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Abstract

Chakraborty [Journal of Economic Theory, 2004] introduces endogenous mortality in a two
period overlapping generations model by postulating that the probability of surviving from
the first period to the second depends on tax−funded public health. His central result on the
existence of multiple steady states (including development traps) summarized in Proposition
1 is incorrect. This paper presents the correct proposition and its proof, and in the process,
uncovers several new, interesting results. Contrary to Chakraborty's analysis, high mortality
yet high capital nations may not be able to escape the poverty trap. Interestingly, TFP growth
can help economies escape the vicious cycle of poverty.
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1 Introduction

A question that continues to intrigue macroeconomists and policymakers alike is this: Why is
Africa so different from the rest of the world?1 Indeed, in a recent speech, Alan Greenspan2

touches on this question: “While, from a global perspective, wealth and the overall quality of
life have risen, that success has not been evenly distributed across regions or countries. The
economies of East Asia are often-repeated success stories. Some, including China, Malaysia,
South Korea, and Thailand, stand out not only as growing very strongly, but also as having seen
the greatest declines in poverty rates. ....But, sadly, the story in Africa has been quite different.
Levels of per capita income in that continent have actually fallen. The poverty rate, which in
1970 matched the rate in Asia at the time, is estimated to have doubled to 40 percent by 1998.”
In fact, as Haber, North, and Weingast (2003) point out, two-thirds of African countries have
either stagnated or shrunk in real per capita terms since the onset of independence in the early
1960s.
Easterly and Levine [1997] were among the first to pose this question; to them, the high

ethnic fractionalization in the “dark continent” largely explains Africa’s woes. In a fairly influ-
ential recent paper “Endogenous Lifetime and Economic Growth”, Chakraborty [2004] indirectly
revisits this question by exploring a new connection between pervasive ill-health and economic
growth. As he points out, the probability that a average 15-year old would die before reaching
age 60, was three times as high in sub-Saharan Africa as in the richer OECD economies. He
goes on to suggest that when life expectancy is low, agents would place little emphasis on the
future, and hence, would invest little in productive long-term assets, thereby getting stuck in a
low level of real activity. In turn, poor health is largely explained by low public health spending
which in turn is a direct outcome of the low level of real activity. In short, Africa is caught in a
development trap induced by poor health.
More specifically, Chakraborty introduces endogenous mortality in an otherwise standard

overlapping generations model with production of the classic Diamond [1965] variety. In par-
ticular, the probability with which young agents survive on to the second period depends on
public health expenditures which are in turn funded by income taxes on labor income. The main
result in Chakraborty [2004] contained in his Proposition 1 states that when the output elasticity
of capital is high a development trap appears and countries differing in health and/or physical
capital may not converge to similar living standards. It is important to note that such poverty
traps do not arise in the standard Diamond model without the aid of several strong assumptions
on preferences and technology that Chakraborty does not make.3

In this paper, we point out a crucial error in his statement of Proposition 1. We go on to
correct the omission and in the process we uncover several new, interesting results. Contrary to
his analysis, it turns out that high mortality nations even if they have high levels of capital may
not be able to escape the poverty trap. This implies that the vicious cycle of poverty is far more
persistent than what his analysis suggests. In addition, we show that the level of technological

1In the parlance of modern growth theory, this is often summarized as the puzzle of the persistent negative
“Africa dummy” in cross-country growth studies.

2Remarks by Federal Reserve Chairman Alan Greenspan at Banco de Mexico’s Second International Conference
”Macroeconomic Stability, Financial Markets, and Economic Development,” Mexico City, Mexico, November 12,
2002.

3See the discussion in Azariadis (2004).
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development plays a crucial role in determining the persistence of the development trap. First,
when technological development increases, a new long run equilibrium with higher real activity
and reduced mortality appears. Second, this increase in technical efficiency drastically reduces
the level of capital required to escape the development trap. Our results therefore suggest that
high mortality and low capital nations can escape the low activity trap by raising their TFP.

2 The Model

We use the exact model outlined in Chakraborty [2004]. Here, young agents are born each
period and inelastically supply one unit of labor, earning a wage w. The probability of a young
agent surviving to the next period is given by the non-decreasing concave function φt ≡ φ (ht) ,
where ht denotes her health capital. We assume that φ (0) = 0, limh→∞ φ (h) = β ≤ 1 and
limh→0 φ (h) = γ <∞. Public health expenditure in period t is financed through a proportional
tax τ t ∈ (0, 1) such that ht = τ twt. At the end of each period, the young agents deposit their
savings in a mutual fund, which earns a gross return on its investments of Rt+1, thus guaranteeing
a gross return of R̂t+1 = Rt+1/φt for the surviving old. The young agents born in period t + 1
are not affected by the health capital of the previous generation.
A person born in period t maximizes her expected lifetime utility

Ut = ln c
t
t + φt ln c

t
t+1,

subject to the budget constraints

ctt ≤ (1− τ t)wt − zt, ctt+1 ≤ R̂t+1zt.

Optimal savings takes the form zt = (1− τ t)σtwt, where σt ≡ φt
1+φt

.

Final goods are produced using a constant returns to scale Cobb-Douglas technology F (K,L) =
AKαL1−α, where A > 0 and α ∈ (0, 1) . Perfect competition ensures that wt = (1− α)Akαt and
Rt = 1+αAkα−1t − δ, where k is the capital-labor ratio and δ is the depreciation rate of physical
capital.
In the model set up above, using zt = kt+1, it follows that the general equilibrium law of

motion for the capital-labor ratio is given by

kt+1 = (1− τ)(1− α)σ (kt)Ak
α
t , (1)

given k0 > 0 and h = τw (k) = τA (1− α) kα. We are now ready to re-state Proposition 1 of
Chakraborty [2004].

3 Results

Before we proceed to make corrections, we restate his Proposition 1. (i) below.

Chakraborty’s Proposition 1. (i). The dynamic system described by (1) [his equation
(10)] possesses two steady states {0, k̄} when α < 1/2, only the positive one being asymptotically
stable. When α > 1/2, three steady states exist

©
0, k̄1, k̄2

ª
with k̄2 > k̄1; the two extreme steady

states are asymptotically stable, the intermediate one is not.
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By means of a simple counterexample, it is easy to demonstrate that the second part of this
result is incorrectly stated. Suppose A = 5, α = 0.55, β = 0.5, τ = 0.2, and φ(h) = βh/(1 + h),
a functional form for φ(h) that satisfies all of Chakraborty’s assumptions on φ (as stated by him
in his footnote 4). Then, it is easy to check that there exists a unique steady state, k = 0.
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Figure 1: J(k) versus k

As Figure 1 illustrates, the error appears because Chakraborty ignores the possibility that
(1) may forever lie below the 45o line thereby producing only the trivial steady state, k = 0. To
see this, define J(k) to be the right hand side of (1). Then, as proven in Lemma A.1 (Appendix
A), J(0) = 0, J 0(k) ≥ 0 ∀k ≥ 0, limk→∞J(k)/k < 1 and lim

k→0
J 0(k) = 0 if α > 1/2. In other words,

the J locus starts at 0, is non-decreasing, and eventually falls below the 45o line; additionally,
the 0 steady state is locally stable. From this Chakraborty erroneously concludes that the J
locus “intersects the 45o line from below at least once before falling below it.” Indeed as we
demonstrate below, α > 1/2 is simply necessary but not sufficient for three steady states to
exist.
Since the first part of the proposition (the case of α < 1/2) is correct, henceforth we will

focus our discussion only on the second part (the case of α > 1/2).
The correct statement should read:

Proposition 1. (i). Suppose α > 1/2 and suppose k∗ = argmax(J (k) − k) satisfies
J(k∗) > k∗. Then at least three steady states exist. Naming the three smallest

©
0, k̄1, k̄2

ª
with

k̄2 > k̄1; the two extreme steady states are asymptotically stable, the intermediate one is not.
4

If J(k∗) = k∗, there are exactly two steady states
©
0, k̄1

ª
, where k̄1 is neither a repellor nor an

attractor.

It turns out that even with the specific assumptions that Chakraborty makes, it is not possible
to write down necessary and sufficient parametric conditions under which J(k∗) > k∗. However
we can provide a sufficient condition under which there exists a k̂ such that J(k̂) > k̂, implying
the presence of at least three steady states. This sufficient condition is provided in the corollary
below, and the proof is in the appendix.

4Note that Chakraborty [2004] ignores the possibility that there might be more than 3 steady states. Without
specifying the φ function precisely, it is not possible to determine the maximum number of steady states.
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Corollary to Proposition 1. (i). Suppose α > 1/2 and

A >
1

(1− α)

µ
(1− τ)

φ (τ)

1 + φ (τ)

¶−α
. (2)

Then at least three steady states exist. Naming the three smallest
©
0, k̄1, k̄2

ª
with k̄2 > k̄1; the

two extreme steady states are asymptotically stable, the intermediate one is not.

This corollary provides a condition which is easy to check for a given φ function and set of
parameters. For example, if φ = β h

1+h
and for the parameter values provided above, namely

α = 0.55, β = 0.5 and τ = 0.2, condition (2) becomes A > 10.3. Setting A = 15, this example
provides three steady states 0, k̄1 = 2.456× 10−6, and k̄2 = 1.90. Note that condition (2) always
restricts A non-trivially, since 1

(1−α)
³
(1− τ) φ(τ)

1+φ(τ)

´−α
is always strictly greater than 0.

While it is only possible to provide a sufficient condition under which there are at least three
steady states in the general case, it is possible to provide a complete characterization of conditions
under which (1) would admit at least three steady states for the special functional form for φ(.)
mentioned in Chakraborty [2004] footnote 4. This characterization is provided in the corollary
below. The proof of the corollary is relegated to the appendix.

Corollary to Proposition 1. (ii). Suppose φ(h) = βh/(1 + h). Also suppose α > 1/2 and

(A(1− α))
1

2α−1 (
(1− α)

α
(1− τ)βτ)

α
2α−1

µ
2α− 1
1− α

¶
> τ (1 + β) (3)

holds. Then at least three steady states exist. Naming the three smallest
©
0, k̄1, k̄2

ª
with k̄2 >

k̄1; the two extreme steady states are asymptotically stable, the intermediate one is not.

Notice that while (3) reveals that α > 1/2 is necessary for the result to hold, since the left
hand side of (3) is negative if α < 1/2, clearly α > 1/2 is not sufficient; for example, a sufficiently
high value for A is needed.
In light of the amended proposition, some changes to the discussion on page 124 in Chakraborty

[2004] are in order. While it is true that a poverty and ill-health trap exists for α > 1/2, it is
no longer given that it is possible to escape this trap if a country starts out with a high enough
capital stock. In fact, as equation (3) reveals, unless there is a sufficiently high level of techno-
logical development (high enough A), the zero capital poverty trap is the only steady state, and
it is stable.
Chakraborty limits his discussion of the implications of increasing A to the case where α <

1/2. Our analysis reveals significant new benefits of doing so even when α > 1/2 obtains. For
general φ, it is easy to verify that ∂J (k) /∂A > 0. The implication, as depicted in Figure 2, is
strong. Consider two countries identical in all respects except that countryM has a higher A
than country N . In such a setting, it is possible that country N is forever caught in the poverty
trap (the only equilibrium) while countryM seizes the potential to approach a high long run level
of real activity (an equilibrium unavailable to countryN ). This situation corresponds to countries
N and M having A = A0 and A = A1 respectively in Figure 2. Perhaps more interestingly,
when there are three steady states, namely

©
0, k̄1, k̄2

ª
, increasing A decreases the intermediate

steady state, k̄1, and this lowers the initial capital stock required to escape the twin traps of
poverty and ill-health! This last benefit is in addition to the increase in k̄2, a point discussed by
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Chakraborty. These last two effects are illustrated in Figure 2 as a country increases A from A1
to A2.

 

A = A0 
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A = A2 
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Figure 2: J(k) versus k for α > 1
2
and different values of A.
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A Appendix

A.1 Proof of Corollary to Proposition 1. (i).

Choose k̂ =
³

1
(1−α)A

´ 1
α
and note that w(k̂) = 1. We wish to prove that J(k̂) > k̂. Using the

definitions of J and k̂, we obtain

J
³
k̂
´
= (1− τ)σ

³
τw
³
k̂
´´
w(k̂) = (1− τ)σ (τ) = (1− τ)

φ (τ)

1 + φ (τ)
.

For J
³
k̂
´
> k̂ we need

(1− τ)
φ (τ)

1 + φ (τ)
>

µ
1

(1− α)A

¶ 1
α

⇔

A >
1

(1− α)

µ
(1− τ)

φ (τ)

1 + φ (τ)

¶−α
,

which is exactly condition (2). ¥

A.2 Proof of Corollary to Proposition 1. (ii).

Proof: Rewrite J(k) as J(k) = (1 − τ)σ (k)w(k). Then steady states are fixed points to the
equation J(k) = k. Note that 0 is a fixed point. It is easy to check that given φ(h) = βh/(1+h),

σ (k) =
βτw(k)

1 + τw(k) (1 + β)
.

Then J(k) = k simplifies to

(1− τ)βτw(k) = k

·
1

w(k)
+ τ (1 + β)

¸
and finally to H(k) = c where

H(k) ≡ (1− τ)βτA(1− α)kα−1 − 1

A(1− α)
k−α

and c ≡ τ (1 + β) . Straightforward algebra establishes that H 0(k̆) = 0 where

k̆ =

·
α

A2β(1− α)3(1− τ)τ

¸ 1
2α−1

.

Also, lim
k→0

H(k) = −∞ and lim
k→∞

H(k) = 0. It remains to identify conditions under which H(k̆)

> c. Again straightforward but tedious algebra establishes that H(k̆) > c⇔

(1− τ)βτA(1− α)

·
α

A2β(1− α)3(1− τ)τ

¸ α−1
2α−1
− 1

A(1− α)

·
α

A2β(1− α)3(1− τ)τ

¸ −α
2α−1

> τ (1 + β)
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which simplifies to

A
1

2α−1 ((1− τ)βτ)
α

2α−1
h
(1− α)

2−α
2α−1α

α−1
2α−1 − (1− α)

α+1
2α−1α

−α
2α−1

i
> τ (1 + β)

and finally toµ
1− α

α

¶ α
2α−1

(1− α)
1

2α−1A
1

2α−1 ((1− τ)βτ)
α

2α−1

µ
2α− 1
1− α

¶
> τ (1 + β)¥
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