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Abstract

Abrevaya (1999b) considered estimation of a transformation model in the presence

of left–truncation. This paper observes that a cross–sectional version of the statistical

model considered in Frederiksen, Honoré, and Hu (2007) is a generalization of the

model considered by Abrevaya (1999b) and the generalized model can be estimated

by a pairwise comparison version of one of the estimators in Frederiksen, Honoré, and

Hu (2007). Specifically, our generalization will allow for discretized observations of the

dependent variable and for piecewise constant time–varying explanatory variables.
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1 Introduction

The transformation model

h (T ∗
i ) = g (X ′

iβ) + εi (1)

is often used to model durations. In models like this it is important to allow for right censoring

and sometimes also for left truncation because the samples used in many applications include

spells that are in progress at the start of the sample period. See Abrevaya (1999b).

It is also sometimes desirable to allow for the dependent variable to be discretized so

that one observes only whether it falls in a particular interval. So the observed duration, Ti,

would be t if T ∗
i ∈ (t− 1, t]. See Prentice and Gloeckler (1978) or Meyer (1990). Moreover,

in duration models it is often interesting to allow for time–varying covariates, which are not

easily directly incorporated into the transformation model (Flinn and Heckman (1982)).

The contribution of this paper is to specify a statistical model that allows for interval

observations and time–varying covariates but which simplifies to a model with interval ob-

servations from (1) when the covariates are time invariant. We then propose an estimator

for the parameters of the model. The estimator can be interpreted as a generalization of the

truncated maximum rank correlation estimator proposed in Abrevaya (1999b).

Consider first the transformation model, (1), with strictly increasing h (·) and g (·) and

with εi independent of Xi and continuously distributed with full support. In this model

P (T ∗
i > t|Xi) = P (h (T ∗

i ) > h (t)|Xi)

= P (g (X ′
iβ) + εi > h (t)|Xi)

= 1− F (h (t)− g (X ′
iβ))

where F is the CDF for εi. This gives

P (T ∗
i > t|Xi, T

∗
i > t− 1) =

1− F (h (t)− g (X ′
iβ))

1− F (h (t− 1)− g (X ′
iβ))

where the assumption that εi has full support guarantees that the denominator is not 0.

When 1−F (·) is log–concave (which is implied by the density of εi being log–concave; see

Heckman and Honoré (1990)), the right–hand side is an increasing function of g (X ′
iβ) and
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hence of X ′
iβ . See the Appendix. This means that one can write the event T ∗

i > t|Xi, T
∗
i >

t− 1 in the form 1 {X ′
iβ > ηit} for some (possibly infinite) random variable ηit that is inde-

pendent of Xi and has CDF 1−F (h(t)−·)
1−F (h(t−1)−·) . Therefore, if we define

Yit ≡ 1 {T ∗
i ∈ (t− 1, t]} = 1 {Ti = t}

then we can write

Yit = 1 {X ′
iβ − ηit ≤ 0} for t such that

∑

l≤t−1

Yil = 0 (2)

In other words, a transformation model with discretized observations of the dependent vari-

able and log–concave errors is a special case of the model

Yit = 1 {X ′
itβ − ηit ≤ 0} for t such that

∑

l≤t−1

Yil = 0 (3)

where the difference between (2) and (3) is that the latter allows for time–varying covariates.

Note that this line of argument is valid even if Ti is left truncated.

It is interesting to note that Abrevaya (1999b) also assumes log–concavity of 1− F (·).1

Note that although log–concavity implies an increasing hazard for h (T ∗), it does not impose

such a restriction on T ∗.2

Equation (3) is a cross–sectional version of the model considered by Frederiksen, Honoré,

and Hu (2007). It is well understood that estimators of panel data models can be turned

into estimators of cross–sectional models by considering all pairs of observations as units in

a panel. See, for example, Honoré and Powell (1994), who apply the idea in Honoré (1992)

1The assumption of log–concavity also appears elsewhere in the literature on truncated regression models.

See, for example, Lee (1993) and (Honoré 1992).

2Let λ (·) denote the hazard for ε. The hazard for h (T ∗) is then −∂ log(P (h(T∗)>t|X))
∂t =

−∂ log(1−F(t−g(X′β)))
∂t = λ (t− g (X ′β)). When 1−F (·) is log–concave this is an increasing function of t. On

the other hand, the hazard for T ∗ is −∂ log(P (T∗>t|X))
∂t = −∂ log(P (h(T∗)>h(t)|X))

∂t = λ (h (t)− g (X ′β)) h′ (t).

The derivative of this with respect to t is λ′ (h (t)− g (X ′β)) h′ (t)2 + λ (h (t)− g (X ′β))h′′ (t), which can be

of either sign.
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for panel data censored regression models to all pairs of observations in a cross section.

The insights in Frederiksen, Honoré, and Hu (2007) can therefore be used to construct an

estimator of β. We pursue this in Section 3 after discussing the model in more detail in

Section 2.

2 The model

Consider a spell with integer–valued duration, Ti, that starts at (integer–valued) time −Vi ≤
0. Following the discussion above, we model the event that the spell lasts s periods condi-

tional on lasting at least s− 1, by the qualitative response model

Yis = 1 {X ′
isβ − ηis ≤ 0} , (4)

where ηis is independent of Xis and the distribution of ηis is allowed to change over time.

When there is left truncation, one must distinguish between duration time and calendar

time. We will index the observables, Y and X, by calendar time, and the unobservable η by

duration time. At first sight, this difference is confusing, but it is necessitated by the fact

that the discussion in the previous section implied that one should allow the distribution

of ηis to vary by duration time. On the other hand, it seems natural to denote the first

observation for an individual by t = 1.

With this notation, we assume that we observe (Yit, Xit) starting at t = 1, where

Yit = 1
{
X ′

itβ − ηi,t+Vi
≤ 0

}
. (5)

With this notation, ηs with the same time subscript will have the same distribution under

the class of models discussed above. We will let Ti denote the first time that Yit equals 1.

Since Yit is not defined after the end of the spell, and since we want to allow for random

right censoring, we assume that we observe Yit from t = 1 until, and including, Ti or until a

random censoring time Ci − 1 (whichever comes first). In other words, we observe (Yit, Xit)

for t = 1, 2, ..., T i where T i = min {Ti, Ci − 1} So when an observation is censored, Ci will be
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the first time period in which individual i is not observed. We also assume that we observe

the presample duration, Vi, for each observation.

The statistical assumption on the errors in (5) is that conditional on Vi and on {Yis = 0

for s < t}, ηi,t+Vi
is independent of

(
Ci, {Xis}s≤t

)
. As explained in Section 1, if the errors

are log–concave and the covariates are time–invariant, this is exactly what is implied by an

underlying transformation model for T ∗
i , where we observe whether a spell that started at

time −Vi and was in progress at time t− 1 is still in progress at time t. Note that when the

covariates are time–varying they are not restricted to be strictly exogenous, and that the

censoring times can be covariate–dependent, as long as they do not depend on the ηs.

In the next section we will apply the insight of Frederiksen, Honoré, and Hu (2007) to

construct an estimator for β under these assumptions when the researcher has access to a

random sample of individuals.

3 The estimator

The key insight for the construction of the estimator can be easily illustrated if we ignore

censoring first (so T i = Ti for all i).

Let t1 and t2 be arbitrary. Consider the two events A = {Ti = t1, Tj > t2} and B =

{Ti > t1, Tj = t2} where t1 + Vi = t2 + Vj. Under the stated assumptions, it then follows

immediately from Lemma 1 of (Frederiksen, Honoré, and Hu 2007) that

P (A|A ∪B, Xit1 , Xjt2 , Vi, Vj)





> 1
2

if (Xit1 −Xjt2)
′ β > 0,

= 1
2

if (Xit1 −Xjt2)
′ β = 0,

< 1
2

if (Xit1 −Xjt2)
′ β < 0.

This suggests estimating β by maximizing

∑
i<j

∑Ti

t1=1

∑Tj

t2=1 1 {t1 + Vi = t2 + Vj} (6)

·(1 {Ti = t1, Tj > t2} · 1
{
(Xit1 −Xjt2)

′ b > 0
}

+ 1 {Ti > t1, Tj = t2} · 1
{
(Xit1 −Xjt2)

′ b < 0
} )
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(6) is the same as one of the objective functions in (Frederiksen, Honoré, and Hu 2007),

except that that paper considers a panel data situation.

It is convenient to rewrite (6) as

∑
i<j 1 {Tj + Vj > Ti + Vi > Vj} · 1

{(
XiTi

−Xj,Ti+Vi−Vj

)′
b > 0

}
(7)

+1 {Vi < Tj + Vj < Ti + Vi} · 1
{(

XiTj+Vj−Vi
−Xj,Tj

)′
b < 0

}

This has the same structure as the maximum rank correlation estimator developed in Han

(1987).

When there is censoring, (6) can be modified to

∑
i<j

∑T i

t1=1

∑T j

t2=1 1 {t1 + Vi = t2 + Vj, t1 < Ci, t2 < Cj} (8)

·(1 {Ti = t1, Tj > t2} · 1
{
(Xit1 −Xjt2)

′ b > 0
}

+1 {Ti > t1, Tj = t2} · 1
{
(Xit1 −Xjt2)

′ b < 0
} )

.

And equation (7) can be rewritten as

∑
i<j 1

{
T j + Vj > Ti + Vi > Vj, Ti < Ci

} · 1
{(

XiTi
−Xj,Ti+Vi−Vj

)′
b > 0

}
(9)

+1
{
Vi < Tj + Vj < T i + Vi, Tj < Cj

} · 1
{(

XiTj+Vj−Vi
−Xj,Tj

)′
b < 0

}
.

The intuition for the estimator is essentially based on pairwise comparisons. Specifically,

we compare an individual i who was observed to fail at time Ti (and thus had a complete

duration Ti + Vi) to all other observations j that survived up to the same duration. At

the true parameter value β, if the index for individual i at the time he/she failed, X ′
iTi

β, is

larger than the index for the comparable individual j at the time that corresponds to the

same duration, X ′
j,Ti+Vi−Vj

β, then individual j is likely to survive longer than individual i

(that is, T j + Vj > Ti + Vi). Note the set of comparison observations j includes censored

spells provided the censoring time occurs after Ti + Vi− Vj. The additional inequality in the

indicator function, Ti + Vi > Vj, ensures that the time at which j is being compared to i is

within the sample period (i.e., not truncated).
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Again this estimator has the same structure as Han’s (1987) maximum rank correlation

estimator and the asymptotic distribution is therefore the one given in Sherman (1993) under

the regularity conditions stated there.

4 Asymptotic properties

Consistency and asymptotic normality can be established as in (Sherman 1993), Abrevaya

(1999b) or Khan and Tamer (2007).

First note that some normalization of the parameter is needed, since the parameter vector

is only identified up to scale. For example, we can normalize the last component of β to be

1.

The two key assumptions for consistency of the estimator are (1) at least one component

of the explanatory variable X is continuously distributed with full support, and (2) the error

η has full support. Without the first assumption, the parameter is not identified, since a

small change in the parameter value could leave the ranking of the index unchanged. The

second assumption on the error guarantees that the set of effective observations that make a

nonzero contribution to the objective function is not empty. Both assumptions are standard

in the semi-parametric estimation literature.

To establish asymptotic normality results, we need some additional notations. Denote

Di = 1 {Ti < Ci}, which is an observable variable indicating a complete (uncensored) spell.

The objective function can be rewritten as

1

n (n− 1)

n∑
i=1

∑

j 6=i

Di · 1
{
Ti + Vi > Vj, Tj + Vj > Vi, T j + Vj > Ti + Vi

}
(10)

·1
{

X ′
iTi

b > X ′
j,Ti+Vi−Vj

b
}

.

Define the function

τ
((

t, t, d, v, {xs}s≤t

)
, b

)

≡ E
[
Di · 1

{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

} · 1 {
X ′

iTi
b > x′Ti+Vi−vb

}]
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+E
[
d · 1 {

t + v > Vj, Tj + Vj > v, T j + Vj > t + v
} · 1

{
x′tb > X ′

j,t+v−Vj
b
}]

= E
[
Di · 1

{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

} · 1 {
X ′

iTi
b > x′Ti+Vi−vb

}]

+E
[
d · 1 {

t + v > Vi, Ti + Vi > v, T i + Vi > t + v
} · 1 {

x′tb > X ′
i,t+v−Vi

b
}]

.

Following Theorem 4 of Sherman (1993), we have

√
n

(
β̂ − β

) ∼−→ N
(
0, 4Γ−1∆Γ−1

)
(11)

where

Γ = E
[∇2τ

((
Ti, T i, Di, Vi, {X ′

is}
)
, β

)]

∆ = E
[
∇1τ

((
Ti, T i, Di, Vi, {X ′

is}
)
, β

)∇1τ
((

Ti, T i, di, Vi, {X ′
is}

)
, β

)′]

with ∇1 and ∇2 denoting the first– and second–derivative operator, respectively.

Following Sherman (1993), we can further express the variance-covariance matrix in terms

of “model primitives.” Specifically,

∆ = VX

[ ∑
s1,s2

(Xs2 − µs1

(
X ′

s2
β
))

S
(
T, T , D, V, s1, s2, X

′
s2

β
)
gX′

s1
β

(
X ′

s2
β
) ]

and

Γ = EX

[ ∑
s1,s2

(Xs2 − µs1

(
X ′

s2
β
)) (Xs2 − µs1

(
X ′

s2
β
))′

S7

(
T, T ,D, V, s1, s2, X

′
s2

β
) · gX′

s1
β

(
X ′

s2
β
) ]

where Xs2 is composed of the first K − 1 coordinates of X ′
s2

(the ones corresponding to the

piece of β that is not normalized to 1), gX′
s1

β (λ) is the marginal density of X ′
s1

β,

µs1
(λ) = E

[Xs1|X ′
s1

β = λ
]

and

S
((

t, t, d, v, s1, s2

)
, λ

)
= E

[
Ai

(
t, t, d, v, s1, s2

)∣∣X ′
is1

β = λ
]

8



and

Ai

(
t, t, d, v, s1, s2

)

= Di · 1
{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi, Ti = s1, Ti + Vi − v = s2

}

−d · 1 {
t + v > Vi, Ti + Vi > v, T i + Vi > t + v, t = s2, t + v − Vi = s1

}

The asymptotic variance matrix can be estimated by plugging in the estimator β̂ and

calculating sample analogs of Γ and ∆ using numerical derivatives based on a smoothed

version of τ . See Section 6 for more discussion.

5 Relationship to other estimators

The estimator proposed in the previous section is related to a number of existing estimators,

and it coincides with some of them in special situations. For example, when Ci = 2 for all

i, and with no left truncation (so Vi = 0 for all i), (5) is a standard discrete choice model,

and in that case the objective function in (9) becomes

n∑
i<j

1 {Yi > Yj} · 1
{
(Xi −Xj)

′ b > 0
}

+ 1 {Yi < Yj} · 1
{
(Xi −Xj)

′ b < 0
}

which is the objective function for Han’s (1987) maximum rank correlation estimator.

When there is left truncation, and the covariates are time invariant and there is no

censoring, the estimator defined by maximizing (9) is the same as the truncated maximum

rank correlation estimator in (Abrevaya 1999b). This is most easily seen by noting that

without censoring and with time–invariant covariates, (10) becomes

1

n (n− 1)

n∑
i=1

∑

j 6=i

1 {Ti + Vi > Vj, Tj + Vj > Vi, Tj + Vj > Ti + Vi} · 1
{
X ′

ib > X ′
jb

}

=
1

n (n− 1)

n∑
i=1

∑

j 6=i

1 {Ti + Vi > Vj, Tj + Vj > Vi} 1 {Tj + Vj > Ti + Vi} · 1
{
X ′

ib > X ′
jb

}
.

Except for the difference in notation and the normalization by n (n− 1), this is exactly

equation (7) in Abrevaya (1999b).
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Khan and Tamer (2007) consider a model with left censoring as well as right censoring,

whereas we allow for left truncation as well as right censoring. When there is neither left

censoring nor left truncation, and when the covariates are time invariant, the estimator

defined by maximizing (9) coincides with the estimator proposed by Khan and Tamer (2007),

except that ours applies to discretized durations and theirs to exactly measured durations,

and we allow for time–varying covariates. Whether right censoring or right truncation is

more interesting depends on the specific application. Left truncation will, for example, be

relevant if as in Frederiksen, Honoré, and Hu (2007), the duration of interest is the length of

employment on a given job, and one has information on a sample of workers observed between

two fixed points in time. In this case the durations are left truncated, because spells that

ended before the start of the sampling will not appear in the data, and it is crucial for our

approach that one observes the duration of employment in the current job at the start of the

sampling. On the other hand, models with both left and right censoring are, for example,

useful for estimation of models where the dependent variable is a fraction, which is restricted

to be between zero and one, and where both zeros and ones are likely to be observed. See,

for example Alan and Leth-Petersen (2006). Both Khan and Tamer (2007) and we allow the

censoring points at the right to be observed only when the observation equals a censoring

point. Khan and Tamer (2007) also allow the left–censoring point to be unobserved when an

observation is not left–censored, whereas we assume that the truncation point is observed for

everybody who is not truncated, but not for truncated durations. Both papers assume that

one observes the actual duration, and not just the duration from the censoring/truncation

point. In the duration contexts we have in mind, this is the most severe assumption.3

The framework here is also closely related to standard statistical duration models with

discretized observations. The proportional hazard model can be written as

Z (T ) = −x′β + ε,

3See also Heckman and Singer (1986) for a discussion of the effect of different sample schemes on the

analysis of duration data.
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where Z is the log integrated baseline hazard and ε has an extreme value distribution. Pren-

tice and Gloeckler (1978), Meyer (1990) and (Hausman and Woutersen 2005) study a version

of this model with interval observations. Meyer (1990) and Hausman and Woutersen (2005)

also allow for time–varying explanatory variables and for ε to be a sum of an extreme value

distributed random variable and a random variable that captures unobserved heterogeneity.

While the estimation in Meyer (1990) is likelihood–based and hence fundamentally different

from ours, the structure of the estimator proposed in Hausman and Woutersen (2005) shares

many of the features of the estimator proposed here. The main difference is that theirs is

based on a comparison of the integrated hazards rather than just the current index, X ′β.

As a result, the approach does not seem to generalize to models with left truncation. On

the other hand, log–concavity plays no role in Hausman and Woutersen (2005).

6 Monte Carlo experiment

In this section, we conduct a small scale Monte Carlo study to illustrate the proposed es-

timation method and investigate its finite sample performance. We also demonstrate how

to conduct inference and examine how good an approximation the asymptotic distribution

provides for finite samples.

The designs are based on the following:

• All of the designs have two explanatory variables.

• β = (β1, β2)
′ = (1, 2)′. The parameter of interest is θ = β2/β1. The fact that this is

one dimensional greatly simplifies the computations.

• Time–varying intercept β0 = −4 + (s/10)1.2. This introduces duration dependence

beyond the duration dependence introduced by the shape of F and by the choice of

h (·).
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• The time between the start of a spell and the first period of observation is uniformly

distributed on the integers between 1 and 5.

• The censoring time is generated as the minimum of ten periods from the start of the

spell and Q periods from the start of the sample, where Q is uniformly distributed on

the integers between 1 and 8.

We consider a number of designs within this framework.

Design 1: Dynamic Probit.

The two explanatory variables are generated by i.i.d. draws from a bivariate normal

distribution with zero means, variances equal to 2 and 1, respectively, and covariance equal

to 1. In this design, ηi,t is i.i.d N (0, 4).

Design 2: Transformation Model Hazard.

This design is set up as a generalization of a transformation model. Specifically, using

the notation of Section 1, we assume that h (u) = log (u), g (u) = u, and ε ∼ N (0, 1). Using

the derivation in Section 1, this yields

P (Ti = t) = P
(
T ∗

i < t| {Xis}s≤t , T
∗
i > t− 1

)
= 1− 1− Φ (log (t)−X ′

itβ)

1− Φ (log (t− 1)−X ′
itβ)

.

As in Design 1, the two explanatory variables are generated by i.i.d. draws from a bivariate

normal distribution with zero means, variances equal to 2 and 1, respectively, and covariance

equal to 1..

Design 3: Feedback.

Recall that our model does not require the explanatory variables to be strictly exoge-

nous. In this design we therefore allow for feedback from the error η to future values of X.

Specifically, we follow Design 1 except that the explanatory variables are defined by

• X2t = ηt−1 for t > 1 and standard normal for t = 1.

• X1t = X2t + N (0, 1).

12



Design 4: Covariate–Dependent Censoring and Truncation.

Our model allows censoring and truncation to be correlated with explanatory variables.

In this design, we follow the basic structure of Design 1 but let censoring be defined by the

outcome of a probit with explanatory variable X1t.

Design 5: Dynamic Probit 2.

This design is like Design 1 except that

• X2s ∼ N (0.5− 0.2s, 1).

• X1s = 1 {X2s + N (0, 1) > 0}

• ηi,s ∼ N (0, 0.1 + (0.15s))

The summary statistics for the five designs are reported in Table 1. For each design,

100,000 observations are drawn from the underlying data–generating process. We then com-

pute the fraction of the sample that is censored, the fraction that is truncated, and the mean

and standard deviation of the underlying duration.

Below, we report Monte Carlo results for the point estimates of β as well as for the

performance of tests statistics based on the asymptotic distribution in Section 4. To do this,

we estimate the components of the variance of the estimators by sample analogs of smoothed

versions of the components.4

Recall that

Γ = E
[∇2τ

((
Ti, T i, Di, Vi, {X ′

is}
)
, β

)]

4A recent paper by Subbotin (2007) has shown that the nonparametric bootstrap can be used to estimate

the quantiles and variance of various maximum rank correlation estimators. The structure of our estimator

is essentially the same as that of the maximum rank correlation estimators he considers. We therefore

conjecture that the bootstrap could have been used to estimate the variance in our case as well, although

this would increase the computational burden.
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and

∆ = E
[
∇1τ

((
Ti, T i, Di, Vi, {X ′

is}
)
, β

)∇1τ
((

Ti, T i, Di, Vi, {X ′
is}

)
, β

)′]

where

τ
((

t, t, d, v, {xs}s≤t

)
, b

)

= E
[
Di · 1

{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

} · 1 {
X ′

iTi
b > x′Ti+Vi−vb

}]

+E
[
d · 1 {

t + v > Vi, Ti + Vi > v, T i + Vi > t + v
} · 1 {

x′tb > X ′
i,t+v−Vi

b
}]

.

We then estimate τ by the smoothed version

τ̂
((

t, t, d, v, {xs}s≤t

)
, b

)

=
1

n

n∑
i=1

Di · 1
{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

} · Φ
(

X ′
iTi

b− x′Ti+Vi−vb

h

)

+
1

n

n∑
i=1

d · 1 {
t + v > Vi, Ti + Vi > v, T i + Vi > t + v

} · Φ
(

x′tb−X ′
i,t+v−Vi

b

h

)
.

Then

∇̂1τ
((

t, t, d, v, {xs}s≤t

)
, b

)

=
1

nh

n∑
i=1

Di · 1
{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

}

φ

(
X ′

iTi
b− x′Ti+Vi−vb

h

) (
X̃ ′

iTi
− x̃′Ti+Vi−v

)

+d · 1 {
t + v > Vi, Ti + Vi > v, T i + Vi > t + v

}

φ

(
x′tb−X ′

i,t+v−Vi
b

h

) (
x̃′t − X̃ ′

i,t+v−Vi

)
,

and

∇̂2τ
((

t, t, d, v, {xs}s≤t

)
, b

)

=
−1

nh3

n∑
i=1

Di · 1
{
Ti + Vi > v, t + v > Vi, t + v > Ti + Vi

}

(
X ′

iTi
b− x′Ti+Vi−vb

)
φ

(
X ′

iTi
b− x′Ti+Vi−vb

h

)

(
X̃ ′

iTi
− x̃′Ti+Vi−v

)(
X̃ ′

iTi
− x̃′Ti+Vi−v

)′
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+d · 1 {
t + v > Vi, Ti + Vi > v, T i + Vi > t + v

}

(
X ′

iTi
b− x′Ti+Vi−vb

)
φ

(
x′tb−X ′

i,t+v−Vi
b

h

)

(
x̃′t − X̃ ′

i,t+v−Vi

)(
x̃′t − X̃ ′

i,t+v−Vi

)′
.

And therefore

Γ̂ =
1

n

n∑
i=1

∇̂2τ
((

Ti, T i, Di, Vi, {X ′
is}

)
, β̂

)

and

∆̂ =
1

n

n∑
i=1

∇̂1τ
((

Ti, T i, Di, Vi, {X ′
is}

)
, β̂

)
∇̂1τ

((
Ti, T i, Di, Vi, {X ′

is}
)
, β̂

)′
.

As mentioned earlier, β is only identified up to scale. One possibility is to normalize one

of the coefficients to 1, and hence essentially focus on β2/β1 or β1/β2. Unfortunately, this

normalization will lead to different MAE and RMSE depending on which of the coefficients

is normalized. So if one were to compare different estimators, one might reach different

conclusions depending on a seemingly innocent normalization. This is unsatisfactory in

models where there is only one parameter. For this reason, it is likely to be better to

consider θ = log (β2/β1) = log (β2)− log (β1) the parameter of interest. This means that the

true parameter is log (2) ≈ 0.693 for all of the designs. We estimate θ by a grid search over

the interval between − log (6) and log (6) with equal grids of size 1
200

. Since the parameter of

interest is one dimensional, the line search is feasible despite the fact that the calculation of

the objective function requires O (n2) operations. When it is of higher dimension, it would

be beneficial to use the method described in Abrevaya (1999a) to calculate the objective

function in O (n · log (n)) operations. We calculate the variance of θ by applying the so–

called δ–method to (11).

For each design, the Monte Carlo experiment is conducted with 5,000 replications for

each of the 5 sample sizes: 100, 200, 400, 800 and 1,600. The results are reported in Tables

2–6. Overall, the results across the designs are broadly consistent with predictions from the

asymptotic theory. Some additional remarks are in order.

First, the results illustrate the consistency of the estimator, since both the median ab-
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solute error (MAE) and root mean squared error (RMSE) decrease as sample size increases.

Moreover, the estimator is close to median unbiased even for small sample sizes.

Second, the theory predicts that the estimator converges to the true parameter value

at the rate
√

n . This is borne out in the simulation as the MAE and RMSE decrease

toward zero at a rate of approximately
√

2 when the sample size is doubled. For example, a

regression of the log of the median absolute error on the log of the sample size (and design

dummies) yields a coefficient of −0.543 with a standard error of 0.006.

Third, to examine the normality prediction from the asymptotic theory, we estimate the

density for θ̂ − θ and plot the kernel estimate in Figures 1-5. The left–hand side of each

figure gives the estimated density of the estimator of (β2/β1) centered at the true value.

They show severe asymmetry in the distribution of the estimator: it tends to be skewed to

the left, especially in small samples. As mentioned, this is expected because of the somewhat

unnatural normalization. The right–hand side of the figures shows the estimated density of

the estimator of log (β2/β1), again centered at the true value. There one can see that the

distribution becomes more symmetric and closer to normal as sample size increases.

Finally, the asymptotic theory suggests that we can conduct inference using t–tests. Un-

der the null, the test statistic should follow a standard normal distribution. In the simulation,

we compute a t–statistic for each of the 5,000 estimates θ̂ and calculate the fraction of times

the null is rejected at the 20% level. We focus on tests with (nominal) size of 20% rather

than the conventional 5% because the results for the latter are likely to be more erratic for

a finite number of simulations. The results are reported for various bandwidths used in the

estimation of the asymptotic variance-covariance matrix of the estimator.

In general, the rejection rate is closer to the nominal size of the test when the bandwidth is

smaller and the sample size is larger. For example, for the bandwidth (0.05, 0.20) and sample

size 1,600, the reject rate is 21.8%, 22.7%, 20.8% and 21.6% for Designs 1 through 4.5 These

5Different bandwidths are used in estimating the matrix ∆ and Γ. The latter is based on a second

derivative, and one would therefore expect it to require a larger bandwidth than the former.
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are close to being statistically indistinguishable from the nominal size. The performance of

the test under some other combinations of bandwidth and sample size is less encouraging.

The test also performs less well under Design 5. We speculate that this is because of the

discreteness of xi1.

The last row reports the reject rates computed using the average of the variance–covariance

matrix estimated over all the bandwidth choices. Overall, the t-test tends to over–reject the

null.

It is interesting to compare our results to a standard logit or probit estimation of (5)

where one uses x1, x2 and time dummies as explanatory variables. Since we expect them

to perform comparably, we focus on the logit maximum likelihood estimator.6 Designs 1, 3

and 4 are all correctly specified probit models, so one would expect the logit estimator to do

well for this design. This is confirmed in panels one, three and four of Table 7. The bias is

small and the MAE and RMSE fall at a rate close to root–n. It is less clear what to expect

for Designs 2 and 5. Panel 2 of Table 7 shows that the logit estimator does well for Design

2. It appears to be close to unbiased and its MAE and RMSE fall at a rate close to root–n.

One potential explanation for this is that misspecified maximum likelihood estimators often

do well when the explanatory variables are jointly normally distributed. See, for example,

Ruud (1983). Design 5 shows a situation where the logit estimator does relatively poorly.

The bias is quite high, and as a result, the MAE and RMSE do not fall rapidly as the sample

size increases.

7 Conclusion

In this paper we propose a generalization of the transformation model that is appropriate for

studying duration outcome with truncation, censoring, interval observations of the dependent

variable, and time-varying covariates. We develop an estimator for this model, discuss its

6Since our estimator of θ was calculated by a grid search over the interval between − log (6) and log (6),

we censored the logit maximum likelihood estimator of β2/β1 to be in the interval between 1
6 and 6.
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asymptotic properties and investigate its finite sample performance via a Monte Carlo study.

Overall, the results suggest that the estimator performs well in finite samples, and the

asymptotic theory provides a reasonably good approximation to the distribution. We also

investigate test–statistics for the estimator. Those require estimation of the asymptotic

variance of the estimator. This is somewhat sensitive to different choices of bandwidth.

Investigating the optimal bandwidth choice in this case could be an interesting future research

topic.
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Frederiksen, A., B. E. Honoré, and L. Hu (2007): “Discrete Time Duration Models

with Group–Level Heterogeneity,” Journal of Econometrics, 141, 1014–1043.

Han, A. (1987): “Nonparametric Analysis of a Generalized Regression Model,” Journal of

Econometrics, 35, 303–316.

Hausman, J. A., and T. Woutersen (2005): “Estimating a Semi-Parametric Duration

Model without Specifying Heterogeneity,” Johns Hopkins University.

18
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8 Appendix

Assume that H (·) is a log–concave function and let

f (w) =
H (a2 − w)

H (a1 − w)

where a2 > a1. Let w1 < w2 and

∆a = a2 − a1, ∆w = w2 − w1 and λ =
∆a

∆a + ∆w

then

a2 − w2 = λ (a2 − w1) + (1− λ) (a1 − w2)

so by concavity of ln (H (·)),

ln (H (a2 − w2)) > λ ln (H (a2 − w1)) + (1− λ) ln (H (a1 − w2)) . (12)

Also

a1 − w1 = (1− λ) (a2 − w1) + λ (a1 − w2)

so

ln (H (a1 − w1)) > (1− λ) ln (H (a2 − w1)) + λ ln (H (a1 − w2)) (13)

Adding (12) and (13) yields

ln (H (a2 − w2)) + ln (H (a1 − w1)) > ln (H (a2 − w1)) + ln (H (a1 − w2))

and

ln (f (w2))− ln (f (w1)) = (ln (H (a2 − w2))− ln (H (a1 − w2)))

− (ln (H (a2 − w1))− ln (H (a1 − w1)))

> 0

Hence f is an increasing function.
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Table 1: Summary Statistics for the Designs

Design 1 Design 2 Design 3 Design 4 Design 5

Fraction Truncated 0.260 0.349 0.316 0.260 0.183

Fraction Censored 0.297 0.100 0.190 0.425 0.543

Mean Duration 5.317 3.592 4.369 5.317 7.270

Standard Deviation of Duration 3.422 2.023 2.918 3.422 3.937

Table 2: Results for Design 1

Performance of Estimator

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.721 0.695 0.702 0.693 0.693

MAE 0.331 0.215 0.155 0.105 0.070

Mean 0.727 0.706 0.702 0.698 0.694

RMSE 0.488 0.331 0.227 0.155 0.106

Significance when testing at 20% level

n = 100 n = 200 n = 400 n = 800 n = 1600

0.05, 0.20 0.332 0.240 0.212 0.207 0.218

0.05, 0.40 0.163 0.152 0.187 0.241 0.271

0.10, 0.20 0.421 0.323 0.280 0.256 0.246

0.10, 0.40 0.243 0.232 0.261 0.296 0.302

0.20, 0.20 0.494 0.382 0.323 0.285 0.260

0.20, 0.40 0.324 0.301 0.305 0.326 0.319

0.40, 0.20 0.536 0.423 0.350 0.303 0.269

0.40, 0.40 0.390 0.347 0.337 0.343 0.329

average 0.289 0.259 0.261 0.274 0.273
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Table 3: Results for Design 2

Performance of Estimator

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.718 0.713 0.698 0.693 0.692

MAE 0.540 0.370 0.255 0.175 0.125

Mean 0.656 0.712 0.705 0.697 0.695

RMSE 0.752 0.553 0.392 0.274 0.186

Significance when testing at 20% level

n = 100 n = 200 n = 400 n = 800 n = 1600

0.05, 0.20 0.423 0.350 0.268 0.236 0.227

0.05, 0.40 0.164 0.175 0.180 0.224 0.265

0.10, 0.20 0.515 0.422 0.335 0.280 0.253

0.10, 0.40 0.269 0.252 0.245 0.273 0.296

0.20, 0.20 0.578 0.477 0.372 0.302 0.269

0.20, 0.40 0.359 0.317 0.293 0.303 0.313

0.40, 0.20 0.620 0.514 0.394 0.317 0.279

0.40, 0.40 0.426 0.363 0.322 0.319 0.323

average 0.333 0.299 0.274 0.273 0.275

Table 4: Results for Design 3

Performance of Estimator

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.683 0.699 0.693 0.696 0.688

MAE 0.400 0.263 0.174 0.120 0.085

Mean 0.691 0.716 0.707 0.700 0.694

RMSE 0.569 0.405 0.271 0.185 0.124

Significance when testing at 20% level

n = 100 n = 200 n = 400 n = 800 n = 1600

0.05, 0.20 0.389 0.289 0.214 0.201 0.208

0.05, 0.40 0.216 0.150 0.143 0.202 0.255

0.10, 0.20 0.468 0.372 0.288 0.264 0.247

0.10, 0.40 0.280 0.226 0.225 0.273 0.302

0.20, 0.20 0.551 0.455 0.345 0.308 0.273

0.20, 0.40 0.368 0.307 0.287 0.316 0.327

0.40, 0.20 0.608 0.503 0.384 0.330 0.287

0.40, 0.40 0.438 0.370 0.325 0.344 0.342

average 0.326 0.268 0.247 0.266 0.273
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Table 5: Results for Design 4

Performance of Estimator

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.706 0.693 0.703 0.698 0.693

MAE 0.385 0.260 0.178 0.118 0.085

Mean 0.704 0.703 0.704 0.701 0.694

RMSE 0.557 0.397 0.273 0.182 0.124

Significance when testing at 20% level

n = 100 n = 200 n = 400 n = 800 n = 1600

0.05, 0.20 0.355 0.280 0.235 0.195 0.216

0.05, 0.40 0.176 0.161 0.186 0.219 0.270

0.10, 0.20 0.437 0.369 0.307 0.250 0.249

0.10, 0.40 0.250 0.235 0.255 0.269 0.300

0.20, 0.20 0.515 0.428 0.356 0.280 0.268

0.20, 0.40 0.335 0.305 0.307 0.305 0.320

0.40, 0.20 0.568 0.472 0.383 0.296 0.280

0.40, 0.40 0.402 0.353 0.340 0.324 0.333

average 0.300 0.272 0.270 0.259 0.276

Table 6: Results for Design 5

Performance of Estimator

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.711 0.704 0.682 0.698 0.693

MAE 0.567 0.409 0.285 0.195 0.135

Mean 0.646 0.710 0.720 0.718 0.703

RMSE 0.789 0.612 0.438 0.305 0.207

Significance when testing at 20% level

n = 100 n = 200 n = 400 n = 800 n = 1600

0.05, 0.20 0.518 0.414 0.365 0.355 0.372

0.05, 0.40 0.506 0.464 0.567 0.637 0.661

0.10, 0.20 0.548 0.485 0.429 0.399 0.401

0.10, 0.40 0.528 0.557 0.638 0.666 0.677

0.20, 0.20 0.607 0.541 0.469 0.425 0.411

0.20, 0.40 0.584 0.618 0.672 0.681 0.683

0.40, 0.20 0.631 0.566 0.480 0.431 0.412

0.40, 0.40 0.627 0.648 0.682 0.684 0.683

average 0.511 0.503 0.505 0.508 0.513
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Table 7: Performance of the Logit MLE

Design 1

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.699 0.699 0.692 0.694 0.693

MAE 0.240 0.165 0.114 0.084 0.059

Mean 0.715 0.702 0.696 0.695 0.693

RMSE 0.369 0.252 0.173 0.123 0.085

Design 2

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.696 0.703 0.692 0.689 0.695

MAE 0.413 0.282 0.199 0.139 0.100

Mean 0.691 0.720 0.701 0.694 0.695

RMSE 0.639 0.443 0.303 0.214 0.149

Design 3

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.691 0.692 0.695 0.692 0.694

MAE 0.302 0.202 0.137 0.098 0.069

Mean 0.711 0.710 0.701 0.696 0.695

RMSE 0.454 0.307 0.209 0.144 0.103

Design 4

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.687 0.695 0.696 0.696 0.692

MAE 0.288 0.201 0.138 0.097 0.067

Mean 0.706 0.702 0.701 0.699 0.693

RMSE 0.438 0.302 0.209 0.146 0.100

Design 5

n = 100 n = 200 n = 400 n = 800 n = 1600

Median 0.884 1.008 1.046 1.055 1.063

MAE 0.521 0.406 0.361 0.362 0.370

Mean 0.761 1.012 1.080 1.082 1.073

RMSE 0.948 0.685 0.540 0.476 0.428
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Figure 1: Density of Estimation Error for Estimator and Its Log for Design 1

Figure 2: Density of Estimation Error for Estimator and Its Log for Design 2

25



Figure 3: Density of Estimation Error for Estimator and Its Log for Design 3

Figure 4: Density of Estimation Error for Estimator and Its Log for Design 4
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Figure 5: Density of Estimation Error for Estimator and Its Log for Design 5
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