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Abstract

In this paper, we study values for TU-games which satisfy three classical properties:
Linearity, efficiency and symmetry. We give the general analytical form of these values and
their relation with the Shapley value and the Egalitarian value.
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1 Introduction

The main result on values for TU-games is due to Shapley (1953) who de�nes a value which

satis�es four properties: linearity, e¢ ciency, symmetry and the dummy axiom. The aim of this

paper is to study and characterize values which satisfy the �rst three classic properties. We

obtain almost the same results as Hernandez-Lamoneda, Juarez and Sanchez-Sanchez (2008)

which, independently, work in the same topic. We will focus our analysis on the discriminate

properties of values to obtain new axiomatization of some classic values.

2 Notations and preliminaries

Let N be a �nite set of n�players, we denote by:

� P (N) the set of subsets of N and 2N the set of non empty subsets of N:

� R the set of real numbers and �(N) the set of automorphisms of N .

� An n-person TU-game on N is a pair (N; v) where v is a mapping from P (N) to R such
that v(;) = 0

� will denote the 2n � 1 dimension linear space of all n�person TU-game on N .

� A value ' is a mapping from � to Rn. ' (v) = ('i(v))i2N is a vector of distribution of the
payo¤s obtained in v.

Let us give some properties of values ;

� ' is linear if : 8v; w 2 �; 8�; � 2 R; '(�v + �w) = �'(v) + �'(w)

� ' is e¢ cient if: 8v 2 �;
X
i2N

'i(v) = v(N)

� ' is symmetric if: 8v 2 �;8� 2 �(N);8i 2 N;'�(i)(v) = 'i(�v)

where �v(T ) = v(�(T )) 8T 2 2N

� ' is monotonic if : 8v; w 2 �;8i 2 N;
(
v(S) � w(S) if i 2 S
v(S) = w(S) if i =2 S

=) 'i(v) � 'i(w)

� ' is covariant if : 8v 2 �;8� 2 R;8� 2 Rn; '(�v + �) = �'(v) + �

where �v + � is de�ned by : (�v + �)(S) = �v(S) +
X
i2S

�i
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� ' preserves additive games if : 8� 2 Rn; '(�(:)) = � where �(:) is de�ned by : �(S) =X
l2S

�l

� ' is non negative if : 8v 2 �; [8S � N; v(S) � 0]) 'i(v) � 0 8i 2 N

� ' is marginalist if : 8v; w 2 �;8i 2 N;

[8S � N; v(S)� v(S � i) = w(S)� w(S � i)] =) 'i(v) = 'i(w)

Let 
 be the set of n + 1�vectors of real numbers A = (A(k))k=0;::;n such that A(0) is a

�xed real number and A(n) = 1:

For each element A of 
, we de�ne the value 	A by :

8v 2 �;8i 2 N;	Ai (v) =
v(N)
n +

n�1X
k=1

2664 (n�k)!(k�1)!n! A(k)
X
i2S
jSj=k

v(S)� (n�k�1)!(k)!
n! A(k)

X
i=2S
jSj=k

v(S)

3775
Let us give two others expressions of 	A in the following lemma :

Lemma 1 : 8v 2 �;8i 2 N;

1) 	Ai (v) =
nX
k=1

2664 (n�k)!(k�1)!n! A(k)
X
i2S
jSj=k

v(S)� (n�k�1)!(k)!
n! A(k)

X
i=2S
jSj=k

v(S)

3775

2) 	Ai (v) =
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � fig)]

3775
We can therefore deduce the following relation between 	A and the Shapley value denoted

Shap.

Theorem 1 : 8v 2 �;8i 2 N; 8A 2 
;	A(v) = Shap(vA)
where vA(S) = A(k)v(S) for each S such that jSj = k

Let us denoted by � the set of values 	A for all elements A on 
.

3 Geometric properties of �

It is easy to prove the following results :

Proposition 1 : � is a convex set and furthermore:8A1; A2 2 
;8� 2 [0; 1] ;
A = �A1 + (1� �)A2 =) 	A(v) = �	A1(v) + (1� �)	A2(v) 8v 2 �

Proposition 2 : � is a n � 1 dimension a¢ ne set. Furthermore A = (A(k))k=1;::;n�1 is a
vector of coordinates of 	�	0 in the basis

�
�k
�
k=1;::;n�1 where 	

0 is the egalitarian value and

�k is de�ned by : 8v 2 �;8i 2 N �ki (v) =
(n�k)!(k�1)!

n!

X
i2S
jSj=k

v(S)� (n�k�1)!(k)!
n!

X
i=2S
jSj=k

v(S)
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4 Characterization of � and discriminate properties

The main result of this section is the following (see Hernandez-Lamoneda, Juarez and Sanchez-

Sanchez (2008) for the proof) :

Theorem 2 :A value ' is linear, e¢ cient and symmetric if and only if ' is an element of �

To see the extend of our family of values, let us give some classical values which are elements

of � and their corresponding elements of 
:

Value A(1) A(2) ::: A(k) ::: A(n� 1) A(n) Authors

Shapley 1 1 1 1 1 Shapley (1953)

Egalitarian 0 0 0 0 1 Brink R. Van den (2007)

Solidarity 1
2

1
3

1
k+1

1
n 1 Nowak and Radzik (1994)

Consensus n
2

1
2

1
2

1
2 1 Yuan, Born and Ruys (2007)

C.I.S or Equal surplus n� 1 0 0 0 1 Driessen and Funaki (1991)

Let us give some results which are directly deduce from Theorem 1 :

Corollary 1 : A value ' is linear, e¢ cient, symmetric and monotonic if and only if

' = 	A where A is positive (i.e. A(k) � 0 8k = 1; ::; n)

Corollary 2 : ' is linear, e¢ cient, symmetric and preserves additive games if and only if

' = 	A with
n�1X
k=1

A(k) = n� 1

One of the subset of linear, e¢ cient, symmetric values which preserve additive games is the set

of ��consensus value whose vector A is de�ned by : A(k) =

8>>>>><>>>>>:
0 if k = 0

�+ (1� �)(n� 1) if k = 1

� if 2 � k � n� 1
1 if k = n

The discrimination on values of � can be done in two di¤erent and equivalent ways :

- a particular vector A = (A(k))k=0;::;n of 
 is given and therefore we obtain a speci�c value

	A:

- a property, called discriminate property, is added to linearity, e¢ ciency and symmetry to

obtain an unique element of �:

Let us introduce the non negativity and the marginalism as discriminate properties through

the following results :

Corollary 3 : ' is linear, e¢ cient, symmetric and non negative if and only if

' is the Egalitarian value.

Corollary 4 : ' is linear, e¢ cient, symmetric and marginalist if and only if

' is the Shapley value.
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Let us introduce another discriminate property used in the literature :

Let (N; v) a TU-game and i 2 N;

� i is v-dummy player if : 8S � N � fig ; v(S) = v(S + i)

Let ' be a value, A = (A(k))k=0;::;n a vector in 
, and � a real number :

� ' satis�es the dummy property if : 8v 2 �;8i 2 N; [i is v-dummy player) 'i(v) = 0]

� ' satis�es the ��A�dummy property if : 8v 2 �;8i 2 N;
�
i is v-dummy player) 'i(v) = �	

A
i (v)

�
We obtain the following result :

Theorem 3 : ' is linear, e¢ cient, symmetric and satis�es the ��A�dummy property
if and only if ' = (1� �)Shap+ �	A

We can therefore deduce some well-known results such as :

- the characterization of the Shapley value (Shapley, 1953) when � = 0

- the theorem of Yang(1997) when 	A is the egalitarian value;

- the characterization of the ��consensus value (when 	A is the equal surplus value) due to
Yuan, Born and Ruys (2007)

Another discriminate property used in this paper is obtained by replacing the dummy player

by the zero player as follows :

Let (N; v) a TU-game and i 2 N;

� i is v-zero player if : 8S � N; i 2 S ) v(S) = 0

Let ' be a value, A = (A(k))k=0;::;n a vector in 
, � a real number :

� ' satis�es the zero player property if : 8v 2 �;8i 2 N; [i is v-zero player) 'i(v) = 0]

� ' satis�es the ��A�zero player property if : 8v 2 �;8i 2 N;
�
i is v-zero player) 'i(v) = �	

A
i (v)

�
We obtain the following result :

Theorem 4 : ' is linear, e¢ cient, symmetric and satis�es the ��A�zero player property
if and only if ' = (1� �)	0 + �	A where 	0 is the egalitarian value.

We can deduce the characterization of egalitarian value when � = 0, result due to Van den

Brink (2007).

The last discriminate property in this paper can be seen as the dual of the previous one and

is de�ned by :

Let (N; v) a TU-game and i 2 N;

� i is v-winning player if : 8S � N; v(S � fig) = 0

One can extend this property as the previous ones and obtain new values.

4



5 Conclusion

The paper has outlined the properties of the class of values which are linear, e¢ cient and

symmetric. In particular, it has been proved that the class is an a¢ ne linear space for which a

"canonical" basis has been identi�ed. On the one hand, this has been helpful in bringing out

some common analytic expression of all the values in the class. We have obtained that every

value in the class can be put in the random order form, similar to the well-known expression of

the Shapley value. On the other hand, we have explained conditions for a given value which is

presumed as member of the class to satisfy some basic properties as well as recasting in simplify

and extensive terms some well-known results.
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6 Appendix

Lemma 1 :

1) is obvious

2) 	Ai (v) =
nX
k=1

2664 (n�k)!(k�1)!n! A(k)
X
i2S
jSj=k

v(S)� (n�k�1)!(k)!
n! A(k)

X
i=2S
jSj=k

v(S)

3775
=

nX
k=1

(n�k)!(k�1)!
n! A(k)

X
i2S
jSj=k

v(S)�
n�1X
k=1

(n�k�1)!(k)!
n! A(k)

X
i2S

jSj=k+1

v(S � i)

=

nX
k=1

(n�k)!(k�1)!
n! A(k)

X
i2S
jSj=k

v(S)�
nX
p=2

(n�p)!(p�1)!
n! A(p� 1)

X
i2S
jSj=p

v(S � i)

=

nX
k=1

X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � i)] �

Corollary 1 : Suppose A(k) � 0 8k = 1; 2; :::n; for any i2N; and for any v; w 2 �;
v(S) � w(S) 8S 3 i
v(S) = w(S) if i=2S

)
) for all k = 1; 2; :::n

A(k)v(S) � A(k)w(S) 8S 3 i; jSj = k
�A(k � 1)v(S) = �A(k � 1)w(S) if i=2S; jSj = k

)
)X

i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � i)] �

X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)w(S)�A(k � 1)w(S � i)]

)
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � i)]

3775 � nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)w(S)�A(k � 1)w(S � i)]

3775
) 	Ai (v) � 	Ai (w):

Conversely, suppose 	A is monotonic;

for any i 2 N , for all k = 1; 2; :::; n, there exists at least one coalition Si � N such that :

Si 3 i and jSij = k:Consider the games v(S) =
(
1 if S = Si

0 if S 6= Si
and w(S) =

(
1
2 if S = Si

0 if S 6= Si

It is obvious that
v(S) � w(S) 8S 3 i
v(S) = w(S) if i =2 S

)
: As 	A is monotonic,this implies

	Ai (v) � 	Ai (w),
(n�k)!(k�1)!

n! A(k) � (n�k)!(k�1)!
2n! A(k)

, A(k) � A(k)
2 ) A(k) � 0: �

Corollary 2 : .' linear, e¢ cient, symmetric and preserves additive games

, ' = 	A by Theorem 2 and 	A preserves additive games

	A preserves additive games , 8� 2 Rn; '(�(:)) = � , 	Ai (�(:)) = �i 8~i2 N and 8� 2Rn

,
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)�(S)�A(k � 1)�(S � i)]

3775 = �i 8i 2 N and 8� 2 Rn
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,
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k) (�(S � i) + �i)�A(k � 1)�(S � i)]

3775 = �i 8i 2 N; 8� 2 Rn

,

8>>>>>>>>>><>>>>>>>>>>:

nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)�A(k � 1)]

P
j2S�i

�j

3775 = 0
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! A(k)

3775 = 1
8i 2 N; 8� 2 Rn

,
nX
k=1

(n�k)!(k�1)!
n! [A(k)�A(k � 1)] (n�2)!

(k�2)!(n�k)!�j = 0 and
nX
k=1

A(k) = n 8�j2R

,
nX
k=1

(k � 1) [A(k)�A(k � 1)] �j = 0 and
n�1X
k=1

A(k) = n� 1 8�j2R

,
nX
k=1

(k � 1) [A(k)�A(k � 1)] = 0 and
n�1X
k=1

A(k) = n� 1

,
n�1X
k=1

A(k) = n� 1 �

Corollary 3 : Suppose ' is linear, e¢ cient, symmetric and non negative;8v 2 �;8i 2 N;

'i(v) = 	
A
i (v) =

v(N)
n +

n�1X
k=1

2664 (n�k)!(k�1)!n! A(k)
X
i2S
jSj=k

v(S)� (n�k�1)!(k)!
n! A(k)

X
i=2S
jSj=k

v(S)

3775
Suppose ' 6= 	0, then there exist at least one k0 2 f1; 2; :::; n� 1g such that A(k0) 6= 0:

If A(k0) > 0; for i0 2 N; consider the game v0(S) =
(
1 if i =2 S and jSj = k0
0 elsewhere

It is straightfoward that 'i0(v0) < 0

If A(k0) < 0; for i0 2 N; consider the game w0(S) =
(

1 if i 2 S and jSj = k0
0 elsewhere

It is straightfoward that 'i0(w0) < 0 �

Corollary 4 : Suppose ' = 	A is linear, e¢ cient, symmetric and marginalist, consider

any games 8v; w 2 � such that;8i 2 N; [8S � N; v(S)� v(S � i) = w(S)� w(S � i)]

As ' is marginalist, 'i(v) = 'i(w),
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � i)]

3775 =
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)w(S)�A(k � 1)w(S � i)]

3775
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,
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)(v(S)� w(S)) +A(k � 1)(w(S � i)� v(S � i))]

3775 = 0

,
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [(A(k)�A(k � 1)) (v(S � i)� w(S � i))]

3775 = 0
Since this condition must be satis�ed for any games v; w 2 � such that;
8i 2 N; [8S � N; v(S)� v(S � i) = w(S)� w(S � i)]
) A(k)�A(k � 1) = 0 for all k = 2; 3; :::; n and A(n) = 1
) A(k) = 1 for all k = 1; 2; :::; n

) ' = Shap: �

Theorem 3 : ' is linear, e¢ cient, symmetric and satis�es the � � A�dummy property if
and only if , for any v 2 � and for any v�dummy player i 2 N;'i(v) = 	A

0
i (v) = �	

A
i (v)

, 'i(v) =
X
i2S
jSj=k

(n�k)!(k�1)!
n! [A0(k)v(S � i)�A0(k � 1)v(S � i)]

= �
X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S � i)�A(k � 1)v(S � i)]

, 'i(v) =
X
i2S
jSj=k

(n�k)!(k�1)!
n! [A0(k)�A0(k � 1)] v(S � i)

= �
X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)�A(k � 1)] v(S � i)

, A0(k)�A0(k � 1) = � (A(k)�A(k � 1)) for all k = 2; 3; :::; n and A(n) = A0(n) = 1
, A0(k)�A0(k � 1) = � (A(k)�A(k � 1)) for all k = 2; 3; :::; n� 1
and A0(n� 1) = (1� �) + �A(n� 1)
, A0(k) = (1� �) + �A(k) for all k = 1; 2; :::; n
, ' = 	A

0
= (1� �)Shap+ �	A �

Theorem 4 : ' is linear, e¢ cient, symmetric and satis�es the ��A�zero player property
if and only if for any v 2 � and for any v�zero player i 2 N;'i(v) = 	A

0
i (v) = �	

A
i (v)

, 'i(v) =
nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A0(k)v(S)�A0(k � 1)v(S � i)]

3775
= �

nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! [A(k)v(S)�A(k � 1)v(S � i)]

3775
,

nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! A0(k � 1)v(S � i)

3775 = � nX
k=1

2664X
i2S
jSj=k

(n�k)!(k�1)!
n! A(k � 1)v(S � i)

3775
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, A0(k � 1) = �A(k � 1) for all k = 2; 3; :::; n and A0(n) = A(n) = 1

, A0(k) = �A(k) for all k = 1; 2; :::; n� 1
, ' = 	A

0
= (1� �)	0 + �	A �
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