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Abstract 

This study presents an empirical analysis of the cost efficiency of a sample of 

Swiss multi-utilities operating in the distribution of electricity, natural gas and water. 

The multi-utilities that operate in different sectors are characterized by a strong unob-

served heterogeneity. Therefore the measurement of their performance poses an im-

portant challenge for the regulators. The purpose of this paper is to study the potential 

advantages of recently developed panel data stochastic frontier models in the meas-

urement of the level of efficiency for multi-utility companies. These models are esti-

mated for a sample of 34 multi-output utilities operating from 1997 to 2005. The al-

ternative models are compared regarding the cost function slopes and inefficiency es-

timates. For the inefficiency estimates, the correlation between different models and 

the effect of econometric specification have been analyzed. The results suggest that 

the inefficiency estimates are substantially lower when the unobserved firm-specific 

effects are taken into account.  
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1. Introduction    

Along with the recent waves of liberalization and deregulation in network in-

dustries throughout Europe, the authorities are increasingly concerned about the pro-

ductive efficiency of the utilities that, due to their natural monopoly characteristics, 

are not fully liberalized. In sectors such as power, gas and water distribution, because 

of the considerable economies of scale, a direct introduction of competition is not op-

timal. Instead, incentive regulation has been used to ensure (or maximize) the produc-

tive efficiency of the locally monopolistic companies. Everywhere in Europe, the tra-

ditional regulatory systems are being gradually replaced by incentive regulation 

schemes. Unlike the traditional contracting systems based on a reasonable rate of re-

turn, the incentive contracts are designed to induce incentives for reducing costs and 

increasing efficiency. Most incentive regulation schemes use benchmarking to evalu-

ate the productive performance of the regulated companies in order to reward/punish 

them accordingly. Based on their efficiency performance, companies are allowed to 

retain part of their profits/savings through either differentiated price caps or adjust-

ments in budget or network access fees.  

Several OECD countries have already integrated a benchmarking practice in 

their regulation systems for electricity distribution networks (Farsi, Fetz and Filippini, 

2007a; Crouch, 2007). A few countries have also introduced such incentive schemes 

based on performance in their water industry (Saal et al., 2007; Antonioli and Filip-

pini, 2001).1 The application of benchmarking methods in the gas sector is probably 

not as advanced as that observed in the electricity industry. However, the use of in-

centive schemes based on performance has been proposed in several studies (cf. Casa-

rin, 2007). In spite of a relatively common usage in each one of the distribution sec-

tors, the direct application of benchmarking analysis in the regulation of multi-utilities 

has hardly been explored. This is especially interesting in Switzerland and some other 

 

1 In Switzerland the distribution utilities are monitored and regulated by cantonal and federal 
governments. Although Switzerland has not yet implemented any incentive regulation system, the ac-
tual debates suggest that the regulators will probably follow similar reforms in the near future.  
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European countries, where multi-utilities dominate the distribution sectors in electric-

ity, natural gas and water.  

To our knowledge there is no reported empirical application of efficiency 

measurement in the multi-utility sector. This may perhaps be considered in line with 

arguments in favor of unbundling the multiple-utilities into separate legal entities. In 

fact, horizontal unbundling is a recurring subject of the public policy debates both in 

the EU and Switzerland. However, the dominance of multi-utilities in Switzerland is 

not expected to be affected by the ongoing reforms. According to the observed ten-

dencies in the EU regulatory reforms, the multi-utilities especially those with moder-

ate and small networks (less than 100,000 customers), will remain exempt from un-

bundling requirements. 

Noting the importance of multi-utilities in many countries an important ques-

tion is whether the benchmarking methods can be applied to multi-utilities as well as 

single-output distribution utilities. It is often argued that an accounting unbundling is 

sufficient for applying separate benchmarking analyses to each branch of a multi-

utility. However, due to the fact that in certain situations only part of these sectors are 

regulated with incentive regulation schemes, a company could artificially shift part of 

the costs to the sector for which the regulation does not foresee a benchmarking proc-

ess. Similarly, because of the different levels of incentive regulation across various 

sectors of a single firm, the management might focus their efforts in one sector, thus 

permit slackness in others. Moreover, extending single-sector benchmarking to multi-

utilities requires pooling the data from single-output distributors with the correspond-

ing branches of the multi-utilities. The latter units, benefiting from the economies of 

scope, are arguably not comparable to specialized firms, thus might bias the efficiency 

estimates. In these cases, a benchmarking across the entire operation of multi-utilities 

might be more relevant than separate benchmarking analyses for individual sectors. In 

many cases, with a mixture of mutli-output utilities and specialized distributors, the 

two types of analyses can also be combined to assess the potential differences among 

firms and also across sectors.   

The effectiveness of the regulation systems relies upon the accuracy of esti-

mated efficiency levels of individual companies. However, due to a great variety of 

available methods of efficiency measurement and the observed discrepancy of results 
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across different methods, benchmarking practice requires a methodology to adopt a 

single model among several legitimate approaches and specifications. This task is par-

ticularly complicated in network utilities in which unobserved firm-specific factors 

might be confounded with inefficiency. Obviously the problem of unobserved hetero-

geneity is more important in multi-output distributors that operate in several networks, 

each of which could have different types of cost drivers with specific characteristics.  

Unobserved firm-specific heterogeneity can be taken into account with conven-

tional fixed or random effects in a panel data model. In order to distinguish external 

heterogeneities from cost efficiency, Greene (2005a) proposed a model that integrates 

an additional stochastic term representing inefficiency in both fixed and random ef-

fects models.2 These models assume that the firm-specific heterogeneity does not 

change over time but sources of inefficiency vary both across firms and over time. In 

this paper we use a ‘true random-effects’ model, which is a random-constant frontier 

model, obtained by combining a conventional random-effects model with a skewed 

stochastic term representing inefficiency. The extended model includes separate sto-

chastic terms for latent heterogeneity and inefficiency.  

The empirical results reported in the literature obtained from true random effects 

models suggest that modeling unobserved heterogeneity could significantly decrease 

the inefficiency estimates.3 This could lend certain support to the application of ben-

chmarking methods in the regulation of strongly heterogeneous network industries, in 

which the conventional inefficiency estimates appear to be overstated. Provided that 

they can sufficiently control for the unobserved heterogeneity across firms, these me-

thods can be used to have a better estimate of cost-inefficiency in the sector or at indi-

vidual companies.  

 

2 Kumbhakar (1991) proposed a similar approach using a three-stage estimation procedure. See also 
Heshmati and Kumbhakar (1994) and Kumbhakar and Hjalmarsson (1995) for two applications 

3 See for instance Greene (2004), Farsi, Filippini and Kuenzle (2005) and Alvarez, Arias and Greene 
(2004). 



5 

The purpose of this paper is to study the potential advantages of these extended mod-

els in an application to Switzerland’s multi-output utilities. The models are estimated 

for a sample of 34 companies operating in Switzerland from 1997 to 2005. The alter-

native models are compared regarding the cost function slopes and inefficiency esti-

mates. For the inefficiency estimates, the correlation between different models and the 

effect of econometric specification have been analyzed. The results suggest that the 

inefficiency estimates are substantially lower when the unobserved firm-specific ef-

fects are taken into account.  

The rest of the paper is organized as follows: Section 2 presents the model 

specification and the methodology. The data are explained in section 3. Section 4 pre-

sents the estimation results and discusses their implications, and section 5 provides the 

conclusions.  

2. Stochastic frontier models for panel data 

The methods used for measuring technical, allocative and cost efficiency are 

commonly referred to as frontier approaches, classified into two main categories of 

linear programing methods and econometric approaches.4 The latter group, also 

known as Stochastic Frontier Analysis (SFA) is easily adaptable to panel data struc-

ture and therefore used in this study. In SFA models, first developed by Aigner, Lov-

ell and Schmidt (1977) and Meeusen and van den Broeck (1977), the regression re-

siduals are decomposed into a symmetric component representing statistical noise and 

a skewed term one representing inefficiency.  

As opposed to cross-sections, in panel data the repeated observation of the same 

company over time allows an estimation of unobserved firm-specific factors, which 

might affect costs but are not under the firm’s control. Individual companies operate 

in different regions with various environmental and network characteristics that are 

only partially observed. It is crucial for the regulator to disentangle such exogenous 

heterogeneities from inefficiency estimates. However the distinction between these 

 

4 Murillo-Zamorano (2004) provides an account of advantages and shortcomings of each group. Other 
interseting surveys are Coelli et al. (2005), Simar (1992) and Kumbhakar and Lovell (2000). 
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two unobserved terms requires certain assumptions based on judgment. In early appli-

cations of SFA models to panel data (Pitt and Lee, 1981; Schmidt and Sickles, 1984; 

Battese and Coelli, 1988), the common assumption was that the productive efficiency 

is a time-invariant characteristic that can be captured by firm-specific effects in a ran-

dom or fixed effects model.  

A general form of a cost frontier based on these models can be written as:  

  ln Cit = f (yit, wit ) + ui + vit.     (1), 

where subscripts i and t denote the firm and the operation year, C is the cost variable 

usually in logarithms and y and w are respectively vectors of outputs and input factor 

prices. The time-varying error component vit , typically a normal variable, represents 

the unobserved heterogeneity and random errors, whereas the time-invariant term ui is 

assumed to represent excess costs due to inefficiency. The latter term is considered 

with different distributions: While Pitt and Lee (1981) adopt a half-normal distribu-

tion that is, a normal distribution truncated at zero. Battese and Coelli (1988) extends 

the model to non-zero truncation points and Schmidt and Sickles (1984) propose two 

variations in which they relax the distribution assumptions respectively using Gener-

alized Least Squares (GLS) and fixed-effect estimators. In particular, in the latter 

model, the individual effects ui can be correlated with the explanatory variables.  

In more recent papers the random effects model has been extended to include 

time-variant inefficiency. Cornwell, Schmidt and Sickles (1990), Kumbhakar (1990), 

and Battese and Coelli (1992) are the important contributions that consider a time 

function to account for variation of efficiency. In particular the former paper proposes 

a flexible function of time with parameters varying among firms. In all these models, 

however, the unobserved external heterogeneity is suppressed in an iid error term 

across observations. This implies that the cost variations due to factors other than 

firm’s efficiency are randomly assigned to each observation. This could be a restric-

tive assumption in network industries in which certain external cost drivers specific to 

environment and/or network complexity remain practically unchanged over fairly 

long periods of time.  

To the extent that environmental factors and network characteristics do not 

change considerably over time, associating the time-invariant excess costs to external 
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factors rather than inefficiency can be a sensible assumption. On the other hand, im-

provements in efficiency are usually linked to a dynamic learning process and adapta-

tion to new technologies. Therefore, it can be assumed that inefficiencies are captured 

by the time-varying excess costs. These assumptions combined with the distribution 

assumption in line with the original frontier model allow a disentanglement of ineffi-

ciencies from firm-specific heterogeneity captured by panel’s individual effects.5  

In fact, the SFA model in its original form (Aigner, Lovell and Schmidt, 1977) 

can be readily extended to panel data models, by adding a fixed or random effect in 

the model. Although similar extensions have been proposed by several previous au-

thors,6 Greene (2005a,b) provides effective numerical solutions for both models with 

random and fixed effects, which he respectively refers to as “true” fixed and random 

effects models. Several recent studies such as Greene (2004), Farsi, Filippini and 

Kuenzle (2005), Alvarez, Arias and Greene (2004) and Tsionas (2002) have followed 

this line. Some of these models have proved a certain success in a broad range of ap-

plications in network industries in that they give more plausible efficiency estimates.7 

These results raise an important question as to what extent the panel-data-adapted 

models can be used to have a better understanding of the inefficiencies and whether 

they can provide a reliable basis for benchmarking and incentive regulation systems in 

industries characterized by strong heterogeneity. This question is especially important 

in the multi-utility sector, in which the companies operate in multiple networks, en-

tailing several network-specific heterogeneity dimensions.  

Greene’s (2005a) ‘true’ cost frontier model can be written as:  

 

5 There are evidently other feasible econometric specifications that can incorporate these assumptions. 
A remarkable example is the flexible framework proposed by Sickles (2005).       

6 In particular Kumbhakar (1991) proposed a three-stage estimation procedure to solve the model with 
time- and firm-specific effects, Polachek and Yoon (1996) estimated a panel data frontier model with 
firm dummies and Heshmati (1998) used a two-step procedure in a random-effect framework to sepa-
rate the firm-specific effects from efficiency differences.  

7 See Saal, Parker and Weyman-Jones (2007), Farsi, Filippini and Greene (2006), Farsi, Filippini and 
Kuenzle (2006) and Farsi, Filippini and Greene (2005) for applications in water distribution, electricity 
networks, bus transport and railroads respectively. 
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  ln Cit = f (yit, wit) +αi+ uit + vit,.      (2) 

The term (αi) is a normal i.i.d.  in random-effects framework, or a constant parameter 

in fixed-effects approach. uit  and vit are respectively a half-normal variable represent-

ing inefficiency and a normal random variable that captures the statistical noise. In 

this study, we used the true random effect model, mainly because the numerical solu-

tion of the fixed effects model was cumbersome and did not converge to sensible re-

sults for the estimates of inefficiencies and individual intercepts. In order to provide a 

basis for comparing the results, three other models namely, Pitt and Lee (1981), Bat-

tese and Coelli (1992) and a GLS model in line with Schmidt and Sickles (1984) have 

also been considered. These models will be described in the next section.  

 

3. Data and model specification 

The data used in this study includes financial and technical information from a 

sample of electricity, natural gas and water distribution companies that have operated 

in Switzerland between 1997 and 2005. The data have been mainly collected from the 

annual reports. Information on the size of the firm’s distribution area is from the 

“Arealstatistik 2002” published by the Federal Statistical Office and the “Preisüber-

wacher”. The original data set covers about 90 companies covering about 42% of total 

electricity, 67% of total gas and 22% of total water distribution in Switzerland. That 

sample includes multi-utility firms as well as specialized companies in electricity, gas 

and water sectors and several double-output utilities, but excludes companies with 

more than 10% self-generation of total electricity distribution.   

Since the focus of this study is on the horizontal integrated multi-utilities, we 

focused on a sub-sample of the data used by Farsi, Fetz and Filippini (2008),8 includ-

 

8 In that study we analyzed the economies of scope and scale in Swiss multi-utilities using a quadratic 
cost function without performing a frontier analysis. In contrast with the present study, the estimation 
of the economies of scope requires data from the integrated multi-utilities as well as specialized dis-
tributors. Pooling the data across different types of utilities is not appropriate for a benchmarking 
analysis that relies on comparing comparable companies.  
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ing observations from 34 companies. Moreover, as pointed out by Saal and Parker 

(2006) assuming a similar cost frontier among multi-output companies and special-

ized utilities is not a realistic assumption and might cause considerable distortion in 

efficiency estimates and ranking. Because the primary purpose of this analysis is the 

estimation of cost-efficiency, we did not pool the multi-utilities with specialized com-

panies.  

The final sample used in this analysis consists of an unbalanced panel data set 

including observations from 34 multi-utilities during the nine-year period spanning 

from 1997 to 2005. The sample represents about 60% of the integrated multi-utilities 

in Switzerland. According to our estimates based on the available information, the 

multi-utilities included in the sample cover about half of the national electricity and 

gas consumption provided by multi-utilities and about a fifth of the water distributed 

by multi-utilities. Overall, these companies cover approximately 13% of electricity, 

38% of gas and 14% of water distribution in the entire country.   

The model specification is based on a cost function with three outputs namely, 

the distributed electricity, gas and water and four input factors that is, labor and capi-

tal as well as the electricity and gas inputs. As in Sing (1987) customer density is in-

troduced as a service area characteristic. This variable should capture, at least par-

tially, the cost impact of the heterogeneity of the service area of the companies. In 

fact, differences in networks and environments influence the production process and 

therefore the costs. Obviously, the heterogeneity of the service area cannot be summa-

rized into a single variable. However, the available data do not allow for any other 

environmental or network characteristic that is reasonably independent of the included 

explanatory variables. Given the risk of multi-collineraity in the translog function, es-

pecially in the second-order terms, we preferred to retain a relatively simple specifica-

tion. Thus, some of these characteristics are inevitably omitted from the cost function 

specification. As we see later these omitted factors are represented by firm-specific 

stochastic components in the adopted panel data econometric models.  

Assuming that the technology is convex and the firm minimizes cost, the adopted 

total cost function can be written as: 

 
(1) (2) (3) (0) (1) (2) (3)( , , , , , , , , )tC C q q q r w w w w D= ,    (3) 
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where C represents total costs; (1)q , (2)q  and (3)q  are respectively the distributed 

electricity, gas and water during the year, (0) (1) (2), ,w w w and (3)w  are respectively 

the input factor prices for capital and labor services and the purchased electricity 

and gas; r is the customer density measured by the number of customers divided by 

the size of the service area measured in square kilometers; and tD  is a vector of 

year dummies that represent technical change and other year-to-year variations 

with the first year of the sample (1997) as the omitted category.9 The technical 

change is assumed to be neutral with respect to cost minimizing input ratios, that 

is, it is represented by a cost shift that does not alter the optimal input bundles. 

An important implication of the above specification is that the estimated econo-

mies of scale are based on the usual assumption (in line with Caves et al., 1981) 

that any change in the production scale entails a uniform proportional change in all 

outputs and network characteristics, thus retaining the same ratios in particular the 

same customer density. This assumption is consistent with many policy applica-

tions such as the economic assessment of mergers and acquisitions and the exten-

sion of local monopolists to new areas. However, the potential synergies could be 

understated in other cases such as the assessment of side-by-side competition, 

where considerable economies might also be achieved by increasing the density, 

namely the economies of density.10 Unfortunately, the sample’s independent varia-

tions in networks and outputs do not seem to be sufficient for a meaningful empiri-

cal distinction between the economies of scale and the economies of density. In 

fact, our preliminary analyses with several alternative specifications particularly, 

models including the size of the service area and/or the number of customers, indi-

cated certain discrepancy in the signs and statistical significance of output coeffi-

 

9 As we will see later our regressions suggest that the time-variation of costs is not linear. These varia-
tions can be explained by many unobserved factors (such as changes in labor contracts or seasonal 
composition of the demand) that change uniformly across companies. 

10 The economies of output (customer) density describe the effects of changes in output (number of 
customers) keeping all other network characteristics fixed (Caves et al., 1985; 1984). As illustrated in 
Farsi, Filippini and Kuenzle (2007, 2006), the economies of density are usually greater than the 
economies of scale.  
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cients, which can be explained by multicollinearity problems due to the strong cor-

relation of output variables with those characteristics. 

The variables for the cost function specification were constructed as follows. Total 

costs (C) are calculated as the total firm’s expenditures in a given year. The outputs 

q(m) are measured by the total quantity delivered to the customers. The measure-

ment units are GWh for electricity and gas and million cubic meters for water. In-

put prices are defined as factor expenditures per factor unit. Following Fried-

laender and Chiang (1983), we used the residual approach for estimating the capi-

tal prices. The residual costs are specified as the company’s total costs net of labor 

expenditures and purchases of electricity and natural gas. Capital price for each 

network is obtained by dividing the residual costs by the capital stock measured by 

the network length. The overall capital price ( (0)w ) is then calculated as a weighted 

average of capital prices for each of the three sectors namely, electricity, natural 

gas and water. The weights, similar to Fraquelli, Piacenza et al. (2004), are propor-

tional to the share of the residual costs in each sector out of the multi-utlity’s total 

residual costs. Labor price ( (1)w ) is defined as the ratio of annual labor costs to the 

total number of employees in terms of full time equivalent worker. In a few cases 

in which the full time equivalent was not available, in order to avoid the underes-

timation of labor price due to part-time employees, we considered a correction 

based on the mean labor price values within the same canton. The electricity and 

gas prices ( (2) (3),w w ) are defined as the expenditures of purchasing the input fac-

tors divided by the amount purchased (in MWh).  

Table 1 provides a descriptive summary of the variables included in the model. All 

the costs and prices are adjusted for inflation using consumer price index and are 

measured in year 2000 Swiss Francs (CHF). As can be seen in the table, the sample 

shows a considerable variation in costs and all three outputs. 
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Table 1: Descriptive statistics (237 observations from 34 companies) 
 

Variable Min. Median Mean Max. 

C  
Total costs 
(CHF Mio.) 

11.20 41.10 77.60 503.00 

(1)q  
Electricity distri-
bution (GWh) 

38.78 126.89 293.23 2'023.59 

(2)q  
Gas distribution 
(GWh) 

28.82 226.34 512.60 4'294.20 

(3)q  
Water distribution  
(Mio. m3) 

0.78 2.45 5.28 33.35 

r  
Customer density  
(customer/ km2) 

44.35 298.33 387.57 1'554.09 

(0)w  
Capital price  
(CHF/ km) 

11'853 31'167 38'385 234'796 

(1)w  
Labor price  
(CHF/ employee) 

77'789 106'466 107'851 146'816 

(2)w  
Electricity price  
(CHF/ MWh) 

44.6 107.4 105.9 163.5 

(3)w  
Gas price  
(CHF/ MWh) 

16.6 28.4 29.3 63.2 

 

Following Christensen et al. (1973) we use a translog model which is probably the 

most widely used functional form in empirical studies of cost and production func-

tions.11 This flexible functional form is a local, second-order approximation to any 

arbitrary cost function. The approximation point is usually set at the sample mean 

or median. Here the approximation point has been set at the sample median. Com-

pared to the mean, the median values are less affected by outlier values. The trans-

log form does not impose any restrictions on the elasticity of substitution and al-

lows the economies of scale to vary with the output level. In order to avoid the ex-

cessive number of parameters we have considered a homothetic cost function in 

which the interaction terms between input price variables and output variables are 

 

11 See Caves et al. (1980) on the advantages of translog form in multiproduct settings and Griffin et al. 
(1987) for a discussion of the criteria used for the choice of the functional form.  
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excluded.12 This brings about another assumption namely that marginal costs par-

ticularly cost complementarities and scale elasticities depend only upon the techno-

logical characteristics of the production, thus being independent of input prices. 

This is a valid assumption insofar as the input prices remain in a reasonable range, 

especially because the potential changes in the shape of the cost function can easily 

be dominated by other approximations entailed by the functional form.  

It is generally assumed that the cost function is the result of cost minimization giv-

en input prices and output and should therefore satisfy certain properties. Mainly, 

this function must be non-decreasing in output and non-decreasing, concave and 

linearly homogeneous in input prices (Cornes, 1992). We imposed the latter condi-

tion by normalization of prices namely, by dividing the costs and all factor prices 

by one common factor price referred to as numeraire (cf. Farsi, Fetz et al., 2007b; 

Featherstone and Moss, 1994; Jara-Diaz, Martinez-Budria et al., 2003). Here we 

used the capital price as the numeraire. The remaining conditions can be tested 

based on the estimation results.   

The general econometric specification of the cost function in (3) can be written 

as:  

( )

( )

( ) 2( ) ( )
(0) (0)

2( ) ( ) ( )
( )

2( ) ( ) ( )

(0) (0) (0)(

1ln( ) ln ln ln ln
2

1ln ln ln ln ln
2

1 ln ln ln
2

k
m m r k mm mit it

it it itm k m
it it
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≠
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= + + +
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⎛ ⎞
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∑ ∑ ∑

∑ ∑ ∑

∑ ∑)
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t i it itt

D u vδ α α+ + + + +

∑

∑

 (4) 

 

12 We evaluated the possibility of applying a non-homothetic translog form. However, the relatively 
large number of parameters created certain numerical problems in some of the econometric models, 
especially the true random effects model that requires a simulated likelihood maximization method. 
This is perhaps related to problems due to the model’s over-identification and perhaps multicollinearity 
as suggested by the lack of significance and counter-intuitive signs for some of the main variables.  



14 

where subscripts i and t denote the company and year respectively; the parameters 

, , , ,m k mn kl tα β α β δ and 0α  ( , , , 1, 2,3; 1998,..., 2005m n k l t= = ) are the regression coeffi-

cients to be estimated; and all second-order parameters nmα  and klβ , satisfy the 

symmetry conditions ( ;kl lk mn nmβ β α α= = ); αi is a firm-specific effect; uit is an 

asymmetric stochastic component term that captures the time-variant inefficiency 

and vit is a symmetric term representing random noise and statistical errors.  

We consider four variations of the above model. These models are summa-

rized in Table 2. The first model (Model I) is a random effects model in line with 

Schmidt and Sickles (1984). The model is estimated using the Generalized Least 

Squares (GLS) method. The specification includes a firm-specific random effect αi, 

and a random noise term vit, which are both assumed to be identically and independ-

ently distributed (iid) with any arbitrary distribution. In this model, the inefficiency is 

assumed to be constant over time, namely the term uit in Equation (4) is set equal to 

zero. A given company i’s inefficiency is considered as the difference between its es-

timated random effect αi and that of the firm with the “best performance” namely, the 

minimum estimated random effect (min{αi}).  

The GLS model benefits from certain robustness in that no specific distribu-

tion assumption is imposed, except for the usual assumption that the random terms are 

uncorrelated with the explanatory variables. However, the very construction of this 

model implies that companies are compared to a single, fully efficient firm that has 

the lowest observed costs after adjusting for explanatory variables and allowing for 

random noise. This could be an unrealistic assumption that only one company is com-

pletely efficient. Moreover, there is always a probability of wrong identification of a 

single “best” company because of some firm-specific unobserved factor, in which 

case the efficiency estimates will be completely distorted. The advantage of imposing 

a distribution assumption on efficiency attenuates at least partly such seriously mis-

leading outcomes. A commonly used distribution in the literature is the half-normal 

distribution which is obtained by a zero-mean normal distribution truncated at zero. 

This distribution assumption that dates back to the original frontier models (Aigner et 

al., 1977; Meeusen and van der Broek, 1997), implies that full efficiency is the most 

frequent outcome located at the mode of the distribution.  
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Table 2: Econometric specifications of the stochastic cost frontier 
 

Stochastic term 

Model I 
 

GLS 
(Schmidt-Sickles) 

 

Model II 
 

ML 
(Pitt-Lee) 

 

Model II 
 

ML 
(Battese-Coelli) 

 

Model IV 
 

True RE 
(Greene) 

 

Firm-specific 
effect αi αi ~ iid (0, σα

2) αi ~ N+(0, σα
2) 0 αi ~ N(0, σα

2) 

Time-varying 
inefficiency uit 0 0 

uit = 
ui exp{−η(t-T)} 

ui ~ N+(0, σu
2) 

 
uit~N+(0, σu

2) 
 

Random noise vit 
vit ~ iid (0, σv

2) vit~ N (0, σv
2) vit ~ N(0, σv

2) vit~N(0, σv
 2) 

 
Inefficiency es-
timate 
 

 
ˆ ˆmin{ }i iα α−  

 

 

1 2ˆ ˆE , ,  ...i i iα ω ω⎡ ⎤⎣ ⎦  

with it i itvω α= +  
 

 
ˆE it itu ε⎡ ⎤⎣ ⎦  

with εit= uit+ vit 
 

 
ˆE it itu r⎡ ⎤⎣ ⎦  

with 
rit= αi+uit+vit 
 

 

The half-normal distribution not only provides a relatively solid benchmark 

performance observed in a relatively large number of cases, it is also more consistent 

with the economic theory. In fact the half-normal distribution implies that higher lev-

els of inefficiency have lower incidence. This is aligned with the theory that predicts 

the prevalence of rational and cost-minimizing behavior and considers the non-

optimal performance as sporadic and rare outcomes. Following this assumption in the 

other three models, we assume a half-normal distribution for inefficiency.  

Model II is a random effects model proposed by Pitt and Lee (1981). Similar 

to the first model, the efficiency is assumed to be constant over time (uit=0). As op-

posed to Model I that does not impose any distribution, here the stochastic terms are 

assumed to follow a composite normal-half-normal distribution: The firm-specific ef-

fect αi that represents (time-invariant) inefficiency, follows a half-normal distribution, 

and the random noise vit is simply a normal variable with zero mean. This model is 

estimated using the maximum likelihood method. In line with Kumbhakar and Lovell 

(2000) we will refer to this model as the maximum likelihood (ML) model. The firm’s 

inefficiency is estimated using the conditional mean of the inefficiency term proposed 
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by Jondrow et al. (1982),13 that is: 1 2ˆ ˆ ˆE , ,  ..., Ei i i iT i iα ω ω ω α ω⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ , where the hat sym-

bol ^ is used to indicate the post-estimation predicted value; it i itvω α= + ; and 

1

1 ˆ
T

i it
tT

ω ω
=

= ∑ .  

The assumption of the firm’s inefficiency being constant over time can be re-

laxed by assuming a parametric form. A commonly used functional form is the expo-

nential decay function proposed by Battese and Coelli (1992). Model III is based on 

one of the specifications proposed by those authors. In this model the inefficiency is 

defined as uit=uiexp{−η(t-T)}, where ui is a firm-specific stochastic term, T is the end 

period and η is a positive constant to be estimated. The adopted functional form im-

plies that a given company i starts with an initial level of inefficiency of 

ui0=uiexp(ηT), that declines over time with an exponential rate of exp(-η) per period, 

reaching uiT=ui at the end of the sample period.14 This specification, while recognizing 

individual differences in efficiency, assumes a similar improvement rate for all com-

panies. The firm-specific heterogeneity term αi in Equation (4), is set equal to zero.15 

This model is also estimated using the maximum likelihood method. The firm’s inef-

ficiency is estimated using the conditional mean of the inefficiency term, namely: 

1 2ˆ ˆ ˆE E , ,  ..., exp{ ( )}it it i i i iTu u t Tε ε ε ε η⎡ ⎤⎡ ⎤ = − −⎣ ⎦ ⎣ ⎦ , where εit= uit+ vit. 

In both models I and II, it is assumed that all the unobserved differences across 

firms that do not vary over time are related to inefficiency. Model III relaxes the time-

invariance by imposing a deterministic form of evolution that is uniform among all 

companies. In all three models, all the unobserved differences that cannot be captured 

by the random noise (vit) are assumed to be due to inefficiency. As we have seen in 

 

13 See also Greene (2005a). 

14 Note that a more general notation Ti is usually used for the end of sample period (T) that can be spe-
cific to company. Here we dropped the subscript for simplicity.  

15 Battese and Coelli (1992, 1995) have proposed variations of this model with different distributions 
for ui, including truncated normal distribution. In this study we assume a half-normal distribution. 
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the previous section this could be a restrictive assumption in network industries espe-

cially in multi-utilities, which might entail a considerable cost variation through unob-

served factors that vary from one network to another but are more or less constant 

over time and cannot be changed by the management. This implies that in these cases 

some of the unobserved heterogeneity, for instance, the complexity of the distribution 

network that is mainly determined by the topology of the service area, can be identi-

fied as inefficiency. 

Model IV allows for a separate stochastic term that captures the time-invariant 

unobserved heterogeneity. This model is the ‘true random effects’ frontier specifica-

tion proposed by Greene (2005a,b), which extends the original frontier model (Aigner 

et al., 1977) in a panel data framework with random effects. The stochastic compo-

nents αi, uit and vit respectively represent the firm-specific random effect, inefficiency 

term and random noise: 2 2 2
i (0, ), (0, ) and (0, )it v it uN v N u Nαα σ σ σ+∼ ∼ ∼ . This model 

is estimated using Simulated Maximum Likelihood (SML) method. We use quasi-

random Halton draws to minimize the potential sensitivity of the results to simulation 

process. Number of draws has been fixed to 1000. Our sensitivity analysis using sev-

eral options suggested that the estimation results are not sensitive when the number of 

draws is higher than a few hundred. The inefficiency is estimated using the (simu-

lated) conditional mean of the inefficiency term (uit) given by ˆE it itu r⎡ ⎤⎣ ⎦ , where 

rit= αi+uit+vit is the regression residual. The above conditional expectation is also calcu-

lated by Monte Carlo simulations.16 

With two heterogeneity terms, Model IV is expected to provide a better dis-

tinction between inefficiency and other unexplained variations. This advantage is es-

pecially important in network industries, in which a significant part of unobserved dif-

ferences is due to time-invariant factors. All the adopted models assume that the sto-

chastic terms namely, cost-efficiency and unobserved heterogeneity are independent 

from each other and are both uncorrelated with the explanatory variables included in 

 

16 See Greene (2005b) for more details. A general discussion of the SML estimation method is also 
provided by Greene (2007). 
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the model. There are several methods to relax these assumptions. For instance the cor-

relation between firm-specific effects and explanatory variables can be allowed by 

Mundlak’s specification (Farsi, Filippini and Greene, 2005; Farsi, Filippini and Kuen-

zle; 2005) or the impact of explanatory variables on efficiency can be modeled by 

specifying the truncation point of the normal distribution as a function of observed 

factors (Kumbhakar et al., 1991; Battese and Coelli, 1995) or as a general functional 

form (Wang and Schmidt, 2002). However, such elaborations can only be achieved 

through more complicated and often arbitrary assumptions that might compromise the 

clarity of the original assumptions and make the interpretations more difficult. More-

over, including explanatory variables in several forms in the model specification 

could cause over-identification and multi-collinearity issues. Such problems could 

bias the estimated coefficients or lower their accuracy, and eventually cause mislead-

ing estimates of cost-efficiency as well as technological characteristics such as the 

economies of scale. Finally, most of these “refinements” cannot be combined with the 

true random effects model that provides an already rich structure of the stochastic 

terms.  

 

4. Empirical results 

Table 3 lists the regression results of the cost frontier analysis, using the four 

alternative models as presented in Equation (4) and Table 2. The estimated coeffi-

cients of the first-order terms generally have the expected signs and are statistically 

significant across all models. Given that all the variables except the dummy variables 

are in logarithmic form, these coefficients can be directly interpreted as elasticities. 

The coefficients of first-order output variables represent the cost elasticities with re-

spect to the corresponding outputs at the sample median. These coefficients indicate 

that the marginal costs of electricity distribution are considerably higher than those of 

natural gas, which in turn are substantially greater than those of water distribution.  
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Table 3: Estimation results  

 
Model I 

 
GLS (Schmidt-Sickles) 

Model II 
 

ML (Pitt-Lee) 

Model III 
 

ML (Battese-Coelli) 

Model IV 
 

True RE (Greene) 
1α  (Electricity output) 0.505 ** (.053) 0.460 ** (.069) 0.418 ** (.063) 0.527 ** (.020) 

2α  (Gas output) 0.317 ** (.032) 0.298 ** (.041) 0.245 ** (.045) 0.258 ** (.012) 
3α  (Water output) 0.092 ** (.039) 0.178 ** (.053) 0.212 ** (.047) 0.146 ** (.015) 

rα (Customer density) 0.064 ** (.027) 0.043  (.038) 0.026  (.037) 0.007  (.009) 
1β  (Labor price) 0.242 ** (.057) 0.229 ** (.054) 0.236 ** (.058) 0.201 ** (.027) 

2β  (Electricity price) 0.326 ** (.059) 0.317 ** (.051) 0.333 ** (.052) 0.370 ** (.033) 
3β  (Gas price) 0.234 ** (.043) 0.243 ** (.039) 0.223 ** (.038) 0.215 ** (.024) 

11α  0.646 ** (.197) 0.368 * (.221) 0.218  (.193) 0.231 ** (.086) 
22α  0.234 ** (.055) 0.154 * (.080) 0.067  (.071) 0.093 ** (.023) 
33α  0.287 ** (.141) 0.042  (.176) 0.186  (.167) 0.089 * (.052) 

αrr 
0.019  (.061) -0.063  (.095) -0.233 ** (.089) -0.146 ** (.026) 

12α  -0.273 ** (.086) -0.182 * (.105) -0.048  (.091) -0.099 ** (.041) 
13α  -0.327 ** (.149) -0.124  (.158) -0.214  (.148) -0.133 ** (.058) 

α1r
 -0.215 ** (.070) -0.220 ** (.097) 0.074  (.104) -0.119 ** (.030) 

23α  -0.002  (.059) 0.049  (.072) 0.051  (.068) 0.037  (.026) 

α2r
 0.123 ** (.059) -0.002  (.079) -0.147 * (.080) -0.065 ** (.027) 

α3r
 0.085 * (.050) 0.120  (.081) 0.104  (.076) 0.122 ** (.020) 

β11
 0.419  (.279) -0.031  (.270) 0.051  (.248) 0.384 ** (.121) 

β22
 0.695 ** (.205) 0.524 ** (.172) 0.565 ** (.167) 0.758 ** (.110) 

β33
 -0.243 ** (.120) -0.291 ** (.106) -0.278 ** (.110) -0.217 ** (.108) 

β12
 -0.701 ** (.221) -0.419 ** (.197) -0.460 ** (.189) -0.724 ** (.102) 

β13
 0.294 ** (.147) 0.422 ** (.137) 0.386 ** (.136) 0.351 ** (.096) 

β23
 -0.096  (.135) -0.154  (.118) -0.156  (.115) -0.136  (.092) 

1998δ  -0.004  (.019) -0.005  (.015) 0.011  (.016) -0.005  (.032) 
1999δ  -0.003  (.020) -0.002  (.016) 0.028  (.019) -0.005  (.021) 
2000δ  -0.015  (.021) -0.013  (.018) 0.035  (.024) -0.006  (.025) 
2001δ  -0.014  (.023) -0.015  (.020) 0.049 * (.029) -0.012  (.022) 
2002δ  -0.037 * (.021) -0.036 ** (.018) 0.036  (.030) -0.040 * (.022) 
2003δ  -0.041 * (.021) -0.044 ** (.018) 0.039  (.033) -0.039 * (.023) 
2004δ  -0.064 ** (.023) -0.069 ** (.020) 0.032  (.038) -0.067 ** (.024) 
2005δ  -0.059 ** (.026) -0.065 ** (.023) 0.046  (.043) -0.073 ** (.022) 

0α  7.164 ** (.029) 6.989 ** (.032) 6.917 ** (.046) 7.120 ** (.019) 

σα
 

.053   0.217 ** (.034)   0.114 ** (.005) 

σu
 

     0.210 ** (.039) 0.081 ** (.030) 

σv
 

.054   0.054 ** (.003) 0.052 ** (.003) 0.024 ** (.006) 

η       0.048 ** (.015)    
logL  Not Applicable (R2=0.982) 296.785   299.355   303.786   

** and * refer to 5% and 10% significance levels respectively. Standard errors are given in parentheses. 
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Approximately, the results suggest that by adding electricity output by 10 per-

cent, the total costs will increase by about 5 percent on average, but the same relative 

increase in other outputs will raise the company’s total costs by about 2.5 to 3 percent 

for gas and only about 0.9 to 2 percent for water output. These predictions vary 

slightly across different models. Many of the second-order terms are also statistically 

significant, implying that the assumption of constant elasticities is unrealistic. The co-

efficients of the squared output terms (α11, α22, α33) are positive and mostly signifi-

cant across all models. This suggests that a marginal increase in a given output in-

creases the cost elasticity of that output. Therefore, as expected, the (product-specific) 

economies of scale are decreasing in output.   

As we see in Table 3 the output cross-interaction terms (α12, α13, α23) are 

mostly negative across the models. In particular, the cross effect between electricity 

and other two outputs (natural gas and water), is statistically significant. This suggests 

that the multi-utilities with higher electricity output have a relatively low marginal 

cost for distributing water and gas. This cost complementarity also applies to compa-

nies with high gas or water output, which according to the estimation results, have 

lower marginal cost for electricity output. The results show however that the cost 

complementarity between gas and water outputs (as shown by coefficient α23) is not 

statistically significant. If we interpret this is a zero effect, this result suggests that the 

marginal cost of distributing gas (water) is not related to the volume of water (gas) 

output. This is a weak form of cost complementarity, implying that the marginal costs 

of one output will not increase in the amount of the other output.     

As for the effect of customer density, the results show that the first order term 

is positive but statistically insignificant in most models. This suggests that the effect 

at the median company is probably not important. However, the mostly negative coef-

ficient of the square term (αrr) suggests that higher densities could have a decreasing 

effect on costs. At first impression, this can be considered as counter-intuitive because 

increasing the customer density may be economical in low-density areas, but could 

create extra costs in congested areas. However, the statistically significant interaction 

terms between customer density and outputs, suggest that the density has a strongly 

non-linear effect depending on the output combination across the three services.  
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For instance the interaction term with electricity output (α1r) is mostly nega-

tive and significant, suggesting that the marginal cost of electricity output is lower in 

networks with higher customer density. This cannot be said for gas and water outputs. 

Especially the corresponding interaction term for water distribution (α3r) is mostly on 

the positive side, suggesting that an increase in customer density will increase the 

marginal cost of water distribution. These results can be related to different costs of 

network connection for various outputs, and also different amount of extra cables and 

pipes required for the provision of greater volumes of electricity, gas and water, de-

pending on the actual customer density. For instance, in a dense and crowded area 

providing more electricity might be handled easier than a considerable increase in gas 

and water output. Moreover, connection of new customers to electricity networks is 

probably less costly than that of water and gas distribution networks. 

The coefficients of the first-order terms of input prices are an indicator of the 

share of each factor price at the sample median.17 Based on the regression results, the 

shares of labor, electricity and gas inputs respectively amount to about 22, 33 and 23 

percent of the total costs. These numbers are comparable to the sample mean of the 

observed factor shares which is 12, 35 and 17 percent of the company’s total costs, 

respectively for labor, electricity and gas inputs. As we see the share of electricity and 

gas expenses are quite close the average observed values. The remaining costs have 

been considered as ‘capital’ costs that are 36 percent on average, but about 22 percent 

from the regression results. Therefore in the model, the share of labor costs is over-

stated compared to that of the residual capital costs.  

We explored if the estimated cost functions satisfy the theoretical properties 

implied by cost-minimization. As shown by the positive coefficients of the first order 

terms (Table 3), all the estimated cost functions are non-decreasing in output and in-

put prices at the approximation point (sample median). However, our calculations 

showed that the Hessian matrix defined by the second derivatives of the translog cost 

 

17 Note that in translog form, any statement about sample points other than the approximation point 

(here, sample median), should consider the second-order terms in addition to the main effects. 
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function with respect to log of input prices, is not negative semi-definite. The viola-

tion of this necessary condition18 for concavity might be considered as an indication 

that the concavity in input prices is not satisfied. This result can be explained by the 

fact that the multi-utilities are probably not as sensitive to price changes as the text-

book economic theory might predict. Theoretically the companies are expected to 

substitute labor with capital or capital with energy in response to changes in the rela-

tive prices. However, in practice these substitutions are not feasible in many cases. 

For instance if the relative price of electricity to gas increases, the companies cannot 

substitute electricity input with gas input, because these inputs are mainly determined 

by the demand side.  

In any case, even if we consider the lack of concavity in input prices as an in-

dication that the companies do not fully minimize their costs the estimated cost func-

tions can be useful to study the marginal effects of different factors on costs and also 

to compare the companies’ performance. In such cases, as pointed out by Bös (1986) 

and Breyer (1987), functions based on cost optimization can still be used as ‘behav-

ioral’ cost functions and can be helpful in studying the firms’ behavior. Moreover, we 

should keep in mind that we are estimating a cost frontier function, which allow the 

possibility that some companies do not minimize their costs. 

 

Cost efficiency 

The estimates of inefficiency scores obtained from the four models are sum-

marized in Table 4. As expected, compared to all other models, the True RE model’s 

estimates provide generally lower inefficiency. According to this model the multi-

utilities have on average about 6 percent excess costs compared to the fully efficient 

production whereas the other models predict from 18 to 21 percent excess cost on av-

erage. The median inefficiency for the True RE model is about 5%, while being about 

 

18 As pointed out by Diewert and Wales (1987), even with a negative semi-definite Hessian matrix for 

the translog cost function, the costs might be concave with respect to input prices. So applying such a 

condition on the coefficient matrix of a translog cost function is too strong for concavity in input prices.  
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20% for all other models. It should be noted that the True RE model’s estimates do 

not include the persistent inefficiencies that might remain more or less constant over 

time. To the extent that there are certain sources of inefficiency that result in time-

invariant excess costs, the estimates of the True RE model should provide a reason-

able lower bound for the companies’ inefficiency. On the other hand, in all the three 

other models, it is assumed that all the time-invariant cost differences due to exoge-

nous heterogeneity are accounted for by the observed explanatory variables included 

in the model, and whatever remains can be interpreted as inefficiency. Therefore, the 

overall estimates of inefficiency obtained from these models can be considered as a 

kind of upper bound for the actual level of inefficiency in the sector.  

 

Table 4: Descriptive summary of inefficiency estimates 
 

 Model I 
 

GLS (Schmidt-Sickles) 

Model II 
 

ML (Pitt-Lee) 

Model III 
 

ML (Battese-Coelli) 

Model IV 
 

True RE (Greene) 

Mean 0.184 0.183 0.216 0.063 

Std. Deviation 0.079 0.119 0.143 0.043 

Minimum 0.000 0.013 0.014 0.010 

1st Quartile 0.144 0.060 0.075 0.031 

Median 0.202 0.207 0.214 0.050 

3rd Quartile 0.251 0.275 0.303 0.082 

Maximum 0.303 0.401 0.699 0.277 

 

The distribution of the inefficiency estimates in the sample is depicted in 

Figure 1. The distribution densities have been smoothed using Kernel density method. 

As seen in the figure the extent of inefficiency in the True RE model is considerably 

narrower than in other models. Moreover, the distribution of the GLS estimates sug-

gest a negative skewness, which contradicts the usual assumption of positive skew-

ness in cost-inefficiencies. Moreover, both Models II and III indicate a tendency to-
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ward a bimodal distribution, which goes against the underlying half-normal distribu-

tion assumption in these models. These peculiar patterns might be indicative that the 

econometric specification of the error term in the first three models could be insuffi-

cient to capture the inefficiencies in a coherent way. This can be explained by unob-

served cost differences that are not due to inefficiency but to other external factors.   

 

Figure 1: Distribution of inefficiency estimates 
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In order to explore if the efficiency estimates provide a consistent ranking pattern 

across different modes, we studied the correlation coefficients between these esti-

mates. Table 5 provides the correlation matrix of inefficiency scores across the 

four models. The results suggest a high positive correlation among the first three 

models. There is however a relatively low correlation between each one of these 

models and the True RE model. The Spearman rank correlation matrix shows 

slightly lower correlation in general but confirms the above pattern namely low 

correlation between Model IV and the other three models, and high correlation 

among the latter models. This result suggests that even if we are only interested in 
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efficiency ranking rather than the numerical level of inefficiency, using the inade-

quate model can give a misleading ordering of individual companies.   

 

Table 5: Pearson correlation matrix between inefficiency estimates 
 

  

Model I 
 

GLS (Schmidt-Sickles) 

Model II 
 

ML (Pitt-Lee) 

Model III 
 

ML (Battese-Coelli) 

Model IV 
 

True RE (Greene) 

I 1 0.863** 0.715** 0.124* 

II  1 0.793** 0.140** 

III   1 0.128** 

 ** and * refer to 5% and 10% significance levels respectively. 

 

5. Conclusions 

This study presents an empirical analysis of cost inefficiency in a sample of 

Swiss multi-utilities operating in the distribution of electricity, natural gas and water. 

The issues addressed in the study involve an important question related to the applica-

tion of benchmarking analysis in incentive regulation schemes for multi-utilities. In 

general, the benchmarking of multiple-output companies is more complicated than in 

utilities with a similar output. Multi-utilities that operate in several different sectors, 

are characterized by a strong unobserved heterogeneity making the measurement of 

their performance an important challenge for the regulators.  

It is shown that the recent methodological developments in the estimation of 

cost frontier functions using panel data methods can be helpful to achieve more reli-

able estimates of inefficiency in presence of unobserved and omitted factors. The pre-

vious studies have used some of these methods in single-network distributors such as 

electricity and gas. However to our knowledge there is no reported empirical applica-

tion in the multi-utility sector. The present analysis serves as a first illustration of the 

difficulties involved in the estimation of efficiency in multi-network utilities. 
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Using a translog cost function and several stochastic frontier models this anal-

ysis indicates the presence of unexploited global scale economies in the majority of 

the companies included in the sample. The efficiency estimates are sensitive to the 

econometric specification of unobserved factors through the model’s stochastic com-

ponents. While highlighting the potential problems in benchmarking multi-utilities, 

this study shows that adequate panel data models can be used to identify the ineffi-

cient companies and determine to certain extent, which part of their excess costs has 

been persistent and which part has varied over time.  

Combining several frontier models also allows two types of inefficiency esti-

mates: a “lower bound” estimate that includes only the transient part of the firm’s ex-

cess costs assuming that all persistent cost differences are due to unobserved factors 

rather than poor efficiency performance, and an “upper bound” that associates all the 

firm-specific unaccounted cost differences to their productive efficiency and neglects 

the effect of external unobserved factors. Both estimates could be useful for the regu-

lator, as they can use them to identify the companies that are persistently more costly 

than others and those that have high time-variant inefficiency. The regulator should 

perform further detailed and possibly case-by-case studies to assess to what extent the 

excessive costs of the former group can be associated with productive inefficiency 

and identify the potential external factors and peculiarities that might have caused 

such excessive costs.  
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