtracked along the path
until it returned to the starting point. HOMPACK90 may
also fail to follow a path to its end for other reasons. In
the remainder of this section, we detail several types of
failures that may occur and give tips for troubleshooting
these problems.

With any type of failure, it is good practice to first verify
that the regularity and smoothness requirements are sat-
isfied. To check for regularity, we compute the condition
numbers of Jacobians along the path. If the condition num-
bers increase as the homotopy algorithm approaches the
point of failure, it is very likely due to a violation of the
regularity requirement.13 It may be possible to avoid this
type of failure by making a small change in the parame-
ter values of the model or by relaxing the precision setting
so that HOMPACK90 takes larger steps and is thus more
likely to “skip over” the singularity.

The homotopy algorithm does not check for smoothness,
and it is entirely possible that it successfully follows a path
to its end even if the smoothness requirement is violated. In
general, however, it is advisable to formulate the problem
such that the smoothness requirement is satisfied (see §5.2).

HOMPACK90 may abort if the precision setting is too
stringent (exit flags 2 and 6) or too lax (exit flag 5). In the
latter case, the homotopy algorithm takes a step and ends
up too far from the path to be able to return to it; this often
happens on segments with high curvature. The solution is
to adjust the precision setting.

HOMPACK90 may reach the maximum number of steps
(exit flag 3). Although the obvious solution is to increase
the maximum number of steps, it is worth investigating if
the homotopy algorithm proceeds slowly because the pre-
cision setting is too stringent. The tighter the precision
setting, the narrower the “band” around the solution path
in which the homotopy algorithm aims to stay and, thus,
the smaller the steps that it takes. Also recall from §4.3
that the numerical Jacobian often lacks the precision that
allows the ODE-based algorithm to take long steps and pro-
ceed quickly. Finally, in the normal flow and augmented
Jacobian algorithms, the maximum step size (as set in the
input variable SSPAR(5)) can be increased.

If the homotopy algorithm progresses very slowly in
the vicinity of the initial condition, then a useful trick is
to allow the homotopy algorithm to instead begin at the
parameterization originally designated as the end point and
proceed “backwards” toward the parameterization origi-
nally designated as the starting point. This may alleviate the
problem in cases where it allows the homotopy algorithm
to approach the segment of high curvature from a segment
of low curvature. We suspect that this occurs because some
of the path-following algorithms—namely, the normal flow
and augmented Jacobian algorithms—predict the next step
on the solution path using several previous steps. A seg-
ment of low curvature on the solution path may therefore
provide the homotopy algorithm with “data” on the path
that serves as a good indication of the direction in which
to proceed.

If a solution path gets sufficiently close to another,
then the homotopy algorithm may jump from one path to
another and, in doing so, may fail to traverse the path in its
entirety. Similarly, the homotopy algorithm may also jump
between one or more segments of the same path. If path
jumping is suspected to occur, then it is advisable to tighten
the precision setting and/or decrease the maximum step size
in order to force the homotopy algorithm to remain close
to the desired solution path.

5.6. The Linear Solver

All the path-following algorithms must solve a system of
linear equations of the form Az = b in each step, where
the matrix A is constructed from the Jacobian H�y�/y
(Equation (4) in the case of the ODE-based algorithm
and the Newton iteration in the corrector step of all three
algorithms).14 The final and perhaps most troubling reason
that HOMPACK90 may fail to follow a path to its end is a
failure of the linear solver (exit flag 4). This occurs if the
Jacobian is (nearly) singular; again, it is good practice to
verify that the regularity requirement is satisfied. If this is
the case, it is likely that the linear solver cannot handle the
problem at hand.

The dense and sparse algorithms in HOMPACK90 differ
not only in the storage format of the Jacobian, but also
in the low-level numerical linear algebra routines. In our
experience, the dense linear solver has been relatively
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robust, whereas the sparse linear solver has sometimes
failed. The dense algorithms in HOMPACK90 use QR
decomposition—a direct method—to solve linear systems.
The sparse algorithms use the iterative generalized minimal
residual (GMRES) method (Saad and Schultz 1986) coupled
with incomplete LU (ILU) preconditioning. Thus, HOM-
PACK90 solves �Q−1A�z = �Q−1b�, where Q is the ILU
preconditioner of A. Q is chosen to make �Q−1A� close to
diagonal and easy to evaluate.

Both Layne Watson (the principal author of
HOMPACK90) and Ken Judd (an authority on numerical
methods in economics) acknowledge that the GMRES
method can and does fail for some problems. There is no
guidance as to which problems are susceptible, but we
strongly suspect problems with extremely sparse Jacobians.
As explained in §5.2, constructing a system of equations
for the quality ladder model using the “pure” version of
the Zangwill and Garcia (1981) formulation yields such a
sparse Jacobian. In §5.2 we have therefore shown how to
reduce the size and sparsity of the Jacobian by eliminating
variables.

In addition, we also offer the following suggestions:
(i) Reorder the unknowns and/or equations to change the
order of the columns and rows of the Jacobian. (ii) Use
the dense algorithms if the dimension of the problem is
less than several hundred equations. (iii) Increase the limit
on the number of GMRES iterations and/or increase the
“k” in GMRES�k�. (GMRES�k� is restarted every k itera-
tions until the residual norm is small enough; see Watson
et al. 1997.) (iv) Remove the ILU preconditioning and use
GMRES by itself to solve the linear system. (v) Replace
the sparse linear solver in HOMPACK90.15

6. Concluding Remarks
This paper provides a step-by-step guide to solving
dynamic stochastic games using the homotopy method. We
discuss the theory of the homotopy method and its imple-
mentation and present two detailed examples of dynamic
stochastic games that are solved using this method. We
refer the reader to Zangwill and Garcia (1981) for a com-
prehensive treatment of the theory of the homotopy method
and to Allgower and Georg (1992) for a discussion of
numerical methods for implementing it.

In this paper we use the homotopy method to trace out
an entire path of solutions to a system of equations by
varying one or more parameters of the model. This type of
application is referred to as a natural-parameter homotopy.
The homotopy method has other applications. A so-called
artificial homotopy can be used to obtain a solution for a
particular parameterization of a system of equations; it aims
to compute just one equilibrium. Artificial homotopies have
been widely used to compute Nash equilibria in normal
and extensive form games (see Herings and Peeters 2010
and the references therein) and to solve general equilibrium
models (see Eaves and Schmedders 1999 and the references

therein), in particular, models with incomplete asset mar-
kets (Schmedders 1998, 1999). See Berry and Pakes (2007)
for an application to estimating demand systems.

An all-solutions homotopy can sometimes be used to
obtain all solutions to a system of equations with certain
properties such as the polynomial system that characterizes
the Nash equilibria of a finite game (see, e.g., McKelvey
and McLennan 1996). All-solutions homotopies to solve for
all Nash equilibria of a finite game have been implemented
in the freely available software package Gambit (McKelvey
et al. 2006). They are used by Bajari et al. (2010) to com-
pute equilibria of static games of incomplete information
and by Bajari et al. (2009a, b) within the context of esti-
mation algorithms. Judd and Schmedders (2006) construct
a computational uniqueness proof for a class of dynamic
stochastic games in which movements through the state
space are unidirectional and the primitives are given by
polynomials. We refer the reader to Sommese and Wampler
(2005) for a recent treatment of all-solutions homotopies.

Endnotes
1. Boldface is used throughout to distinguish between vec-
tor and scalars.
2. The mathematical literature on the homotopy method
rules out paths like (D) by imposing a boundary freeness
requirement (see, e.g., Zangwill and Garcia 1981, Chap-
ter 3).
3. More formally, (G) is a so-called pitchfork bifurcation.
The regularity requirement also rules out transcritical (X-
shaped) bifurcations, but is consistent with other types of
bifurcations (saddle node and double saddle node). See
Golubitsky and Schaeffer (1985) for an introduction to
bifurcation theory.
4. This functionality was added by us and is not a part of
the original HOMPACK90.
5. ADIFOR can be obtained at http://www-unix.mcs.anl.
gov/autodiff/ADIFOR/. Links to other automatic differenti-
ation packages can be found at http://www.autodiff.org.
6. A slightly modified version of Proposition 2 in
Doraszelski and Satterthwaite (2010) establishes that such
an equilibrium always exists.
7. The orientation of the path taken by the homotopy
method is arbitrary and can be reversed by reversing the
signs of the basic differential equations (3).
8. Further investigation revealed that the normal flow and
augmented Jacobian algorithms indeed limit the maximum
step size (as set in the input variable SSPAR(5)). We kept
it at the default value to make for a more fair comparison
between the different path-following algorithms. Increasing
the maximum step size also appears to increase the like-
lihood that the homotopy algorithm strays from the solu-
tion path.
9. We thank Karl Schmedders for suggesting this approach.
10. Theorem 1 in Doraszelski and Satterthwaite (2010)
establishes that such an equilibrium always exists.
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11. A closed communicating class is a subset of states that
the industry never leaves once it has entered it. The tran-
sient distributions that we compute account for the prob-
ability of reaching any one of the closed communicating
classes.
12. We thank Paul Grieco for producing Figure 7. The
algorithm presented in Grieco (2008) uses HOMPACK90
to trace out paths in the equilibrium correspondence along
multiple dimensions of the parameter space and, in doing
so, it computes the largest connected subset of the equilib-
rium correspondence that includes the initial condition.
13. A matrix is singular if its condition number is infinite.
A large condition number signifies that a matrix is nearly
singular (Judd 1998, pp. 67–70).
14. The Jacobian H�y�/y is an �N × �N + 1�� matrix,
whereas the linear solver requires a square matrix. All
three path-following algorithms therefore add a row to the
Jacobian. This extra row is simply a basis vector in the
case of the ODE-based and normal flow algorithms and a
vector that is tangent to the solution path in the case of the
augmented Jacobian algorithm.
15. The authors thank Layne Watson for some of these
suggestions and warn the reader that implementing some
of them requires in-depth knowledge of HOMPACK90.
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