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Abstract

The paper characterizes a family of downside risk measures. They depend on a target value
and a parameter reflecting the attitude towards downside risk. The indicators are probability
weighted −order means of possible shortfalls. They form a subclass of the measures
intro¬duced by Stone (1973) and are related to the measures proposed by Fishburn (1977).
The axiomatization is based on some properties which are desirable and appropriate for the
measurement of risk.
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1.  Introduction 
A decision maker faces uncertainty almost everywhere: Future values of prices, returns or 
rates of return are in general uncertain. Therefore she has to decide how to deal with this 
issue. Given a probability distribution over outcomes one often assumes that the decision 
maker’s preferences with respect to inherent risk are reflected by a von Neumann-Morgen-
stern utility function and that she maximizes expected utility. Another possibility is to 
evaluate risk directly by a risk measure and then to take into account risk or to minimize risk 
measured by such an index for a given level of return (see e.g. Sarin/Weber (1993) for a 
survey and Gootveld and Hallerbuch (1999) for an application of risk-value models). A priori 
the concept of risk is symmetrical: Good and bad outcomes may be risky. Experimental 
studies (Unser (2002)) demonstrate that one is often only interested in an evaluation of those 
outcomes which do not meet a target value: outcomes with values smaller than the target 
value are viewed as risky, outcomes, whose values are larger, are interpreted as nonrisky. In 
this case only downside risk is relevant.  
The objective of this paper is to characterize a family of downside risk measures. They 
depend on two parameters, the target value t and a parameter ε  reflecting the decision 
maker’s attitude towards downside risk. These measures are given by  

 ( )
1

 for 0
t

t i i
x t

p t x
ε

εερ ε
<

⎛ ⎞
= − >⎜ ⎟
⎝ ⎠
∑  (1) 

where ip  and ix  are the probability and, respectively, value of outcome i. The indicator t
ερ  

is a probability weighted ε -order mean of the respective shortfalls. This family is well 
known and forms a subclass of the measures introduced by Stone (1973). It is also related to 
the tα −  measures defined in Fishburn (1977). In the last decade a number of papers has 
been published which discuss some properties of risk measures explicitly (see e.g. Pedersen 
and Satchell (1998), Artzner et al. (1999), Szegö (2002)) and survey the literature. But they 
do not present any characterization of the risk measures considered. Furthermore, sometimes 
the number parameters used is confusing: Pedersen and Satchell present a general class of 
measures depending on five (!) parameters. Then it seems to be impossible to comprehend 
their meaning and their interaction. 
We axiomatize the family (1) in two steps: At first a representative risky outcome is charac-
terized. In the second step the measure of downside risk is derived as the shortfall of this 
representative outcome. The representative outcome can then be interpreted as certainty 
equivalent defined w.r.t. to the risk measure. The axioms employed are formulated for the 
representative risky outcome and consider the risk inherent in probability distributions 
directly.  
The properties imposed are necessary or desirable for downside risk measures: one property 
restricts the analysis to downside risk. Others postulate monotonicity in probabilities and out-
comes. The particular functional structure is implied by three axioms. A substitution axiom 
allows us to take into account compound distributions in a simple way. Two more axioms 
consider equal absolute and, respectively, proportional changes in all outcome values and the 
target value. They require that the representative risky outcome is changed in the same way. 
The characterization reveals the essential properties of the family (1) and allows us to discuss 
the underlying value judgments.  
The measurement of downside risk is formally related to the measurement of poverty (see 
Breitmeyer, Hakenes, and Pfingsten (2004)). The target value could be interpreted as poverty 
line and the shortfall of an outcome as poverty gap. There is a formal relationship between 
the family (1) and the Foster, Greer, and Thorbecke (FGT) family of poverty measures whose 
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orderings are characterized in Ebert and Moyes (2002). In fact, corresponding measures are 
ordinally equivalent. But their functional structure and the measures are different: The FGT-
measures are additively decomposable, whereas the measures of downside risk are not, but 
the latter satisfy an aggregation property which is only appropriate for the measurement of 
risk. Risk and poverty are different concepts. Therefore a distinct axiomatization proves to be 
necessary.  
The paper is organized as follows: Section 2 presents the framework. In section 3 the relevant 
axioms are introduced and discussed. Section 4 derives the family of risk measures, relates 
them to other measures treated in the literature, and investigates their properties. Section 5 
concludes. 

2.  Framework 
The framework1 used is discrete. We describe a random variable by its probability 
distribution over outcomes ( ) ( ) ( ) ( )( )1 1 2 2, , , , , , ..., ,n nx p x p x p=x p  where 1n ≥  denotes the 

number of possible outcomes. ( ),i ix p  means that ip  is the probability of the outcome (value) 

ix ∈ . Probabilities have to be nonnegative ( )0ip ≥  and their sum has to be equal to unity: 
1i ipΣ = . Furthermore, for generality two outcome values may be identical 

( ) for i jx x i j= ≠ . The expected outcome is denoted by ( ), i i ip xμ = Σx p . We do not inter-
pret the variable x in a definite manner. x could for example be the return of an investment, a 
rate of return etc. The set of admissible distributions is denoted by 

( ) ( ){ }, ,  probability distribution, 1X n= ≥x p x p . The number of outcomes can be arbitrary. 

There are some particular cases: ( ) ( )( ) ( ), ,1 : ,1x x= =x p  gives outcome2 x probability 1. It is 

certain. Similarly, ( ) ( ), ,0i i ix p x=  means that there is no uncertainty about ix . It cannot 
occur. Whenever 0 1ip< <  there is some uncertainty left which can be interpreted as bench-
mark or required outcome. 
We suppose that there is a target value t∈ . It is in general given exogenously and allows 
us to distinguish two ranges: any outcome ix t≥  is nonrisky and desirable. On the other hand 
any ix t<  is undesirable and risky. Then the difference it x−  for a risky outcome ix  denotes 
the (positive) deviation from the target t. It is called the shortfall of ix . These definitions 
demonstrate that we are interested in downside risk incorporated in below target outcomes.3 

For risk measurement we assume that for every t there is a weak order defined on the set of 
distributions X. It ranks distributions by their risk (“ ( ),x p  is at least as risky as ( ),y q  given 
the target value t”). We want to derive a risk measure tρ  representing this ordering. Accord-
ing to our idea of risk, tρ  measures downside risk given t and can be defined as a function 

:t Xρ +→  for t∈ . The (class of) measure(s) tρ  will be determined in two steps. For 
t∈  we will at first introduce a Representative risky outcome ( ),tR x p  for any ( ), X∈x p . 
It is negatively related to downside risk and is to represent the underlying ordering. The 
                                                 
1 Cf. Fishburn (1984) for the terminology. 
2 If possible we will simplify the notation used and drop brackets. 
3 Stone (1973) considers a three parameter family of measures. He introduces another parameter determining 

the change of deviations from the target which are to be taken into account. For the measurement of down-
side risk this parameter is a priori identified with the target value. 
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Representative risky outcome is derived and characterized by a set of (fully cardinal) proper-
ties. In the second step we consider the “representative shortfall” and define a corresponding 
risk measure as the shortfall of ( ),tR x p , i.e. by ( ) ( ), : ,t tt Rρ = −x p x p . It is always non-

negative since ( ),tR t≤x p  given the axioms we impose. Finally, it will turn out that the out-

come value ( ),tR x p  given with certainty is as risky as ( ),x p  when t is the target value. 
Thus the Representative risky outcome is an analogue to the certainty equivalent in the 
expected utility framework. 

3.  Properties 
In the following we present a number of properties of the Representative risky outcome tR . 
For the proof of the results in section 4 it is sufficient to formulate most axioms only for two 
or three outcomes. The indicators characterized below will satisfy the corresponding proper-
ties for an arbitrary number of outcomes 3n ≥ . 
At first we restrict the range of outcome values relevant for risk measurement. 

Axiom 1 (Range) 
 ( ) ( )( ) ( ) ( )( ), , ,1 , , ,1t tR x p y p R x p t p− = −  

for all ,    s.t.  x y y t≥  and all , 0 1p p≤ ≤ . 
Since outcomes y t≥  are nonrisky their (exact) value does not play a role and can be 
replaced by t. Nevertheless, as we will see below, the probability of this kind of outcome will 
be taken into account. 
In the definition of a distribution ( ),x p  we have not imposed any condition on the 
numbering of outcomes. Indeed, it should not be important: 

Axiom 2 (Symmetry) 
 ( ) ( ), ,t tR R π π=x p x p  for all ( ), X∈x p  

where π  is a permutation of { }1,...,n  and ( ) ( ) ( )( ) ( ) ( )( )( )1 1, , ,..., ,n nx p x pπ π π π=x pπ π . 

This means that ( ),x p  can be interpreted as distribution in the ‘statistical sense’. Only the 
outcome values and their probabilities count. The way they are numbered is irrelevant. 
For an evaluation of risk the risky outcome values are crucial. We introduce 

Axiom 3 (Monotonicity in x) 

 ( ) ( )( ) ( ) ( )( ), , ,1 , , ,1t tR x p y p R x p y p′− < −  

for all , ,    s.t.   x x y x x t′ ′< ≤  and all , 0 1p p< ≤ . 
Here the outcome x t<  has positive probability. Then any increase in x is an improvement. It 
lowers the risk and therefore increases the Representative risky outcome tR . 

We postulate an analogous reaction of tR  if the probability of the higher risky (!) outcome is 
increased. 

Axiom 4 (Monotonicity in p) 
 ( ) ( )( ) ( ) ( )( ), , ,1 , , ,1t tR x p y p R x p y p′ ′− < −  

for all ,    s.t.   x y y x t< ≤  and all , 0   s.t.   0 1p p p p′ ′≥ ≤ < ≤ . 
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Here again risk is reduced and thus the Representative risky outcome increases. 
The next property postulates that there is no distinction between equally valued outcomes and 
provides a normalization rule for tR : 

Axiom 5 (Normalization) 
 ( ) ( )( ), , ,1tR x p x p x− =  

for all x t≤  and    s.t.   0 1p p≤ ≤ . 

The distribution ( ) ( )( ), , ,1x p x p−  is equivalent to ( ),1x  and – since there is no uncertainty 
– the Representative risky outcome should be equal to x.  

Similarly, there is no uncertainty about y in ( ) ( )( ), , ,0yx p . Its probability is zero. Therefore 
it can be neglected: 

Axiom 6 (Irrelevance) 
 ( ) ( )( ) ( ) ( ) ( )( ), , ,1 , , ,1 , ,0t tR x p x p R x p x p y′ ′− = −  

for all , ,x x y′  and , 0 1p p≤ ≤ .  

Now we introduce a substitution or aggregation property. It requires that tR  can be deter-
mined stepwise. Then also compound probability distributions can be considered: 

Axiom 7 (Substitution) 

 

( ) ( ) ( )( )( )

( )( )

  , , , , ,1

, , , , , ,1

t

t t

R x p x p y p p

p pR R x x p p y p p
p p p p

′ ′ ′− +

⎛ ⎞⎡ ⎤⎛ ⎞′⎛ ⎞ ⎛ ⎞′ ′ ′= + − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

 

for all , ,x x y′ ∈  and ,    s.t.   0, 0p p p p′ ′≥ ≥  and ( ) 1p p′+ ≤ . 

It is formulated for three outcomes. Here at first the conditional distribution 

, , ,p px x
p p p p

⎛ ⎞′⎛ ⎞ ⎛ ⎞′⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′+ +⎝ ⎠ ⎝ ⎠⎝ ⎠
 is considered and its Representative risky outcome tR  is deter-

mined. It is clear that – given the entire distribution – its probability is ( )p p′+ . Axiom 7 

allows us to substitute ( ) ( ), , ,x p x p′ ′  by the corresponding Representative risky outcome tR  

and its probability ( )p p′+ , i.e. by ( ),tR p p′+ . 

Up to now only a given target value has been examined. Finally we introduce two properties 
which link the Representative risky outcomes for different target values. At the same time 
they put further conditions on the cardinalization of tR . We propose 

Axiom 8 (Linear homogeneity) 
 ( ) ( )( ) ( ) ( )( ), , ,1 , , ,1t tR x p y p R x p y pλ λ λ λ− = −  

for all ,x y∈ , all   s.t.   0 1p p≤ ≤ , and all 0λ > . 
It requires that equal proportional changes in the target value and outcome values change the 
Representative risky outcome by the same proportion. Equal absolute changes are dealt with 
in  
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Axiom 9 (Translatability) 
 ( ) ( )( ) ( ) ( )( ), , ,1 , , ,1t tR x p y p R x p y pα α α α+ + + − = − +  

for all , ,x y ∈ , all   s.t.   0 1p p≤ ≤ , and α ∈ . 
If the same amount is simultaneously added to the target value and all outcome values the 
Representative risky outcome has to be altered in the same way. 

4.  Risk measures 
Up to now a set of desirable properties has been introduced. In the next step we examine their 
implications. We establish 

Proposition 1 

0R  satisfies Axioms 1-8 for 0t =  if and only if there is 0ε >  such that 

 ( ) ( )
1

0
0

,
i

i i
x

R p x
ε

ε

<

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑x p  for all ( ), X∈x p . (2) 

It turns out that 0R  is a weighted linear homogeneous function of all losses ix−  where 
0ix < . The measures with 0ε ≤  are excluded, since they are not monotonic if there is an 

outcome ix  such that ix t= . The proof (see Appendix) demonstrates that Axiom 1 allows us 

to concentrate on all ( ),tx p  where ( )min ,t
i ix x t= . I.e. every distribution ( ),x p  can be 

truncated at t (since ix t≥  is nonrisky). Furthermore, Axioms 2-7 require that 0R  is a 
(probability) weighted quasi-linear mean. Axiom 8 implies linear homogeneity. 
Next we extend the result to tR  for 0t ≠  by using Axiom 9. We obtain: 

 
( ) ( )( ) ( ) ( )( )

( ) ( )( )
0 , , ,1 , , ,1

, , ,1   for ,  and 0 1

t t

t

R x t p y t p R x t p y t p

R x p y p t x y p

−− − − = − − −

= − − ≤ ≤
 

and therefore 

Proposition 2 

tR  satisfies Axiom 1-9 for all t if and only if there is 0ε >  such that  

 ( ) ( ) ( ) ( )
1

, , :   ,
i

t t i i
x t

R R t p t x for all X
ε

εε

<

⎛ ⎞
= = − − ∈⎜ ⎟

⎝ ⎠
∑x p x p x p . (3) 

The magnitude of the Representative risky outcome tRε  is essentially determined by t and the 
(probability) weighted ε -order mean of shortfalls4: the higher this mean, the lower the 
Representative risky outcome. By definition we always have ( ),tR tε ≤x p .  

Now we are able to discuss the corresponding risk measures. We define 

 ( ) ( ) ( )
1

, : ,
i

t t i i
x t

t R p t x
ε

εε ερ
<

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑x p x p  for all ( ), X∈x p  and 0ε > . (4) 

                                                 
4 Ebert and Moyes (2002) present a characterization of a similar concept, the equivalent societal income for 

poverty orderings. Their framework is different. It is completely ordinal. Furthermore the individuals 
involved are equal (i.e. 1ip n= ). 
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The (downside) risk measure t
ερ  is equal to the weighted ε -order mean of all shortfalls. The 

measures t
ερ  form a subclass of the class of risk measures proposed by Stone (1973) and 

depend on two parameters, the target value t and ε . The latter reflects the attitude towards 
downside risk.5 The Representative risky outcome tRε  can be interpreted as ‘certainty equiva-

lent’ since ( )( ) ( ), ,1 ,t t tRε ε ερ ρ=x p x p . t
ερ  is related to the tα −  measure considered by 

Fishburn (1977) (for α ε= ) which is given by ( )( ),t

εερ x p  and which has been also con-

sidered in Stone (1973). If we set t equal to the (weighted) expected outcome ( ),μ x p  the 

measure t
ερ  is the ε th root of the lower partial moment LPM ε  of order ε . The risk measure 

( ) ( )1
, ,μρ x p x p  is identical to the lower partial moment ( )1 ,LPM x p , the expected loss 

(measured w.r.t. to the expected outcome). For 2ε =  we obtain the semistandard deviation 

( ) ( )2
, ,μρ x p x p  (cf. also Pedersen and Satchell (1998) who define an extended family of risk 

measures). 
The risk measure ( ),t

ερ x p  possesses a number of attractive properties: 

(i) ( ),t
ερ x p  is continuous in x and p and in the target value t. 

(ii) ( ),t
ερ x p  is monotonic in outcomes and probabilities; any improvement decreases t

ερ . 
It is increasing in the target value t. 

(iii) ( ),t
ερ x p  is nonnegative. If there are no risky outcomes ( min ix t≥ ), then 

( ), 0t
ερ =x p . 

(iv) ( ),t
ερ x p  is symmetric in outcomes. 

(v) ( ),t
ερ x p  is linearly homogeneous in the target values and outcomes, i.e. 

( ) ( ), ,  for 0t t
ε ε
λρ λ λ ρ λ= >x p x p . 

(vi) Since shortfalls are not changed by the addition of the same amount to the target value 
and all outcomes, ( ),t

ερ x p  is invariant w.r.t. these changes:  

 ( ) ( ), ,t t
ε ε
αρ ρ+ + =x p x pα  where ( )1 ,..., nx xα α+ = + +x α . 

(vii) ( ),t
ερ x p  is convex [concave] in x if and only if [ ]1 0 1ε ε> < < . Then  

 ( )( ) ( ) ( ) ( ) ( ) ( ){ }1 , , 1 , max , , ,t t t t tpε ε ε ε ερ λ λ λ ρ λ ρ ρ ρ+ − ≤ + − ≤x y x p y p x p y p  

 ( ) ( ){ } ( ) ( ) ( ) ( )( )min , , , , 1 , 1 ,t t t t t
ε ε ε ε ερ ρ λ ρ λ ρ ρ λ λ⎡ ⎤≤ + − ≤ + −⎣ ⎦x p y p x p y p x y p  

for 0 1λ< < . The decision maker is risk averse [risk loving].  
(viii) ( ),t

ερ x p  reflects risk neutrality for 1ε = . 

The proof of these claims is obvious. 

5.  Conclusion 
The paper has presented an axiomatization of a two-parameter family of downside risk 
measures and a discussion of their properties. The choice of the target value depends on the 

                                                 
5 See Menezes, Geiss and Tressler (1980) and Keenan and Snow (1982) for a definition of increasing down-

side risk aversion in a different framework. 
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decision maker’s preferences and on the details of the problem at hand. The selection of the 
parameter ε  seems to be more difficult. Here it is possible to use a procedure proposed by 
and employed in Laughhunn, Payne, and Crum (1980). The procedure was designed for 
Fishburn’s tα −  measures. Since both types of measures are ordinally equivalent the method 
can also be applied in the above framework in order to determine the downside risk aversion 
ε . It is based on the ranking of distributions.  
Finally it should be stressed again that downside risk measures can be employed for decision 
making under risk: one can minimize downside risk on the condition that a given outcome 
value has to be attained (see e.g. Grootveld and Hallerbach (1999)) or apply a value-risk 
model using a downside risk measure (see e.g. Miller (1996)). For these cases the present 
paper has presented an axiomatization of an important family of measures. Though this 
framework is different from the expected utility approach there is some relationship between 
both approaches (see Fishburn (1977) again and Holthusen (1989)).  
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Appendix 
Proof of Proposition 1 

(i)  Because of Axiom 1 we can confine ourselves in the following to ( ), X∈x p  such that 
0ix ≤  for 1,...,i n= . 

(ii)  Choose 0a <  and define ( ){ }: , 0 for 1,...,a iX X a x i n= ∈ ≤ ≤ =x p . Now we prove that 

0R  is a ε -order mean on aX  by using the Theorem stated on page 242, Aczel (1966).  

We suppose that 0R  satisfies Axiom 2-7 and define 

 ( ) 0, ; , : , , ,r sF x y r s R x y
r s r s

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠
 

for 0, 0, 0, 0, 0a x a y r s r s≤ ≤ ≤ ≤ ≥ ≥ + > . 
Then F satisfies the assumptions of the above theorem: 
1.  Reflexivity: Use Axiom 5 
2.  Internality: 

 

( ) ( ) ( )( )
( ) ( )( )( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )

0

0 0

0

0

,0;1,0 ,1 , 0,0

, , ,1 ,1 , 0,0  by Axiom 5 for 0 1

, , ,1 , 0,0  by Axiom 7
, , ,1  by Axiom 6

 by Axiom 5.

F a R a

R R a p a p p

R a p a p
R a p a p
a

=

= − ≤ ≤

= −

= −
=

 

Using symmetry (Axiom 2) we prove analogously  

 ( ) ( ) ( )( )0,0; 0,1 : ,0 , 0,1 0F a R a= = . 

The rest follows from monotonicity (Axiom 4). 
Then ( ) ( ) ( ),0;1,0 ,0; , ,0; 0,1 0a F a F a r s F a= < < =  for 0, 0r s> > . 

3.  Homogeneity in the weights: 
 ( ) ( ), ; , , ; ,  for 0, 0, 0,  and 0F a b ru su F a b r s r s r s u= ≥ ≥ + > >  by the definition of F. 

4.  Bisymmetry: 

 
( ) ( )( )
( ) ( )( )

    , ; , , , ; , ; ,

, , , , , ; , ; ,

F F x y r s F x y r s r s r s

F F x x r r F y y s s r r s s

′ ′ ′ ′ ′ ′+ +

′ ′ ′ ′ ′ ′= + +
 

It follows directly from repeated applications of Axiom 2 (Symmetry) and Axiom 7 
(Substitution). 
5.  Increasingness in the (2nd) weight: 
Use Axiom 2 (Symmetry) and Axiom 4. 
6.  Increasing in the (2nd) variable: 
Use Axiom 2 (Symmetry) and Axiom 3. 
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The Theorem on page 242 implies that there is a continuous and strictly increasing function 
[ ]: ,0f a →  such that 

 ( ) ( )( ) ( ) ( ) ( )( )1
0 , , ,1 1R x p y p f p f x p f y−− = + − . (*) 

Then 0R  is a continuous (!) weighted quasi-linear mean. It is clear that f depends on a. Since 
on the other hand 0R  is defined on X (not only on aX ) there is a continuous and strictly 
increasing function [ ]: ,0f −∞ →  such that (*) is satisfied.  

(iii)  By (ii) we know that 

 ( ) ( )( ) ( ) ( ) ( )( )1
0 , , ,1 1R u p p g pg u p gυ υ−− = − − + − −  

where ( ) ( ):g z f z= −  for 0z ≥ . Using Axiom 8 (linear homogeneity) we get 

 ( ) ( )( ) ( ) ( )( )0 0, , ,1 , , ,1R u p p R u p pλ λυ λ υ− = −  for 0, 0, 0 1u pυ≥ ≥ ≤ ≤  and 0λ > . 

Therefore 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )1 11 1 1 .g p g u p g g p g u p gλ λυ υ
λ

− −+ − = + −  

Theorem 2 in Aczel (1966), p. 290 yields 
 ( ) ( ) ( ) ( )g z a g z bλ λ λ= +  for 0z ≥  and 0λ >  and given p. 

Then Theorem 2.7.3 in Eichhorn (1978) implies that there are 0, 0β ε≠ ≠  and γ ∈  such 
that  

 ( ) ( ) ( ) ( ), ,  and 1g z z a bε ε εβ γ λ λ λ γ λ= + = = −  

or ( ) lng z zβ γ= + , ( ) 1a λ = , and ( ) lnb λ γ λ=  for 0z >  and 0λ > . 

We obtain 

 ( ) ( )( )
( )

( )
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1
0 1 1 2 2

1

for 0
, , ,

for 0i

i i
i

n
p

i
i

p x
R x p x p

x

ε
ε ε

ε

=

=

⎧ ⎛ ⎞− − ≠⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨
⎪− − =⎪⎩

∑

∏
 

as long as 0ix >  for 1,2i =  and given 1 2,p p . 

Continuity of 0R  requires that the functional structure derived also holds if 1 0x =  or 2 0x = . 
Furthermore, the parameter ε  must be independent of 1p  and 2p . Now it turns out for 0ε ≤  
that 0 0R →  if 1 0x →  or 2 0x → . Then Monotonicity (Axiom 3) is violated. 

Thus we get 

 ( ) ( )( ) ( )
1

0 1 1 2 2
0

, , ,
i

i i
x

R x p x p p x
ε

ε

<

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑   for 0ε > . 

(iv)  This result can be extended to X by using Axiom 7 (Substitution) and the Axiom 1 
(Range).  


