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Abstract

This note studies the dynamics of labor markets in a putty−clay framework. It analyzes the
evolution of job creation and job destruction in an economy without market frictions.
Unemployment and labor market flows emerge under putty−clay technologies because low
productive jobs become unused factors. As capital accumulates, firms destruct low
productive jobs by obsolescence. Simultaneously, the use of capital intensive technologies
creates new jobs by the low substitution between capital and labor.
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1 Introduction

This note studies unemployment in a putty-clay framework or in economies with limited factor
substitution. In the putty-clay model, heterogenous technologies compite for scarce labor. The
most profitable jobs are filled first and although low productive jobs have positive marginal prod-
ucts, their productivity is unable to cover the cost of labor in alternative technologies. Those jobs
are unused. Thus, as wages increase the profitability of jobs declines and job destruction increases.
Conversely, higher wages lead firms to invest in more capital intensive technologies and create new
jobs. Therefore, putty-clay technologies generate simultaneous job destruction and creation due
to employment obsolescence and investment reallocation.
The putty-clay model of Johansen [12] has been widely employed. Solow [17] studies long run

economic growth, Bischoff [5] relates putty-clay technologies, investment and adjustment costs, and
Abel [1] studies the response of capital utilization to price uncertainty. Akerlof [3] studies static
putty-clay economies to analyze unemployment. Recently, putty-clay economies have been used
to analyze short run fluctuations over the business cycles for investment and capacity utilization
by Gilchrist and Williams [11], the response of energy utilization to oil price variations by Atkeson
and Kehoe [4] and the response of the stock market to changes in energy price shocks by Wei [19].
The model complements well-known formulations of job creation and destruction based on

search and matching frictions, see for example Mortensen and Pissarides [14], and Mortensen
[13].1 Pissarides [16] provide a complete summary of equilibrium unemployment models with
frictions. Caballero and Hammour [6], [7] also study job flows when productivity differences reflect
the vintage of the installed capital. Our model considers a version of Cass and Stiglitz [9], and
Calvo [8] where capital varies over a continuum for a given distribution of employment in each
technology. This source of heterogeneity simplifies some of the computations of the vintage models
of Caballero and Hammour [6], although it generates a less interesting steady state behavior.

2 A putty-clay economy

Consider an economy that produces a final good by labor and different capital goods k. Each
capital type k ∈ K ⊆ R+ (capital-labor ratio) specifies a stationary output-labor ratio φ(k).

Assumption 1 The output-labor ratio φ : K → R+ is twice continuously differentiable, strictly
concave, and bounded from above, with

φ(0) = 0, φk(0) =∞, φk(∞) = 0, and φ
¡
k̄
¢
< δk̄ for some k̄ ∈ K.

Let θ(k) represent the frequency of jobs on a type k machine and assume

Assumption 2 The density of jobs θ : K→ R+ is continuous with θ (k) ≥ 0 for all k ∈K and

0 ≤ Φ (K) ≡
Z
K

θ(k)dk ≤ 1. (1)

1As Akerlof [3] suggests, the particular view of the labor market embedded in the paper is capable to explain: i)
the inability of wage flexibility to restore full employment, ii) the harmful effects of minimum wages for unskilled
workers, iii) the ineffectiveness of labor subsidies at low skill levels, iv) the higher unemployment rates for unskilled
workers (compared to skilled workers), and v) the negative correlation between unemployment and output growth.
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The total amount of capital available in technology k is kθ(k), i.e., the product of the capital-
labor ratio and the number of jobs in that technology. Total population is normalized to one.

2.1 The labor market

A representative firm allocates labor into the different jobs in order to maximize total output.
Output maximization corresponds to the following assignment program

max

Z
K

φ(k)θ(k)dk,

subject to the constraint on labor use (1). From the nature of the problem, the optimal policy
corresponds to an extensive margin condition.

Proposition 1 Let φ(k) and θ(k) satisfy Assumptions 1 and 2, and let w be the real wage. Then,
there exists a unique capital type λ(w) ∈ K such that θ(k) = 0 for k ≤ λ(w) and θ(k) > 0 otherwise.
Moreover, λ(w) is increasing in w.

Proof. Consider the Lagrangian

y = max

Z
K

[φ(k)− w] θ(k)dk + wl ≡ Π(θ, w) + w, (2)

where w represents the Lagrange multiplier on (1) and the competitive wage. For all k ∈ K,
φ(k)−w ≥ 0 represents the first order condition. Thus, the equilibrium in the competitive market
settles the output-labor ratio of the marginal capital type utilized to the current wage rate by
φ(λ) = w. By Assumption 1, λ is an increasing function of w.
As the Proposition suggests, the most profitable jobs are filled first until the economy exhaust

all profitable opportunities (profits are represented by Π(θ, w)). Although technologies with low
capital-output ratios have a positive marginal labor productivity, their contribution to output is
zero. Since the real wage or the opportunity cost of the labor required exceeds the value of its
output, those available jobs should not be filled, see Akerlof [3].
From (2) it follows that for a given θ, Π (θ,w) is weakly decreasing in w because higher wages

reduce the number of technologies in operation.
As in Akerlof [3], define the unemployment rate by the fraction of unused jobs, i.e.,

u (θ, w) = 1−
Z
k≥λ(w)

θ(k)dk. (3)

For a given θ, u (θ, w) is weakly increasing in w; as the wage increases, the number of unused
jobs increases because a higher fraction of low skilled jobs becomes obsolete. In other words, the
unemployment rate is an increasing function of the real wage.
The next Corollary follows directly from previous assumptions.

Corollary 2 Let φ(k) and θ(k) satisfy Assumptions 1 and 2, and let θ̂(k) be an alternative distrib-
ution of jobs that satisfies Assumption 2. Assume that θ and θ̂ have the same mean and single-cross
at λ(w). Then, u(θ̂, w) ≥ u(θ, w).

Since the distribution θ̂ puts more weight on low capital intensive jobs, it generates more
unused jobs and lower employment opportunities in high capital intensive technologies. These
fewer employment opportunities reduce final output and produce higher unemployment.
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2.2 Capital accumulation

We next consider an accumulation program in the putty-clay economy. A representative consumer
maximizes ∞X

t=0

βt {U (ct)} , (4)

where ct represents the consumption of the homogeneous good and the discount factor satisfies
0 < β < 1.

Assumption 3 The utility function U : R+ → R is twice continuously differentiable, strictly
increasing, strictly concave, and bounded from above, with Uc (0) = ∞, U (0) = 0, and
Uc (∞) = 0.

Consumer maximization is subject to the evolution of capital, and the budget constraint. The
dynamics of capital in technology k are given by

£
kθ0(k)

¤
= (1− δ) [kθ(k)] + i(k), or in terms of

labor utilization

θ0(k) = (1− δ) θ(k) +
i(k)

k
, (5)

with δ > 0 as the constant (among capital types) depreciation rate and i (k) as the investment in
technology k. That is, the distribution of employment evolves according to the number of people
technically required to operate each capital type (see Calvo [8] and Cass and Stiglitz [9]).
The period budget constraint is Z

K

i(k)dk + c = y.

Define V : R+ → R as the value of the maximized objective function (4) for a given θ. Then, the
problem of the representative consumer must satisfy the following Bellman’s optimality equation
(see Stokey, Lucas and Prescott [18])

V (θ) = max
i(k)

½
U

µ
y −

Z
K

i (k) dk

¶
+ βV

¡
θ0
¢¾
, (6)

in which θ0 is given by (5) for all capital types k ∈ K.
The previous problem is not particularly difficult and its solution exhibits well established

properties.

Proposition 3 Let Assumptions 1-3 hold. Then, for each θ there exists a unique function V

increasing, once differentiable and concave satisfying (6).

Proof. The proof is standard. Since U is bounded, continuous and concave, the previous
properties follow because the set of all bounded continuous and concave functions (under the sup
metric) is complete. It is not difficult to show that V (θ) is generated by a contraction mapping
and therefore is Cauchy-convergent. Banach’s fixed point theorem ensures uniqueness of V (θ),
and differentiability in U (under interior solutions) ensure differentiability in V . See for example
Stokey, Lucas and Prescott [18].
The first order condition for optimal investment is"

Uc (c)− β
Vθ
¡
θ0 (k) , w0

¢
k

#
i (k) = 0, for all k ∈ K.
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If next period’s consumption c0 is positive, the optimal allocation satisfies the following envelope
conditions

Vθ
¡
θ0
¢
= Uc (c

0)Πθ
¡
θ0, w0

¢
= Uc (c

0) [φ (k)− w0] ,

for all k ∈ K. Combining the previous expressions gives

Uc (c) ≥ βUc (c
0)
½
φ (k)− w0

k

¾
, for all k ∈ K,

with strict equality if i (k) > 0. Since a policy with zero investment at all dates leads to zero
income and employment, it must be the case that i (k) > 0 for at least some capital types and
periods. In the putty-clay economy, optimal investment policies are lumpy and concentrate in only
one technology at each time.2

Proposition 4 Let Assumptions 1-3 hold. Then, there exists a unique capital type κ(w0) ∈ K
with i(k) > 0 for k = κ(w0) and i(k) = 0 otherwise.

Proof. Assume to the contrary that there is positive investment in two types of capital, ǩ and
k̂ with ǩ 6= k̂. Thus, investment in technology k̂ is carried out until

Uc (c)− β
Vθ(θ

0(k̂))
k̂

= 0,

and investment in ǩ until

Uc (c)− β
Vθ(θ

0(ǩ))
ǩ

= 0.

Since Vθ(θ
0(ǩ)) = Vθ(θ

0(k̂)), both expressions imply that ǩ = k̂ contradicting the initial state-
ment.
Maximization of returns require that investment is allocated into the capita type that produces

the highest marginal gain per unit of capital. If firms are only concerned with instantaneous profits,
the solution is straightforward

Corollary 5 Let Assumptions 1-3 hold, and assume that firms are only concerned with instanta-
neous profits. Then, the Euler equation (for the technology with positive investment) is

Uc(c) = βUc(c
0)
∙
max
k∈K

½
φ(k)− w

k

¾¸
,

with κ(w0) strictly increasing in w.

Proof. Note that κ(w0) satisfies

φ (κ (w0))− κ (w0)φk (κ (w
0)) = w0,

with
κw (w

0) =
−1

κ (w0)φkk(κ (w0))
> 0.

2Non-concavity in φ is capable of producing investment in multiple technologies because it produces.multiple
maximands in the previous expressions (Cass and Stiglitz [9]).
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Since κ (w0) is increasing in w0, as the wage increases, firms switch from high labor costs to
more capital intensive technologies in order to maximize profits. This reallocation of investment
induces job creation in technology κ (w0).

2.3 Job creation and destruction

The presence of unused jobs or unemployment in the putty-clay economy allows us to study the
creation and destruction of jobs due to investment change and job obsolescence. Given θ and w,
note

u(θ0, w0)− u (θ, w) = δ (1− u (θ, w)) + (1− δ)

Z max{λ(w0),λ(w)}
min{λ(w0),λ(w)}

θ (k) dk − i(κ (w0))
κ (w0)

. (7)

The previous equation represents the dynamics of the labor market. The transition rates depend
on the depreciation rate of capital and the amount of investment in the economy. In particular,
job destruction has an exogenous component since capital depreciation induces a constant entry
rate into unemployment δ for all employed workers, 1− u (θ, w).
Job destruction also has an endogenous component related to labor obsolescence. Wage move-

ments determine labor obsolescence since the marginal technologies employed are functions of w
and w0. For instance, assume that wages increase over time. Then, there exists an endogenous
destruction of jobs due to the obsolescence of skills in jobs that were profitable at a wage w but
that result unprofitable at wages w0. Finally, the positive investment in technology κ (w0) creates
new jobs.
Equation (7) accounts for a simultaneous process of job creation and job destruction with

the particular feature that the jobs destructed correspond to the lower tail of the productivity
distribution, while the jobs created correspond to more productive technologies. In the model,
unemployment is related to job obsolesence. If wages decline, the profitability of the position may
rise again; however, due to a positive depreciation of physical capital, the number of positions will
not exceed the available jobs before the beginning of the downturn. In the model, as well as in
the analysis of Davis, Haltiwanger and Schuh ([10], chap. 6), higher unemployment rates during
recessions result largely from increases in job destruction.

2.4 The dynamical system

We can represent the dynamics of the previous economy by the evolution of consumption and
employment {c, θ (k) : k ∈ K}. However, since the number of state variables for employment is
given by the dimensionality of K, it is more practical to reduce the state to {c, y}.
The putty-clay economy can be represented by the Euler equation in consumption and by a

difference equation in y:
Uc (c) = βUc (c

0)φk(κ(w
0)),

y0 = [1− δ + φ (κ (w0))] y +
φ (κ (w0))
κ (w0)

c+

Z max{λ(w0),λ(w)}
min{λ0(w0),λ(w)}

φ (k) θ (k) dk.

As the previous expression shows, output grows because investment creates more efficient tech-
nologies or because firms discard fewer technologies. Note that although the Euler equation in
consumption is similar to its counterpart in neoclassical accumulation programs, the return to
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capital φk (κ (w
0)) does not depend on the state of the economy (unless an exogenous process for

wages is specified).
Next consider the steady state. In the steady state, the competitive wage represents the mar-

ginal product of labor of the unique technology in use, see Akerlof [2], w∗ = φ(κ∗)−κ∗φk(κ∗), and
zero growth in output, consumption, investment and wages leads to full specialization in production
y∗ = φ(κ∗)θ(κ∗). The unemployment rate is trivially u∗ = 1− θ(κ∗) and c∗ = [φ(κ∗)− δκ∗] θ(κ∗).
As in capital accumulation problems, φk (κ

∗)β = 1 or κ∗ = φ−1k (1/β). The putty-clay model
specifies a steady-state value for wages w but no dynamics.
The analysis of the stability of the previous economy is relatively simple. Although the transi-

tional dynamics are not particularly interesting, there exists monotone convergence in output and
a constant consumption along the transition. The conditions for stability are very restrictive in
the putty-clay case because there are no corrective forces against excessive consumption.

Proposition 6 Let Assumptions 1-4 hold. Assume in addition that θ(κ∗) > 0. Then, given any
initial distribution of jobs {θ0(k) : k ∈ K}, {c0, y0}→ {c∗, y∗} ∈ R2

++ if and only if c0 = c∗.

Proof. Rewrite the dynamics of consumption and output as

Uc (c
0)− Uc (c

∗) =
1

βφk (κ (w
0))
(Uc (c)− Uc (c

∗)) +
∙

1

βφk (κ (w
0))
− 1
¸
Uc (c

∗) ,

(y0 − y∗) =
∙
1− δ +

φ (κ (w0))
κ (w0)

¸
(y − y∗)− φ (κ (w0))

κ (w0)
(c− c∗) +

Z max{λ(w0),λ(w)}
min{λ(w0),λ(w)}

φ (k) θ (k) dk.

Consider an approximation around the steady state. It follows that consumption must be such
that Uc (ct) = Uc (c

∗) for all t ≥ 0 because otherwise either output will go to zero (as consumption
increases) or consumption will go to zero. For that reason, the solution is given by ct − c∗ = 0,
and yt − y∗ = (y0 − y∗) [1− δ + φ (κ∗) /κ∗]t. By the bound in Assumption 1, φ (k∗) /k∗ < δ∗ < 1

so yt → y∗ as t→∞ for all y0.

3 Conclusion

This paper studies a competitive labor market under putty-clay technologies. Since putty-clay
production limits capacity utilization, this technology generates unused jobs (or unemployment)
even when those jobs have a positive marginal productivity. The main reason for job destruction in
the model is job obsolescence. As the wage increases, the opportunity cost to use low productive
technologies rises. Low productive jobs are not able to generate positive profits to remain in
use. Wage change also forces firms to invest in more capital intensive technologies. The new
investments produce new capital and consequently new jobs. This job creation reduces the impact
of job destruction on unemployment. At the end, as in modern business cycles, shocks that
increase the cost of a job induce higher job destruction and reduce job creation leading to higher
unemployment and lower aggregate output.
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