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Abstract

This paper presents a method for selection of the optimal simultaneous equation system from
a set of nested models under the condition of a small sample. The purpose of selection is to
identify a model with the best prognostic possibilities. Multivariate AIC, BIC and AICC are
used as the selection criteria. The selection properties of this method are investigated by
Monte−Carlo simulations. They show that the structural form of system can outperform its
reduced form for making predictions.
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1. Introduction 
 

     
 

The main contribution to model selection in econometrics is devoted to single equation 
regression models and many criteria for this purpose have been presented, e.g. Akaike 
Information Criterion (AIC), corrected version of AIC (AICC), Schwarz� BIC, Bozdogan� 
ICOMP, etc. (Akaike, 1973; Shi and Tsai, 1998; Bozdogan and Haughton, 1998). Some of 
them, particularly AIC, BIC and AICC have been modified for selecting multivariate 
regression models (Bedrick and Tsai, 1994; Fujikoshi and Satoh, 1997). Bedrick and Tsai 
(1994) showed that AICC for multiresponse models is unbiased for the expected Kullback-
Leibler information and provides better model choices than other criteria, including AIC, in 
small samples. However the problem of simultaneous equation model (SEM) selection has 
been explored insufficiently. Therefore the objective of this paper is to apply multivariate 
AIC, BIC and AICC for selection of a SEM with the best prognostic possibility from the 
given models set in the case of a small sample. The efficiency of the proposed method is 
investigated by Monte-Carlo simulations. Our special point of interest is to test a hypothesis 
that estimated structural equations can outperform the reduced form equations for making 
predictions depending on the specification of SEM and statistical data. 

Potential applications of this method include building and analyzing models of economic 
processes in the countries with transition economics, for example, in the New Independent 
States, which are characterized by a short period of reforms. In this case, only relatively 
simple SEMs can be used for prediction of interrelated (endogenous) macroeconomic 
indicators, e.g. gross domestic product and aggregate consumption.   

The order of the presentation is as follows: Section 2 defines the problem of simultaneous 
equation model selection. Section 3 proposes the method of selection. Section 4 presents an 
illustrative example and properties of the method. Finally, Section 5 gives the conclusions. 
 
 
 
 

2. The model 
 
 

The model to be considered is a system of m simultaneous equations  
 

itittiit uy += ),,(η αyx ,     i = 1,2 ..., m,  t = 1,2 ...,n,                (1) 
 

where ity  is a scalar endogenous variable, )η,...,η,(η 21 m=′η  is the true but an unknown         
m-vector of models, ),...,,( 21 ktttt xxx=′x  is a k-vector of exogenous variables,  

),...,,( 21 mtttt yyy=′y  is a m-vector of endogenous variables, ),...,,( 21 Piiii ααα=′α  is a pi 
vector of unknown parameters in a i-th structural equation, and ),...,,( 21 mtttt uuu=′u  is a  m-
vector of independent normally distributed random disturbances with zero mean and a 
covariance matrix Σu, n is the total number of observations. There is usually some prior 
information about the regions of possible values for variables: X∈W1 and Y∈W2, where W1 
and W2 are sets of possible values for the matrices X and Y. The objective of this research is 
to identify the model of simultaneous equation system (1), which has the optimal prediction 
quality on the basis of n observations over matrices X and Y under the condition of the small 
sample. In this case, the order of possible models is limited and relatively simple models can 
be used. It is necessary to develop a selection method that reflects the trade-off between 
forecast accuracy and model parsimony.  
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3. Selection method 
 
 

The method of selection of the optimal prediction simultaneous equation model consists of 
the following main stages:  
1. The special case in which the possible models are nested as in polynomial regression 
models or moving-average models for time series is considered. Let the nested set of models 
be denoted by  

lilil SαYX ∈),,(η ,       l = 1, 2,..., q,                   (2) 
where ilα  is a vector of parameters in a i-th structural equation of class l and S1⊂ S2⊂ ... ⊂ Sq,  
Sl - being the set of all possible models for class l. 
For models which are linear in the parameters, model (2) can be rewritten as 
 

ilililil αYXαYX ),(f),,(η ′= ,                            (3) 

where ),(f YXil  is a vector of known functions in a i-th structural equation of class l. 

2. The models from every l-th class are tested for identifiability by special conditions such as 
order condition and rank condition (Fisher, 1966; Brown, 1983). 
3. The parameters of each simultaneous equation system from the given models set are 
estimated by the consistent, full information maximum likelihood method (FIML) (Amemiya, 
1986).  
4. Multivariate AIC, BIC and AICC are used for selecting the optimal simultaneous equation 
system from the given models set:  
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where d=n/(n-(m+p+1)).  
 
Therefore AICC is applicable to the structural form of a SEM only if pi = p for i =1,...m.    
It should be noted that the selection properties of AICC derived for a multivariate regression 
can be directly generalized to a SEM (Bedrick and Tsai, 1994).  
5. The selection properties of AIC, BIC and AICC are explored by Monte-Carlo simulations 
for a particular experimental situation.  
6. The average of the mean squared error of prediction (AMSEP) (Herzberg and Tsukanov, 
1985) is used for evaluation of method efficiency and for comparison of the selection criteria: 

∑
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1
,                    (7) 

where lv  is the probability of selection of the model l by a particular criterion, lL  is the loss 
function for the model l, which is defined as   

     ellL Σ= ,                   (8) 
 where 
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is the mean squared errors of prediction (MSEP) matrix for the model l. 
where }E{eσ il

2
il

2= , }eE{ecov jlilli =j (i, j=1..m); 
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22 )),,(η(1 αyx )                   (10) 

is the mean squared error of prediction for the i-th equation of the model l, np is the total 
number of prediction points. 
7. The preferential criterion is used for selection of the optimal prediction model.  
 
 
 

4. Simulation results 
      
 

It is necessary to test the efficiency of the proposed method for optimal model selection. 
Because of the complexity of analytical exploration the analysis was carried out by the 
method of statistical trials (Monte-Carlo simulations). Computing was done on the IBM PC 
Pentium 3 by the tools of the MatLab program. For simplicity consider only simultaneous 
equation models that are linear in the parameters and endogenous variables. The correct 
model consists of two equations with one varying parameter, α, and the remaining parameters 
are given: 
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The system (11) is identified, because both order condition and rank condition are satisfied 
for every equation of the system (Fisher, 1966). The reduced form of the structural model (11) 
is 
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where v1, v2 - are the normally distributed random disturbances with zero mean and the 
covariance matrix Ωv. 
In practice, the system (11) can roughly describe a supply-demand model for the meat market 
of Ukraine, where y1 (quantity) and y2 (price) are endogenous (interdependent) variables and 
x1 and x2 are exogenous variables. In this case we are particularly interested in using the 
structural equations for prediction of next period�s quantity given external information on 
next period�s price and current data due to special governmental policy of setting price limits. 
And in turn, forecasting next period�s real market price given next period�s estimate of 
quantity (internal and external supply) is important task for the local community due to sharp 
economic conditions. The data generating process is based on the real economic, social and 
political circumstances in many countries of the former Soviet Union, e.g. mismanagement of 
correct statistical data collection, significant proportion and variability of the shadow 
economy (x1), high instability of institutional factor (x2) and a short period of reforms (13 
years). Therefore the design matrix X=(x1, x2) is a fixed matrix of independent, identically 
distributed normal random variables with mean zero, variance one and n=13. The random 
disturbances were simulated by the generator of random numbers built in the computer 
program with mean zero and 01.== 2

u2
2
u1 σσ ; parameter α varied from 0.05 to 5 (adjusted to 

the specific set of models). The selection of both structural and reduced models was simulated 
by the criteria AIC, BIC and AICC for every realization of the experimental data (t=1,..,n�1) 
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from the correct models (11) and (12). The parameters were estimated by FIML method and 
the experiment was repeated 5000 times. The mean squared error of prediction is calculated in 
the last point of design (out of the estimation period) in order to verify the prognostic 
efficiency of this method. The selection was made from the following nested classes of 
models η: 
1) linear (underfitted), i.e. the quadratic terms were excluded from the initial system (11); 
2) quadratic (correct), i.e. the structure of the initial system remained the same; 
3) cubic (overfitted), i.e. the exogenous variables in a third power were added to each 
equation of the initial system.  

The results of simulations are averaged across random samples and presented by figures 
as functions of α. Figure 1 shows the loss functions for all models and AMSEP by AIC and 
AICC for the reduced form of a SEM.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
      Fig.1. MSEP and AMSEP for the reduced system: 

 L1 � MSEP for linear model;  
 L2 � MSEP for quadratic model;  
 L3 � MSEP for cubic model; 
 RAIC  / RAICC  � AMSEP by AIC / AICC. 
 
 

It can be seen (Fig.1.) that there is a region of the correct model parameter variation where 
an underfitted model (linear in this case) is better for making predictions than the correct 
(quadratic) model. The loss function for the overfitted (cubic) model is always bigger than for 
the correct model and they do not depend on α variation. This has been confirmed by 
theoretical research (Gorobets, 2005). Because the number of the chosen model by the 
selection criterion is random, AMSEP is always bigger than the minimal loss function or 
equal to that in the entire region of parameter variation. Although there is a region of α 
variation where AMSEP by AICC is bigger than AMSEP by AIC, with increasing parameter 
only AMSEP by AICC gradually converges to the loss function of the correct model, which 
verifies the efficiency of criterion AICC.    

Figure 2 gives the number of times each model was selected by AIC and AICC for the 
reduced system. With increasing α AICC consistently identifies the correct model (AICC2), 
whereas AIC tends to overfit the model (AIC3). On the contrary under the small values of α 
AIC performs better than AICC, which tends to underfit the model (AICC1). 
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Fig.2. Frequency of models selected by AIC and AICC for the reduced system: 

 AIC1 /AICC1 � frequency of linear model selected by AIC /AICC; 
 AIC2 /AICC2 � frequency of quadratic model selected by AIC /AICC; 
 AIC3 � frequency of cubic model selected by AIC. 

 
 
Figures 3,4 demonstrate the simulations results for the structural form of a SEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Fig.3. MSEP and AMSEP for the structural system: 
 L1 � MSEP for linear model;  
 L2 � MSEP for quadratic model;  
 L3 � MSEP for cubic model; 
 RAIC  / RAICC  � AMSEP by AIC / AICC. 
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Fig.4. Frequency of models selected by AIC and AICC for the structural system: 
AIC1 /AICC1 � frequency of linear model selected by AIC /AICC; 
AIC2 /AICC2 � frequency of quadratic model selected by AIC /AICC; 
AIC3 � frequency of cubic model selected by AIC. 
 
 

A difference from the reduced system is that MSEP for all models of the structural system 
depends on parameter variation. Comparison between figures 1 and 3 illustrates that the 
structural system can be better for forecasting than the reduced system. The selection 
properties of criteria AIC and AICC for the structural system are similar to that for the 
reduced system, but they converge to the correct model faster than for the reduced system. As 
for criterion BIC, which is not shown on these figures to simplify presentation, it performs 
between AIC and AICC for both the reduced and the structural systems. Since analogous 
results were obtained for other values of the SEM parameters and designs we can expect its 
robustness for the given set of models and error distribution.   

On the basis of the simulation results, the following selection properties of proposed 
method can be formulated:   
1. The method allows the selection of the optimal prediction simultaneous equation system 
from the given models set; 
2. For the purposes of the minimization of the prediction error and the speed of convergence 
to the correct model the structural form of a SEM can be preferred to the reduced system; 
3. The criteria efficiency depends on the region of the correct model parameter variation. 
 
 
 

5. Conclusions 
 

 
In this paper a new method for selecting the optimal prediction simultaneous equation 

system was presented and a first round of computer simulations was carried out to illustrate 
the performance of the method. The novelty of this method is that the structural form of SEM 
is identified by criteria for making (better) predictions, whereas traditionally only the reduced 
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form is used for prediction. Therefore in practice it can be recommended to estimate both the 
reduced and structural forms of SEM for making predictions of real economic indicators. The 
analysis of the method was done for a particular experimental situation, i.e. for a specific set 
of models and random disturbances. It is necessary to carry out further investigation of the 
performance of the method in two complementary ways. First, to increase the generality of 
our conclusions we should conduct a large number of experiments with various feasible sets 
of models and error distributions. Second, analytical derivations of the proposed method 
would be valuable to confirm the simulation results and justify the method.  This task was 
partly resolved by Gorobets (2005), where analytical expressions of the mean squared error of 
prediction matrices were derived for biased, true and overfitted models of the reduced form of 
SEM, but they still remain unknown for the structural form of SEM. Furthermore unbiased 
criterion for selecting a SEM with different number of parameters in each structural equation 
should be developed. 
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