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Abstract

This paper proposes a unified representation, called the G-updating rule, which includes three
conditioning rules as special cases, the naïve Bayes rule, the Dempster-Shafer rule
(Shafer(1976)), and the generalized Bayes' updating rule introduced by Dempster(1967) or
Fagin and Halpern(1991). It is shown that the G-updating rule constitutes a three-step
conditioning, where one of the three rules is applied in each step.
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1 Introduction

Various update rules for non-additive probabilities have been proposed. In the economic lit-
erature, one of the most prevalent updating rules for non-additive measures is the Dempster-
Shafer rule(Shafer(1976)) (the DS rule). This rule for convex capacities is examined in Den-
neberg(1994), which pointed out that the naïve Bayes rule (the NB rule) and the DS rule are
two sides of the same coin. These rules are also examined in Gilboa and Schmeidler(1993).
They showed that the DS rule and the naïve Bayes�rule (the NB rule) are characterized
by way of an elegant, systematic method, the f-Bayesian update rule, and the DS rule is
equivalent to the maximum likelihood estimation.
Fagin and Halpern(1991) presented an update rule (the FH rule) for inner/outer measures

or belief/plausibility functions, which was already suggested by Dempster(1967). As shown
in Wasserman and Kadane(1990), the FH rule is also applicable to convex capacities. The
FH rule, which is also called the generalized Bayes�rule and does indeed generalize Bayes�
rule of conditioning (Walley(1991)), inherits the nature of the traditional Bayes� rule for
probability measures.
Our goal is to represent aforementioned three conditioning rules discussed independently

in their own context, in a uni�ed, systematic framework, called the G-updating rule. This
rule includes the three rules as special cases. An explanatory strength of the G-updating rule
is that it enables us to deal with apparently di¤erent conditioning rules as a single rule with
each di¤erent parameter G, which takes the form of an ordered triplet of the global states.
It is shown that our G-update rule constitutes a three-step conditioning, where one of the
foregoing three rules is applied in each step. In a behavioral sense, this G can be considered
as a decision maker�s a priori trichotomy of plausibility to the occurrence of every state.

2 The Model and Main Results

Let 
 be a �nite set of states and let � be an algebra, � = 2
. A non-empty set in � is called
an event. A capacity on 
 is a set function � : �! [0; 1] satisfying (i) � (?) = 0, � (
) = 1
and (ii) monotonicity: for every A and B in � such that A � B, we have � (A) � � (B).
A capacity � is convex if for every A and B in �, � (A [B) + � (A \B) � � (A) + � (B).
Given an event E in �, a conditional, or updated capacity �E is a capacity on E, i.e. for
every A 2 � such that A \ E = E, �E (A) = 1. For any E in �, �E has domain �. When
E = 
, �
 is interpreted as the unconditional capacity and we simply write it �.

Suppose the set of states 
 is partitioned into three disjoint setsGi, i = 1; 2; 3, where some
Gi is possibly empty. Let us denote an ordered triplet of Gi, i = 1; 2; 3 by G= hG1; G2; G3i
and let G consist of all such ordered triplets of 
. For a G 2 G and an event E 2 �, de�ne
TG;Ei � Ec \Gi, i = 1; 2; 3.1 Although every TG;Ei depends on G and E, we denote it by Ti,
i = 1; 2; 3 instead of TG;Ei for brevity�s sake.
Given a G 2 G and an E 2 �, we de�ne the G-updating rule for a capacity � given E
1Throughout this paper, the complement of any set is done with respect to 
.
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through, for every A 2 �

�GE (A) =
� ((A \ E) [ T2)� � (T2)

[� ((A \ E) [ T2)� � (T2)] + [� (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3)]
. (1)

The updated �GE has domain �.
Although the G-updating rule (1) is applicable to any capacity, we focus on the case

where � is a convex capacity throughout this paper. When � is a convex capacity, �GE is
well-de�ned if E is such that � (E [ T2) � � (T2) > 0. This is veri�ed in the following way.
By the convexity of �, we have

� (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3) � � (E [ T2)� � ((A \ E) [ T2) (2)

Adding � ((A \ E) [ T2)� � (T2) (� 0) to both sides of (2), we have

[� ((A \ E) [ T2)� � (T2)] + [� (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3)] (3)

� � (E [ T2)� � (T2)

It follows that, if � (E [ T2)�� (T2) > 0, then the denominator in (1) is also strictly positive.
At a �rst glance, (1) appears very complicated. But a crucial advantage of theG-updating

rule is that it provides a general form including three update rules, the naïve Bayes rule (the
NB rule), the Dempster-Safer rule (the DS rule), and the Fagin-Halpern rule (the FH rule)
as special cases. To see this, �rst recall that the updated capacity by the NB rule, �NBE , is
de�ned as, for any event E 2 � such that � (E) > 0,

�NBE (A) =
� (A \ E)
� (E)

for every A 2 �. (4)

When G = h
;?;?i, thus T1 = Ec and T2 = T3 = ?, we see that formulation (1) is equal
to (4).
Next, the DS conditional capacity �DSE is de�ned through, for any E 2 � with 1�� (Ec) >

0,

�DSE (A) =
� ((A \ E) [ Ec)� � (Ec)

1� � (Ec) for every A 2 �. (5)

It is also veri�ed that, when G = h?;
;?i (i.e. T2 = Ec and T1 = T3 = ?), (1) is simpli�ed
into the DS conditional capacity (5).
Furthermore, the conditional capacity updated by the FH rule is given as

�FHE (A) =
� (A \ E)

� (A \ E) + 1� � (A [ Ec) for every A 2 �. (6)

When G = h?;?;
i (i.e. T3 = Ec and T1 = T2 = ?), formula (1) is reduced to (6). As
in Denneberg(1994), it can happen that �FHE (A) is not de�ned for some pair A and E.
However, as shown above, �FHE is well-de�ned for any A 2 � if E satis�es � (E) > 0, which
is also pointed out in Fagin and Halpern(1991) for a belief function case.
Of course, (1) yields the conditional probability through the traditional Bayes�rule if �
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is additive.

In general, a G-updating rule is not reduced to any of the rules above, but it can be
interpreted as a three-step conditioning after an event E has occurred, where in each step
one of the rules above is applied. We shall elaborate this in the followings.
Suppose �rst that an event E with � (E [ T2)� � (T2) > 0 was observed. Let S1, S2 be

sets of states such that S1 = E [ T2 [ T3 and S2 = E [ T3 respectively.

The �rst step A decision maker conforms an initial capacity � to be adjusted as if
� is updated by the NB rule (4) given event S1. Consider the following revised capacity
�1 : �! [0; 1]

�1 (A) =
� (A \ S1)
� (S1)

for every A 2 �. (7)

It is well-de�ned since � (S1) � � (E [ T2) � � (T2) > 0. To interpret, imagine that G1
consists of those states which are conceivably possible a priori, and so T1 = G1 \ Ec is the
set of impossible states given E. Thus, a decision maker is su¢ ciently con�dent to remove
T1 from 
. Therefore the support of an initial capacity � is condensed from 
 into S1 in
this step.

The second step In this stage, the adjusted capacity �1 is revised again as follows:

�2 (A) =
�1 ((A \ S2) [ T2)� �1 (T2)

1� �1 (T2)
for every A 2 �. (8)

The expression above is equivalent to the DS updating (5) for �1 given event S2 and it is
well-de�ned for every A 2 �, since 1 � �1 (T2) � � (S1) � � (T2) � � (E [ T2) � � (T2) > 0.
The construction made by this formula is that G2 is a set of plausible states a priori, thus
the states in T2 = G2 \ Ec are not plausible given E. A decision maker is quite con�dent
that those states were never concurrent with E, however T3 might be. Hence, revisions in
�1 are made as if S2 is observed.

The �nal step The �nal step is conducted through the FH rule (6) for �2 given E:

�3 (A) =
�2 (A \ E)

�2 (A \ E) + 1� �2 (S2n(EnA)) for every A 2 �. (9)

The revised capacity �2 in the second stage is �nally re�ned to remove T3 from E, in the
manner of the FH conditioning. It is also well-de�ned since �2 (E) � �1 (E [ T2)��1 (T2) �
� (E [ T2)�� (T2) > 0. In our context, G3 can be viewed as observational states a priori : in
other words, revisions in G3 are carried out according to observations. After all, T3 = G3\Ec
is constituted of states that were not observed, so as to be eliminated necessary to this end.
To interpret, it helps to regard that each Ti, i = 1; 2; 3 represents information revised in

the ith step. In fact, Ti = ? implies that there is no further information revised in that step.
Hence we have �1 = � if T1 = ?, �2 = �1 if T2 = ?, and so forth. By our earlier discussion,
we know that G = h
;?;?i induces �NBE . In the light of the three-step updating above,
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T1 = E
c (i.e. T2 = T3 = ?) implies that �1 = �NBE , �2 = �1, and �3 = �2, hence we have

�3 = �NBE .

The following lemma proves that the three-step conditioning above does indeed work as
claimed.

Lemma 2.1 Let � be a convex capacity on �. Then, for every G in G and E in � with
� (E [ T2)� � (T2) > 0, we have �GE = �3.

Proof. Choose arbitrary G 2 G and E 2 � with � (E [ T2)� � (T2) > 0. We have to show
that for every A 2 �, �GE (A) = �3 (A). Since E, T2 and T3 are disjoint, for any A 2 � we
have

A \ E = (A \ E) \ (E [ T3) ,
(A \ E) [ T2 [ T3 = ((A \ E) [ T3) [ T2

= ((A [ T3) \ (E [ T3)) [ T2, and
A [ T3 = (E [ T3) n (EnA) .

Then

�GE (A) =
� ((A \ E) [ T2)� � (T2)

[� ((A \ E) [ T2)� � (T2)] + [� (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3)]

=

�(((A\E)[T2)\S1)
�(S1)

� �(T2\S1)
�(S1)h

�(((A\E)[T2)\S1)
�(S1)

� �(T2\S1)
�(S1)

i
+
h
1� �(((A\E)[T2[T3)\S1)

�(S1)

i
= �1((A\E)[T2)��1(T2)

[�1((A\E)[T2)��1(T2)]+[1��1(T2)��1((A\E)[T2[T3)+�1(T2)] (by (7))

=

�1(((A\E)\S2)[T2)��1(T2)
1��1(T2)

�1(((A\E)\S2)[T2)��1(T2)
1��1(T2) +

h
1� �1(((A[T3)\S2)[T2)��1(T2)

1��1(T2)

i
=

�2 (A \ E)
�2 (A \ E) + 1� �2 (A [ T3)

(by (8))

=
�2 (A \ E)

�2 (A \ E) + 1� �2 (S2n(EnA))
= �3 (A) . (by (9))

The following theorem shows that the G-updating preserves convexity.

Theorem 2.1 Let � be a convex capacity on �. Then, for every G 2 G and E 2 � with
� (E [ T2)� � (T2) > 0, �GE de�ned in (1) is a convex capacity on �.

Proof. By Lemma 2.1 above, it is su¢ ce to show that �3 is a convex capacity on �. By
the assumption that � is a convex capacity, it is straightforward to see that �1 is a convex
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capacity, therefore �2 is also a convex capacity since both rules give a¢ ne transformations of
�. Furthermore, the convexity is preserved under the FH updating, which is the well-known
result proved in Walley(1991), Sundberg and Wagner(1992), Chateauneuf and Ja¤ray(1991),
or Denneberg(1994). Hence �3 is a convex capacity on �.

From Theorem 2.1, it enables us to represent a speci�c form of the conditional capacity
�GE in terms of a parameter G. To explore implications of this update rule, it is natural to
see how �GE varies with G. The following proposition shows that �

G
E dominates �

FH
E .

Proposition 2.2 Let � be a convex capacity. Then, for every G in G and E in � with
� (E [ T2)� � (T2) > 0, �FHE � �GE.

Proof. We have to show that for any A 2 �, �FHE (A) � �GE (A). From the convexity of �,
we have for any A 2 � and T2; T3 � Ec

� (A \ E) � � ((A \ E) [ T2)� � (T2) and
1� � (A [ Ec) � � (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3) .

Then

� (A \ E)
� (A \ E) + 1� � (A [ Ec)

� � ((A \ E) [ T2)� � (T2)
[� ((A \ E) [ T2)� � (T2)] + [� (E [ T2 [ T3)� � ((A \ E) [ T2 [ T3)]

,

since a
a+b

is increasing in a and decreasing in b.

3 Concluding Remarks

We introduced and investigated the G-updating rule. This G is a decision maker�s a priori
prescription for revising information. As we pointed out, 
 is divided into three sets accord-
ing to the degree of intensity of plausibility, and we interpret the three-step conditioning
to be implemented in an ascending order of intensity, i.e. T1 ! T2 ! T3. In fact, we still
obtain the same updated capacity �GE even if the �rst step and second step are interchanged.
That is, the �rst and second step are mutually commutative as long as step 3 is conducted
by the FH rule. It is quite natural because the NB and the DS rule are commutative update
rules as seen in Gilboa and Schmeidler(1993). In our context, G3 consists of observational
states, so it stands to reason that those states are revised in the closing step. We may, of
course, replace step 1 or 2 by step 3, and obtain a profoundly di¤erent conditioning rule,
whose property is the matter for future investigation.
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