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Abstract

This paper investigates a generalized Baron−Ferejohn model with different discount factors,
different recognition probabilities and q−majority rule. In the paper, it is shown that if
players are sufficiently patient, recognition probabilities are similar and the voting rule is not
unanimous, each player's equilibrium payoff is inversely proportional to the ratio of the
player's discount factor to the harmonic mean of all players' discount factors. This result
implies the followings: (i) A less patient player obtains a greater payoff; (ii) As a player
slightly becomes more patient, her payoff becomes smaller; (iii) The equilibrium payoffs do
not depend on recognition probabilities; and (iv) They do not also depend on q.
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1. Introduction

Baron and Ferejohn (1989) introduced a sequential bargaining model in which a randomly-selected
proposer offers a proposal, which is put to a vote, and if a majority of players accept it, the game
terminates, and otherwise, the procedure is repeated. Banks and Duggan (2000) generalized the Baron
and Ferejohn model (hereafter B-F model) and showed that there exists an equilibrium in the model.
Eraslan (2002) proved that equilibrium payoffs are uniquely determined in a generalized B-F model,
which is a special case of Banks and Duggan’s model.

This paper shows that in a generalized B-F model with different discount factors, different recogni-
tion probabilities and q-majority rule, which is the same as Eraslan’s model, if players are sufficiently
patient, recognition probabilities are similar and the voting rule is not unanimous, a player’s equilib-
rium payoff is equal to H(δ)

δi

1
n
, where δi is the player’s discount factor, H (δ) is the harmonic mean

of players’ discount factors, and n is the number of players. This result implies the followings: (i) A
less patient player obtains a greater payoff; (ii) As a player slightly becomes more patient, her payoff
becomes smaller; (iii) The equilibrium payoffs do not depend on recognition probabilities; and (iv)
They do not also depend on q.

(i) and (ii) contrast with the result of standard bargaining models, in which more patient players
obtain greater payoffs. Under q-majority rule, less patient responders, whose approval seems cheaper,
can belong to winning coalitions with higher probabilities, which is the driving force of (i) and (ii).
On the other hand, it is also shown that under the unanimity rule, more patient players obtain greater
payoffs since every responder belongs to winning coalitions with certainty.

The intuition of (iii) is as follows: Under q-majority rule, a player with high recognition probability
(a) belongs to winning coalitions with low probability when she is a responder since her approval seems
expensive but (b) enjoys the agenda-setting power with high probability. (a) and (b) offset each other,
and thus recognition probabilities do not affect equilibrium payoffs. On the other hand, under the
unanimity rule, the equilibrium payoffs are monotonic with recognition probabilities.

Under larger q, a proposer’s pie is smaller, but a responder belongs to winning coalitions with
higher frequency. (iv) implies that these two effects exactly offset each other.

(i) and (ii) are related to Kawamori (2004), Yildirim (2005), Eraslan (2002) and Harrington (1990).
Kawamori (2004) analyzed a three-player B-F model with different discount factors and analytically
computed equilibrium payoffs for each discount factor profile in (0, 1)3. The computation implies
that when all players are as patient as each other, equilibrium payoffs are decreasing with respect to
discount factors, which implies (i) and (ii) in the three-player model. Yildirim (2005), which generalized
the B-F model by endogenizing recognition probabilities, presented a three-player example in which
equilibrium payoffs are not increasing with respect to discount factors in the B-F model with different
discount factors (Case 1 in Example 1). Eraslan (2002) showed that discounted equilibrium payoffs1

are monotonic with discount factors.2 Harrington (1990) showed that in a generalized B-F model with
different risk preferences, if players’ risk preferences are similar and a voting rule is not the unanimity
rule, a more risk-averse player’s probability distribution over her pie induced by an equilibrium first-
order stochastically dominates a less risk-averse player’s. (i) and (ii) may also be related to Haan

1A player’s discounted equilibrium payoff is her discount factor times her equilibrium payoff.
2Eraslan stated that equilibrium payoffs (not discounted equilibrium payoffs) are monotonic with discount factors,

which is, however, false as Kawamori (2004), Yildirim (2005) and this paper imply.
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and Kooreman (2003) and Piccione and Rubinstein (2004), which showed that a seemingly beneficial
property does not necessarily lead to a good result.

The paper is organized as follows: Section 2 describes a generalized B-F model, and Section 3
presents results.

2. The model

Consider the following noncooperative bargaining game, which is a generalized B-F model.
Let N ≡ {1, . . . , n} for some n ∈ N such that n ≥ 3. Define ∆ and P as ∆ ≡ (0, 1)n and

P ≡ {
(pk)k∈N ∈ Rn

+ |
∑

k∈N pk = 1
}
, respectively. For δ ≡ (δk)k∈N ∈ ∆, p ≡ (pk)k∈N ∈ P and

q ∈ {2, . . . , n}, let G (δ, p, q) denote an extensive form game defined as follows:
The set of players is N . Players sequentially make a split-the-pie bargain under q-majority rule.

Let X ≡ {
(xk)k∈N ∈ Rn

+ |
∑

k∈N xk = 1
}
. X is the set of distributions of the one-unit divisible pie. In

each stage game, bargaining proceeds as follows: (i) Nature selects a player i ∈ N as a proposer with
probability pi; (ii) The selected proposer i offers a proposal x ∈ X; (iii) Every player j, sequentially
according to some predetermined order, votes on the proposal x, i.e., announces either accepting or
rejecting it. Then, if more than q players accept the proposal, the proposal is implemented and the
game ends. Otherwise, the procedure is repeated from (i). Each player’s payoff is the pie distributed
to herself and each player discounts the future pie. That is, player i’s payoff is equal to δt−1

i xi when
x ≡ (xk)k∈N is implemented at the t-th stage.

In this paper, we use behavior strategies. The equilibrium concept employed in the paper is the
stationary subgame perfect equilibrium (SSPE), which is the subgame perfect equilibrium such that
each player takes the same actions in every stage. In this game, there exists an equilibrium3 and
equilibrium payoffs are uniquely determined.4 Thus, we can denote player i’s equilibrium payoff of
G (δ, p, q) by v◦i (δ, p, q) for i ∈ N , δ ∈ ∆, p ∈ P and q ∈ {2, . . . , n}.

Finally, introduce the following notations: For any family a ≡ (ak)k∈K , let prk a ≡ ak. For any

vector a ≡ (ak)k∈K , let H (a) ≡ (
1

card K

∑
k∈K a−1

k

)−1
, which is the harmonic mean of a. For m ∈ N,

let 1m (0m) be an m-tuple such that prk 1m = 1 (prk 0m = 0) for all k ∈ {1, . . . , m}. For m ∈ N, ε > 0
and a ∈ Rm, let Bm

ε (a) be an ε-open ball of a on Rm.

3. Results

The following theorem is the main result in this paper. The theorem means that under q-majority
rule (q < n), if every player is sufficiently patient and all players’ recognition probabilities are similar,
each player’s equilibrium payoff is inversely proportional to the ratio of the player’s discount factor to
the harmonic mean of all players’ discount factors.

Theorem 1. Take any q ∈ {2, . . . , n− 1}. There exists ε, ε′ > 0 such that for all δ ≡ (δk)k∈N ∈
Bn

ε (1n) ∩∆ and all p ≡ (pk)k∈N ∈ Bn
ε′

(
1
n
1n

) ∩ P , for all i ∈ N , v◦i (δ, p, q) = H(δ)
δi

1
n
.

Remark . Even if “δ ∈ Bn
ε (1n) ∩ ∆” is replaced with “δ ∈ Bn

ε (δ∗1n) ∩ ∆” for some δ∗ ∈ [0, 1), the
theorem holds.

3See Banks and Duggan (2000).
4See Eraslan (2002).
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Proof. Let S ≡ Rn ×
(
0, 1

q

)
× (0, 1)n−1 × R2n. Define C1 function f : S → R2n as follows: For

z ≡ (v, u, r−1, δ, p) ≡
(
(vk)k∈N , u, (rk)k∈N\{1} , (δk)k∈N , (pk)k∈N

)
, for i ∈ N ,

pri f (z) = vi − pi {1− (q − 1) u} −
{

pi+1ri+1 + pi+2 (1− ri+2) +

q∑

k=3

pi+k

}
u

pri+n f (z) = δivi − u,

where r1 ≡ 1
2
.5 Let z∗ ≡ (

v∗, u∗, r∗−1, δ
∗, p∗

) ≡ (
1
n
1n,

1
n
, 1

2
1n−1,1n,

1
n
1n

)
. Obviously, f (z∗) = 02n holds

and the derivative of f (z) with respect to (v, u, r−1) evaluated at z = z∗ is a full rank matrix. Thus, the
Implicit Function Theorem implies that there exists ε̄ > 0 and C1 function g : B2n

ε̄ (δ∗, p∗) → R2n such
that (g (δ, p) , δ, p) ∈ S for all (δ, p) ∈ B2n

ε̄ (δ∗, p∗),
(
v∗, u∗, r∗−1

)
= g (δ∗, p∗) and f (g (δ, p) , δ, p) = 02n

for all (δ, p) ∈ B2n
ε̄ (δ∗, p∗). Let v̂i (δ, p) ≡ pri g (δ, p) for i ∈ N , û (δ, p) ≡ prn+1 g (δ, p), r̂i (δ, p) ≡

pri+n g (δ, p) for i ∈ N \ {1} and r̂1 (δ, p) ≡ 1
2
, for (δ, p) ∈ B2n

ε̄ (δ∗, p∗). Note that r̂1 (δ, p) = r1.
Consider ε and ε′ such that Bn

ε (δ∗) × Bn
ε′ (p

∗) ⊂ B2n
ε̄ (δ∗, p∗). Take any δ ∈ Bn

ε (δ∗) ∩ ∆ and
p ∈ Bn

ε′ (p
∗) ∩ P . Consider strategy profile σ defined as follows:

• Every player i proposes (xk)k∈N such that

xk ≡





1− (q − 1) û (δ, p) if k = i

û (δ, p) if k ∈ {i− 1, i− 3, . . . , i− q}
0 otherwise

with probability r̂i (δ, p) and (x′k)k∈N such that

x′k ≡





1− (q − 1) û (δ, p) if k = i

û (δ, p) if k ∈ {i− 2, i− 3, . . . , i− q}
0 otherwise

with probability 1− r̂i (δ, p).

• Every player i accepts a proposal (yk)k∈N with probability 1 if yi ≥ û (δ, p) and rejects it other-
wise.

Let Vi be player i’s payoff by σ. Then,

Vi = pi {1− (q − 1) û (δ, p)}+

{
pi+1r̂i+1 (δ, p) + pi+2 (1− r̂i+2 (δ, p)) +

q∑

k=3

pi+k

}
û (δ, p) .

For i ∈ N , Vi = v̂i (δ, p) since pri f (g (δ, p) , δ, p) = 0. Notice that pri+n f (g (δ, p) , δ, p) = 0 for all
i ∈ N . Then, δiVi = δiv̂i (δ, p) = û (δ, p). Consider the unimprovability of player i’s strategy of
σ. Obviously, player i’s voting action of σ is unimprovable. Consider player i’s proposing action.
Player i’s proposal of σ is obviously optimal among proposals to pass given voting actions of σ.

5For i, j ∈ Z, on indices representing players, we regard i as identical with j if i ≡ j (mod n).
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Player i, at her proposing nodes, obtains a payoff of 1 − (q − 1) û (δ, p) by the proposal of σ and a
payoff of δiVi = û (δ, p) by proposals not to pass given voting actions of σ. The former is greater
than the latter since û (δ, p) < 1

q
. Thus, player i’s proposing action of σ is unimprovable. Since i

is arbitrary, σ is unimprovable. Hence, the One Deviation Principle implies that σ is an SPE. σ is
obviously stationary. Therefore, σ is an SSPE. Notice that

∑
k∈N Vk = 1 since there is no delay in

equilibrium. Then,
∑

k∈N
1
δk

û (δ, p) = 1. Thus, û (δ, p) = H (δ) 1
n
. Vi = H(δ)

δi

1
n
. Since σ is an SSPE,

v◦i (δ, p, q) = Vi = H(δ)
δi

1
n
. Q.E.D.

The theorem implies the following four corollaries under similar discount factors and recognition
probabilities.

The first corollary says that a less patient player’s equilibrium payoff is greater than a more patient
player’s.

Corollary 1. Take any q ∈ {2, . . . , n− 1}. There exists ε, ε′ > 0 such that for all δ ≡ (δk)k∈N ∈
Bn

ε (1n) ∩∆ and all p ∈ Bn
ε′

(
1
n
1n

) ∩ P , for all i, j ∈ N , v◦i (δ, p, q) R v◦j (δ, p, q) if and only if δi Q δj.

The second corollary says that as a player becomes slightly more patient, the player’s equilibrium
payoff decreases.

Corollary 2. Take any q ∈ {2, . . . , n− 1}. There exists ε, ε′ > 0 such that for all δ ≡ (δk)k∈N ∈
Bn

ε (1n) ∩∆ and all p ∈ Bn
ε′

(
1
n
1n

) ∩ P , for all i ∈ N ,
∂v◦i (δ,p,q)

∂δi
< 0.

In standard bargaining games, a more patient player has a stronger bargaining power and thus
obtains a larger payoff, which contrasts with Corollaries 1 and 2. In the Baron-Ferejohn model with
q-majority rule (q < n), a proposer can make a proposal pass by distributing only q − 1 responders
their continuation payoffs respectively and winning their approval. Thus, the proposer wants to form
winning coalitions with responders who seem to obtain small continuation values. Therefore, less
patient responders can belong to winning coalitions with higher probabilities, which is the driving
force of Corollaries 1 and 2.

Example 1. Consider the case that n = 3. Let p =
(

1
3
, 1

3
, 1

3

)
and q = 2. Take any δ ≡ (δk)k∈N ∈ (0, 1)3

such that δi ≥ 2
3

for all i ∈ N . Then, consider game G (δ, p, q). In this game, the following strategy
profile is an SSPE:

• Every player i proposes (xk)k∈N such that xi ≡ 1−H(δ)
3

, xi+1 ≡ H(δ)
3

and xi+2 = 0 with probability

ri ≡ 1
δi+1

− 1
δi+2

+ 1
2
∈ (0, 1), and (x′k)k∈N such that x′i = 1− H(δ)

3
, x′i+1 = 0 and x′i+2 ≡ H(δ)

3
with

probability 1− ri.

• Every player i accepts a proposal (yk)k∈N with probability 1 if yi ≥ H(δ)
3

and rejects it with
probability 1 otherwise.

Note that ri is the probability that player i+1 belongs to winning coalitions when player i is a proposer
and the probability is decreasing in player i + 1’s discount factor. Player i’s equilibrium payoff Vi is

computed as Vi = 1
3

(
1− H(δ)

3

)
+ 1

3
(1− ri+1)

H(δ)
3

+ 1
3
ri+2

H(δ)
3

= H(δ)
δi

1
3
.
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On the other hand, if q = n, all responders’ approval is necessary for a proposal to pass. Thus,
every responder, however patient she is, can be distributed her continuation value. Therefore, less
patient players have no advantage and obtain smaller payoffs. Indeed, for any δ ≡ (δk)k∈N ∈ ∆
and any p ≡ (pk)k∈N ∈ P , player i’s equilibrium payoff of G (δ, p, n) is calculated as v◦i (δ, p, n) =
H(((1−δk)/pk)k∈N)

(1−δi)/pi

1
n
,6 which implies that under the same recognition probability, v◦i (δ, p, n) R v◦j (δ, p, n)

if and only if δi R δj.
The third corollary says that the equilibrium payoffs are determined independent of recognition

probabilities.

Corollary 3. Take any q ∈ {2, . . . , n− 1}. There exists ε, ε′ > 0 such that for all δ ∈ Bn
ε (1n) ∩ ∆

and all p, p′ ∈ Bn
ε′

(
1
n
1n

) ∩ P , for all i ∈ N , v◦i (δ, p, q) = v◦i (δ, p′, q).

Each player’s recognition probability has two effects on her equilibrium payoff, between which there
is a tradeoff, under q-majority rule (q < n). One is that a player with high recognition probability
belongs to winning coalitions with low probability when she is a responder since her approval seems
expensive. The other is that a player with high recognition probability enjoys the agenda-setting
power with high probability. These two effects offset each other and thus recognition probabilities do
not affect equilibrium payoffs.7 On the other hand, as calculated above, under the unanimity rule,
the equilibrium payoffs are monotonic with recognition probabilities. This is because the first effect
vanishes under the unanimity rule.

The fourth corollary says that the equilibrium payoffs are determined independent of voting rules.

Corollary 4. Take any q, q′ ∈ {2, . . . , n− 1}. There exists ε, ε′ > 0 such that for all δ ∈ Bn
ε (1n) ∩∆

and all p ∈ Bn
ε′

(
1
n
1n

) ∩ P , for all i ∈ N , v◦i (δ, p, q) = v◦i (δ, p, q′).

Under larger q, a proposer’s pie is smaller, but a responder belongs to winning coalitions with
higher frequency. The corollary implies that these two effects exactly offset each other.

Finally, we remark on some possible extensions: (i) Since players’ discount factors significantly
affect equilibrium payoffs, each player may want to decide her own patience endogenously. Therefore,
it is necessary to endogenize discount factors. (ii) It is natural that a player does not know how patient
the other players are. Therefore, treating a player’s discount factor as her private information is a
more realistic approach.

6v◦i (δ, p, n) is also written as v◦i (δ, p, n) =
Hp((1−δk)k∈N)

1−δi
pi, where Hp

(
(1− δk)k∈N

)
is the harmonic mean of

(1− δk)k∈N weighted by p.
7The two effects completely offset each other. The reason is as follows: Consider the case that every player has

the same discount factor. Let each player’s recognition probability be 1
n . Then, let player 1’s recognition probability

marginally increase and the other players’ uniformly decrease. Suppose that player 1’s equilibrium payoff increases by
the change of recognition probabilities. Then, player 1 belongs to winning coalitions with probability 0 when she is
not a proposer. Thus, the former effect discontinuously decreases her payoff. On the other hand, the latter effect just
marginally increases her payoff. Hence, player 1’s payoff must decrease, which is a contradiction. Suppose that player
1’s equilibrium payoff decreases by the change of recognition probabilities. Then, player 1 belongs to winning coalitions
with probability 1 when she is not a proposer. Thus, the former effect increases her payoff. On the other hand, the
latter effect also increases her payoff. Hence, player 1’s payoff must increase, which is a contradiction. Therefore, the
change of recognition probabilities must not affect player 1’s equilibrium payoff.
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