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A simple framework for investigating the
properties of policy games�

Paolo G. Piacquadio,y Giovanni Di Bartolomeo,z Nicola Acocellax

December 2009

Abstract

The paper extensively studies the static model of non-cooperative lin-
ear quadratic games in which a set of agents strategically chooses their
instruments. We �rst derive the necessary and su¢ cient conditions for
the existence of a Nash equilibrium as well as for multiple equilibria to
arise. Furthermore, we study the general condition for policy neutrality
and Pareto e¢ ciency of the equilibrium by introducing a new concept of
decisiveness.

JEL: C72, E52, E61
Keywords: Con�ict of interest, Nash equilibrium existence, multipli-

city, policy invariance, controllability, Pareto e¢ ciency.

1 Introduction

The linear quadratic model is probably the most used setup in policy game
applications. A linear model of the economy combined with well shaped linear-
quadratic loss functions give intuitive but insightful linear �rst order conditions
and provide this framework with the necessary simplicity to make it a privileged
instrument for economic and policy analysis. Some key contributions to di¤erent
�elds of economics have made use of linear quadratic models. Some examples
of pioneering studies in di¤erent and sometimes overlapping �elds are Hamada
(1976), and Canzoneri and Gray (1985) for international policy coordination;
Barro and Gordon (1982) for monetary policy; Crawford and Sobel (1982) for
signalling games; Anderson et al. (1998) for the analysis of public good provi-
sion; van der Ploeg and de Zeeuw (1992) for environmental policies; Alesina and
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Tabellini (1987) for public debt; Gylfason and Lindbeck (1986, 1994) for labor
markets and unions.1

After some decades of pro�table use and applications, however, a complete
analysis and description of the main properties of equilibrium in this simple
framework is still missing. Dasgupta and Maskin (1986), among others, stated
su¢ cient conditions for equilibrium existence; but only recently, these conditions
have been weakened by using the concept of controllability of an economic sys-
tem introduced by Tinbergen (1952, 1956). Within the same simple framework
also conditions for policy invariance have been stated.2

By analyzing the model extensively, we provide more general necessary and
su¢ cient conditions for existence (and multiplicity) of Nash equilibrium. Fur-
thermore, we study conditions for policy neutrality and the relationship between
Nash equilibria and Pareto e¢ ciency.
The paper is structured in three more sections. In section 2 we �rst describe

the 2� 2� 2 (2 agents, 2 instruments, 2 target variables) policy game and the
conditions for equilibrium existence and uniqueness; we then investigate some
speci�c issues (di¤erent targeting policies, policy symbiosis, partial e¤ectiveness
of instruments). In the third section, we provide general theorems for exist-
ence and multiplicity of equilibria, Pareto e¢ ciency and policy neutrality, with
reference to an M1 �M2 �M3 model. A �nal section concludes.

2 The 2� 2� 2 model
2.1 The basic framework

Our 2�2�2 game is a linear quadratic policy game between two players with two
instruments (one for each of them) constrained by a simple economy described
by two variables. The game is static, or simultaneous, and non-cooperative.
Each player i sets an instrument, ui, to minimize the following loss functions:

Li =
1

2

h
(x� �xi)2 + �i (y � �yi)

2
i

i = 1; 2 (1)

de�ned over the deviations of two target variables (x; y) from some desired values
(�xi; �yi); �i are given weight parameters.
From the above equation, we can de�ne the marginal rate of substitution

between the targets as:

MRSixy =
dy

dx
= �@Li=@ (x� �xi)

@Li=@ (y � �yi)
= � 1

�i

x� �xi
y � �yi

i = 1; 2 (2)

Notice that, if x ! �xi for y 6= �yi, MRSixy = 0 and, if y ! �yi for x 6= �xi,
MRSixy ! �1; while if both (x; y)0 ! (�xi; �yi)

0, MRSixy is not de�ned as there

1A huge amount of studies, impossible to be mentioned, extended these studies in the last
30 years.

2See Acocella and Di Bartolomeo (2006), Acocella et al. (2006, 2007, 2009a, 2009b), Di
Bartolomeo et al. (2008), Hughes Hallett et al. (2008, 2009).
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is no change in the vector of targets that can compensate for a deviation from
the �rst best outcome. This rate represents the slope of the indi¤erence curve.3

In a similar manner, we can de�ne elasticities of substitution among devi-
ations:

�ixy =
@Li=@ (x� �xi)
@Li=@ (y � �yi)

y � �yi
x� �xi

=
1

�i
i = 1; 2 (3)

The relationships between instruments and targets are summarized by a
system of linear equations that describes the economy:�

x
y

�
=

�
a11 a12
a21 a22

� �
u1
u2

�
+

�
cx
cy

�
(4)

where aji are parameters, cx and cy are constants.
We can rewrite (4) in a compact-matrix form as:

z = Au+ C (5)

We assume that A is a full rank matrix. We assume that all the element aij are
di¤erent from zero; we will introduce the case of lower rank and sparse (some
zeros in A) matrices only later.
It is worth noticing that the full rank of A means that system (5) is control-

lable in the Tinbergen�s terms, i.e., any given 2 � 1 vector �z can be achieved
(given �z, a unique vector u� = A�1 (�z � C) exists such that z = �z).
From system (4), we can de�ne the marginal rates of transformation between

the target variables with respect to the instrument of agent i. This marginal
rate is:

MRT ixy =
dy

dx
=
@y=@ui
@x=@ui

=
a2i
a1i

i = 1; 2 (6)

The marginal rate of transformation measures the impact on y of a marginal
change in x induced by agent i; implicitly, it shows the way player i�s instrument
a¤ects the target variables: if the signs of a2i and a1i are di¤erent, to increase a
target variable one need to reduce the other, otherwise the two variables move
together. Because of the linearity of the system (4), marginal rates of trans-
formation are constant. Moreover, they are di¤erent between the two players
because we have assumed A to be of full rank.
Formally, the Nash equilibrium is a vector u that minimizes (1) subject to (4)

for both players. The �rst order conditions for the two agents can be described
as follows:4

a1i (x� �xi) + �ia2i (y � �yi) = 0 i = 1; 2 (7)

3As usual, it measures the compensation in terms of the target variable y, for an in�nites-
imal variation of x, that makes agent i indi¤erent between accepting or not the change.

4Each player aims at equating the ratio of the outcome deviations from his target values
to a constant, which is his marginal rate of transformation.

3



We refer to equations (7) as the quasi-reaction functions since they are the
reaction functions de�ned in the space of the targets.5 Optimization (7) clearly
implies that both players equalize their marginal rate of substitution to their
marginal rate of transformation.
We assume that the players are both active in the game to avoid trivial

degenerative cases due to the non existence of the �rst order condition (7) of
a player. This requires that (a1i; a2i�i)

0 6= (0; 0)
0 for i = 1; 2. Note that if

the �s are �nite and di¤erent from zero, this is simply implied by the full rank
assumption on the matrix A.
In a compact form the equation system (7) can be written as:

Zz � �Z = 0 (8)

where Z =
�
a11 �1a21
a12 �2a22

�
, �Z =

�
a11�x1 + �1a21�y1
a12�x2 + �2a22�y2

�
.

Finally, we need to rede�ne the concept of policy neutrality. In fact, its clas-
sical de�nition (we call it exogenous neutrality), which implies that autonomous
changes in an instrument have no in�uence on an outcome, has to be adapted
to the realm of policy games, since in this setting instruments are endogenous
variables.
In models without strategic interaction (the single agent case) the e¤ect of

the instruments set on the outcome is fully described by the instrument multipli-
ers (the matrix A of equation (5)). By contrast, in models of strategic interaction
a change in the instrument will also have an indirect e¤ect through the induced
reaction of the other players. Therefore, we must distinguish ex-ante e¤ective-
ness, which corresponds to exogenous neutrality and is fully described by matrix
A, from ex-post e¤ectiveness, interpreted as the capability of an instrument to
a¤ect a target variable in the equilibrium of the game. An instrument is ex-post
e¤ective (or non neutral) on some target variable if the equilibrium value of the
target depends only on the will of the player gearing that instrument (as ex-
pressed by the parameters of his preference function) and not on that of other
players. Ex-post ine¤ectiveness will thus be called endogenous neutrality, to
distinguish it from the kind of neutrality that applies in a non-strategic context
and in our context would be described by matrix A.

2.2 Existence, uniqueness, and multiple equilibria

We can state the following theorem.

Theorem 1 A unique Nash equilibrium exists if and only if MRT 1xy=MRT
2
xy 6=

�1xy=�
2
xy.

5 In our example since all the outcomes can be achieved by an appropriate combination of
instruments (recall the system is controllable in the Tinbergen�s terms), if a Nash equilibrium
exists in the space of quasi-reaction functions, there exists also a couple of instruments sup-
porting it (i.e., a solution in the space of reaction function de�ned as usual in terms of control
variables). We will investigate the problem further in the more general model presented in
the next section.
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Proof. Matrix Z is square and it is of full rank if and only if a21=a11a22=a12
6= �2

�1
, i.e.

MRT 1xy
MRT 2xy

6= �1xy
�2xy
. Then there is a unique vector of target variables that satis�es

the optimality conditions for both players: z� = Z�1 �Z . The unique Nash
equilibrium follows from the full rank assumption on A. The corresponding
Nash equilibrium is u� = A�1

�
Z�1 �Z � C

�
.

Less formally, conditions MRT 1xy=�
1
xy 6=MRT 2xy=�2xy simply imply that the

reaction functions of the two players are not parallel. Hence they can have an
intersection only in one point, which is the Nash equilibrium.
This unique Nash equilibrium is generally not Pareto e¢ cient. In fact, the

equilibrium is obtained fromMRT ixy =MRS
i
xy, i = 1; 2, (see (7)), but the mar-

ginal rates of transformation are constant and di¤erent between the two players
(recall, in fact, that A is full rank); thus MRS1xy 6= MRS2xy, i = 1; 2. How-
ever, Pareto optimality requiresMRS1xy =MRS

2
xy. Thus Nash non cooperative

equilibria will not be, in general, e¢ cient.
All the same, however, it can occur that an equilibrium exists where an

agent reaches his desired bliss point. Speci�cally, this situation would occur, by
chance, when the �rst best of an agent is on the quasi-reaction function of the
other (and would then be the Nash equilibrium of the game).6 In that case the
equilibrium would be e¢ cient. It is worth recalling that in this case theMRS is
mathematically indeterminate and there is no need to de�ne it since the agent
reaches his �rst best and thus has not any incentive to trade o¤ between its
target variables.
Now consider the case:

MRT 1xy
�1xy

=
MRT 2xy
�2xy

= � (9)

A unique equilibrium no longer exists (since MRT 1xy=MRT
2
xy 6= �1xy=�

2
xy does

not hold) and multiple equilibria may emerge. Formally:

Theorem 2 Multiple Nash equilibria exist if and only if (�x1 � �x2) = � (�y1 � �y2).

Proof. If (�x1 � �x2) = � (�y1 � �y2), each desired allocation of an agent satis-
�es the �rst order condition of the other. The quasi-reaction functions of the
two agents are thus the same and all points lying on them are potential Nash
equilibria. By the full rank assumption of A, every z on the quasi-reaction func-
tion has a corresponding strategy vector u; thus in�nite Nash equilibria arise.
More formally, a candidate outcome for a Nash equilibrium must satisfy both
quasi-reaction functions; if they have the same slope (i.e., Rank [Z] = 1), the
only case of existence arises when the quasi-reaction functions are coincident.
Rewriting the �rst order conditions as follows:

x� �xi = �i
a2i
ai
(�yi � y) i = 1; 2 (10)

6Formally this requires that a12�x1 + a22�2�y1 = a12�x2 + a22�2�y2 or a11�x2 + a21�1�y2 =
a11�x1 + a21�1�y1.
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Subtracting the two (10) and using �1
a21
a11

= �2
a22
a12

= �� we obtain:

�x1 � �x2 = � (�y1 � �y2) (11)

as required by the condition of the theorem.
These equilibria are e¢ cient if and only if the equilibrium outcome z� hap-

pens to be the �rst best outcomes of one of the players, that is z� = (�x1; �y1)
0 or

z� = (�x2; �y2)
0.

In summary, by the two theorems we have a complete taxonomy of existence
and multiplicity in the canonical 2� 2� 2 game (i.e., when A is of full rank and
has no zeros, and the �s are strictly positive and �nite). If

MRT 1xy
�1xy

6= MRT 2xy
�2xy

,

a unique Nash equilibrium exists. If
MRT 1xy
�1xy

=
MRT 2xy
�2xy

= �, either there are

multiple equilibria (when (�x1 � �x2) = � (�y1 � �y2)) or no equilibrium exists. In
the next subsections we also consider some special cases departing from the
canonical model.

2.3 Equilibrium properties of targeting policies

We can now investigate the properties of a Nash equilibrium with reference to a
framework where for one or both players the elasticities of substitution among
target deviations are in�nite, i.e. �i ! 0 or �i ! 1. This can be thought as
equivalent to targeting player i�s policies towards one objective only.
Formally, agent i is interested in one target only, if

1. �i ! 0, the deviation of y from the preferred target �yi has no weight in
his loss function and we can say that player i is only interested in variable
x;

2. �i !1, the relative importance of the deviation of x from the preferred
target shrinks to zero and the player will be interested only in the devi-
ations of the target variable y.

We can consider three cases:

1. One player is interested in only one target variable.

2. Both players are interested in only one, but di¤erent, variable.

3. Both players are interested in only one and the same variable.

These cases are very common in the economic literature and exemplify some
of the most important applications of the new theory of economic policy7 in so
far as the existence or other features of an equilibrium are concerned.
Consider the �rst case (one player is interested in both targets, and the

other player is interested in only one). If the coe¢ cients of the instruments are

7See Acocella et al. (2006).
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di¤erent from zero for both agents, there will always be a Nash equilibrium. It
will be Pareto e¢ cient if the agents share the target value of the variable in
common; it will be not e¢ cient otherwise.
In the second case the agents are interested in di¤erent variables, i.e. �1 = 0

and �2 = 1 or, conversely, �1 = 1 and �2 = 0; they are thus not in con�ict.
Moreover, each agent controls his relevant subsystem and is able to get his �rst
best allocation for any given strategy of the other player, as in the previous
case. The �rst order conditions are compatible since there is no con�ict and the
unique Nash equilibrium is Pareto e¢ cient (as it ensures the �rst best to each
player).

Finally, if both agents are interested in the same variable,8
MRT 1xy
�1xy

=
MRT 2xy
�2xy

=

� holds (with � either zero or in�nite) and the condition for theorem 2 applies.
Then no equilibrium exists, unless the players share the same desired value.
In this case, �x1 � �x2 = � (�y1 � �y2) = 0 or �x1��x2

� = �y1 � �y2 = 0, and in�nite
equilibria exist.

2.4 Symbiosis and implicit coordination

Another speci�c case of interest is that of symbiosis, which arises when the two
agents share the same desired values for all the target variables. In our context
(of two players with two targets each) symbiosis occurs for �x1 = �x2 = �x and
�y1 = �y2 = �y. It implies that there is no �con�ict�between the players.9

By assuming symbiosis, a trivial solution in terms of outcomes emerges, i.e.,
z = �z where �z = [�x; �y]0, which is the same e¢ cient solution that can be obtained
if there were only one player (or a social planner) setting both instruments.
Formally, the system of �rst order conditions is now:

Z (z � �z) = 0 (12)

If Z is of full rank, only one Nash equilibrium exists (see theorem 1). The
two players will choose their best policy and, in doing so, they will implicitly
coordinate to achieve their �rst best. In fact, the �rst order conditions they
must satisfy are the same as those of a single player endowed with the two
instruments as linear independent instruments (i.e., A is of full rank) ensures a
single valued correspondence between the vector of target variables and that of
instruments.
By contrast, if Z is not of full rank, multiple equilibria arise (see theorem

2) as the �rst order conditions are linearly dependent, i.e. both the reaction
functions and the quasi-reaction functions are the same for the two agents. A
coordination failure à la Cooper and John (1988) emerges since equilibria are
related to di¤erent and rankable outcomes.10

8 I.e., �1 = �2 = 0 or �1 = �2 =1.
9For a more general case of symbiosis see Di Bartolomeo et al. (2008) and Acocella et al.

(2009b).
10Acocella et al. (2009b) show how announcements can be used as an equilibrium selection

device in this framework.
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2.5 Partial e¤ectiveness of instruments

Now we consider cases where agents can only partially in�uence the outcome
of the economic system, i.e. are able to in�uence only some variables. As
already said, this ex ante ine¤ectiveness of instruments can be viewed as an
exogenous policy neutrality of an agent and is completely di¤erent from the
endogenous policy neutrality. As exogenous neutrality arises when A contains
at least one zero, marginal rates of transformation become in�nite (or zero).11

We also consider a further case of partial ine¤ectiveness which arises when the
two agents a¤ect the outcome in the same way, i.e. their instruments are not
independent. In this case not all z 2 R2 can be reached as the matrix A is not of
full rank. In other words, the economic system is no longer globally controllable
in the Tinbergen terms.12

Under partial e¤ectiveness of instruments, four possible cases can arise.

1. Both agents are able to in�uence only one and the same variable,13 and
are obviously interested in that variable.14 It is immediate to realize that
each agent controls his relevant subsystem and, as a consequence, the Nash
equilibrium exists if and only if both agents share the same target value
for that variable. However, again, a problem of coordination of strategies
arises. There are in fact in�nite combinations of their instruments that
support the achievement of the common desired targets.

2. Each agent in�uences only one, but a di¤erent, variable.15 As we have
assumed that players are both active, they should be interested at least
in the variable for which their instrument is e¤ective. Also in this case
both agents control their relevant subsystem, but since the subsystems
are dichotomous, there will be a Nash equilibrium for all possible target
values of the agents. This equilibrium is Pareto e¢ cient if and only if one
agent is interested in only one variable or if, by chance, the �rst best of
the agent is on the quasi-reaction function of the other one.

3. One agent in�uences both variables and the other only one. In this case,
the latter is always able to control his relevant subsystem (as we have
assumed that players are both active). Thus, no equilibrium exists if also
the former agent controls the same target and does not share the same
target values. In the case of symbiosis, an equilibrium always exists and is
Pareto e¢ cient. However, it will be unique only if the former player does
not control the same target variable as the former.

11Obviously it does not make sense to consider the case in which one agent has no in�uence
on any variable since it would violate the assumption that both agents are active in the game.
12The space of targets (quasi-reaction functions) is no longer isomorphic to that of the

instruments (reaction functions).
13 I.e. a11 = a12 = 0 (or, symmetrically, a21 = a22 = 0).
14Otherwise we would obtain a trivial non sense: �rst order condition would not exist if

both were not interested in the only variable they can a¤ect.
15Formally, a12 = a21 = 0 (symmetrically, a11 = a22 = 0).
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4. The agents in�uence both variables, but with linearly dependent instru-
ments. The whole system is not controllable in the Tinbergen terms. Thus
even if there were a z� for which the quasi-reaction functions intersect,
there would be no guarantee that there is at least a vector of instruments
u� supporting it. Only if Rank [Ajz�] = 1, z� could be achieved, but then
multiple Nash equilibria would arise as, in this case, in�nite combinations
of instruments support z�. (i.e., the reaction functions are coincident).

3 The general case: The M1 �M2 �M3 model

3.1 The basic framework

In this section we extend the previous theorems for the existence of a Nash
equilibrium to the general case ofM1 agents, M2 instruments andM3 variables.
The economy is described by the following linear system:

Ax = Bu =

M3X
i=1

Biui (13)

where each agent aims at minimizing a quadratic criterion de�ned on the devi-
ation from a desired target vector (�xi):16

Li = (x� �xi)
0
Qi (x� �xi) (14)

whereQi is a positive semi-de�nite diagonal matrix, which represents the weights
that the agent places on deviations from the desired targets (we indicate the
weight on the k-th element of vector x by qi (k)). We do not require that Qi is
of full rank as one agent may not be interested in one or more target variables.
We assume that each agent is endowed with only one instrument, so there

are M1 = M2 agents. This assumption is not restrictive at all; the case of an
agent who is endowed with more than one instrument can be simply introduced
by assuming more agents minimizing the same criterion (the case of symbiosis
discussed before shows this equivalence).17

We also assume that the total number of instruments is not greater than the
total number of target variables (i.e., M2 �M3).18

16For the sake of brevity, without loss of generality, the criterion is assumed to be strictly
quadratic. See Acocella and Di Bartolomeo (2004) for a discussion.
17Drawing from section 2.4, a situation with a player i having two targets, x and y, and

two instruments, u1 and u2, is equivalent to the case in which there are two �ctitious players,
say i0 and i00, that have one instrument each and the same target values.
18This assumption is introduced to rule out a trivial case that would lead to either in�nite

Nash equilibria or non existence. Informally, if M2 > M3, there are at least M2 � M3

linearly dependent instruments. Whenever a vector of outcomes x� is consistent with a Nash
equilibrium, there are in�nite many combinations of instruments supporting it and, therefore,
in�nite Nash equilibria would arise. Multiple equilibria, however, would emerge only in the
case of equal target values for the players; in general no equilibrium would exist. For a formal
discussion of over-determined systems in this framework, see Acocella et al. (2008).
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Finally, we assume that the instrument set by agent i is e¤ective on his target

variables; this formally requires
�
A�1Bi

�0
Qi 6= 0, for all i. The assumption

simply implies that each player is active in the game; otherwise his reaction
function would not exist.

3.2 Existence, uniqueness and multiple equilibria

The system of quasi-reaction functions, i.e. the M2 �rst order conditions in the
outcome space, is the following:

Zx� �Z = 0 (15)

where Z =

2666666664

�
A�1B1

�0
Q1

...�
A�1Bi

�0
Qi

...�
A�1BI

�0
QI

3777777775
, �Z =

2666666664

�
A�1B1

�0
Q1�x1

...�
A�1Bi

�0
Qi�xi

...�
A�1BI

�0
QI �xI

3777777775
.

Lemma 3 The system of quasi reaction functions (15) has a solution if and
only if Rank [Z] = Rank

�
Z
�� �Z �.

Proof. The proof is trivial.
Notice that the existence of a target vector x� that solves (15) is not neces-

sarily a Nash equilibrium outcome: there might not be a vector of strategies
that supports it.

Theorem 4 A solution �x� of the system of quasi reaction function (15) is the

outcome of a Nash equilibrium if and only if: Rank
h�
A�1B

�0i
= Rank

h�
A�1B

�0 j�x� i.
Proof. The proof is trivial.
The lemma assures that there exists a vector of values for the target variables

that is on the quasi-reaction functions of all the agents, which implies that no
agent has incentive to change his instrument and deviate. The theorem instead
guarantees the feasibility of that outcome, i.e. there exists a strategy for the
players that supports it. It follows that if u� is a Nash equilibrium of the game,
no agent has an incentive to deviate: so u� should support a vector of targets
for which the �rst order conditions are veri�ed for all agents.

Corollary 5 The Nash equilibrium is unique if and only if ZA�1B is full rank.

Proof. The conditions to be satis�ed for a Nash equilibrium are Zx � �Z = 0
and x = A�1Bu; by substituting the latter equality into the former, we can
say that uniqueness will arise if the matrix ZA�1B is invertible or, since it is
square, of full rank.
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3.3 Pareto e¢ ciency

We can now state the necessary and su¢ cient conditions for a Nash equilibrium
to satisfy Pareto e¢ ciency.

Theorem 6 An allocation associated with a Nash equilibrium is Pareto e¢ -
cient if and only if it corresponds to the minimum of a lexicographic preference
ordering over the loss functions of the agents.

Proof. De�ne � as the set of all possible orders of the agents (i.e., all the pos-
sible M1! permutations), � 2 � is a given ordering of agents and �(i) identi�es
the position of agent i. Then we de�ne L a lexicographic function over � or a
subset of it, e.g. L

�
L1; :::; L�(j); :::; LM1

�
or L

�
L1; :::; L�(j)

�
.

Now assume that there is a Nash equilibrium x0 that is Pareto e¢ cient but
does not minimize a lexicographic function for any � 2 �. Therefore, for any
�, there exists an agent i such that a) x0 is not argmin of L

�
L1; L2; :::; L�(i)

�
;

b) x0 is argmin of L
�
L1; L2; :::; L�(i)�1

�
, i.e. i is the �rst agent of � for whom

the lexicographic function is not minimized by x0. We de�ne n is the number
of players after �(i).
We �rst take the case of n = 0, that is for all � such that agent i is

the last agent of the permutation; it will hold that a) x0 is not argmin of
L
�
L1; :::; LM1�1; L�(i)

�
; b) x0 is argmin of L (L1; L2; :::; LM1�1) and therefore it

is trivial that x0 cannot be Pareto e¢ cient.
We now consider the case of n = 1, that is for all � such that agent i is the

second-last agent of the permutation; it will hold that a) x0 is not argmin of
L
�
L1; :::; LM1�2; L�(i)

�
; b) x0 is argmin of L (L1; L2; :::; LM1�2). There are two

possible cases to consider. 1) If x0 is argmin of L (L1; :::; LM1�2; LM1
), we can

de�ne permutation �0, by invertingM1 with �(i). for which n = 0 and therefore
x0 cannot be Pareto e¢ cient. 2) If x0 is not argmin of L (L1; :::; LM1�2; LM1), by
the �rst order conditions of the Nash equilibrium we known that instruments are
set such that MRS =MRT , since instruments are assumed to be independent
MRS should be di¤erent among agents, therefore x0 cannot be Pareto e¢ cient
as this requires that SMS are equal between agents.
Now we face the most general case. Let�s assume that for any permutation

� such that n = k � 1, x0 is not Pareto e¢ cient and consider a given ordering
�0 such that n = k. If among the k agents following i there is an agent j such
that x0 is argmin of L

�
L1; :::; L�(i)�1; L�(j)

�
, we can de�ne permutation �0, by

inverting �(j) with �(i). for which n = k � 1; therefore x0 cannot be Pareto
e¢ cient. Otherwise, by the �rst order conditions of the Nash equilibrium we
known thatMRS =MRT between at least a pair of agents, therefore x0 cannot
be Pareto e¢ cient.
By an induction argument, an allocation associated with a Nash equilibrium

is Pareto e¢ cient if there exist an ordering for which it minimizes L(L1; :::;
L�(j); :::; LM1

). The other side of the theorem (an allocation associated with a
Nash equilibrium that corresponds to the minimum of a lexicographic preference
ordering over the loss functions of the agents is Pareto e¢ cient) is trivial.

11



This theorem points out that the Nash equilibrium is usually Pareto ine¢ -
cient apart from few speci�c cases. Moreover, in these cases Pareto e¢ ciency
of the allocation is the minimum of an implicit lexicographic ordering over the
losses of the agents.

3.4 Policy invariance and decisiveness

Given the de�nition of policy neutrality, we state ex-post e¤ectiveness19 of an
instrument ui relative to a target variable xk, as the capability of agent i of in-
�uencing the outcome relative to the Nash equilibrium of the game by changing
his policy: this is equivalent to requiring that either @xk@Qi

6= 0 or @xk@�xi
6= 0, i.e. the

outcome of the Nash equilibrium is not independent of agent i�s preferences.20

In order to derive the conditions for neutrality we consider a subgroup � of
agents. Given this subgroup, we can rearrange the system (13) as:�

Ax�x� Ax�x��
Ax��x� Ax��x��

� �
x�
x��

�
=

�
Bx�u� Bx�u��
Bx��u� Bx��u��

� �
u�
u��

�
(16)

where u� is the vector of the instruments of the agents of group �, while u��
is the vector of the instruments of the other agents; x� is the vector of all the
target variables x�(k) for which there is at least an agent i of the group � for
which

�
A�1Bi

�0
k
qi (k) 6= 0. In other words, we select the vector of targets x� of

group � to include all and only the targets for which some agent in � is both
interested in and ex-ante e¤ective.
From (16), we can extract the relationship between x� and u�, i.e.

Ax�x�x� = Bx�u�u� + C (17)

where C = Bx�u��u�� �Ax�x��x��.
Now we can introduce the following de�nitions.

De�nition 7 We de�ne the �-game as the non-cooperative simultaneous game
among the agents of subgroup � considering C as an arbitrary constant and
where for all the target variables x�(k) it holds that

�
A�1Bi

�0
k
qi (k) 6= 0 for at

least one agent i 2 �.

Notice that, since we assumed that
�
A�1Bi

�0
Qi 6= 0 (i.e., every agent is

active in the game), and as a consequence of the way we selected the targets of
the �-game, all agents in � will be active as well: in particular, it will hold that�
A�1x�x�Bx�u�i

�0
Qi 6= 0.

19As said, ex-ante e¤ectiveness is related to the multipliers of the system (13). In the
context of this system an instrument ui is ex-ante e¤ective with respect to target variable xk
if the multiplier A�1Bi 6= 0;
20We can say that whenever an agent�s instrument ui is not ex-post e¤ective for some target

variable xk in the Nash equilibrium, we will say that xk is policy invariant with respect to
instrument ui or, equivalently, that ui is policy neutral with respect to xk.
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De�nition 8 If an equilibrium of the �-game exists and the outcomes associ-
ated to this equilibrium are independent of C, then the � group is decisive with
respect to the target variables x�.

Theorem 9 The � group is decisive with respect to the target variables x� if
and only if Lemma 3 holds for the �-game and the matrix A�1x�x�Bx�u� is full
rank or left invertible.

Proof. The Lemma 3 assures that an outcome from which agents have no
incentive to deviate exists. Conditions on A�1x�x�Bx�u� assure that, if such
outcome exists, it is feasible and independent of C. Note that, as matrix
A�1x�x�Bx�u� is full rank or left invertible, the system of reaction functions is, in
fact, either determinate or overdetermined.
Two corollaries follow.

Corollary 10 When an equilibrium of the entire game exists, if the � group is
decisive with respect to the target variables x�, then the policies of agents that
do not belong to that group are neutral with respect to x�.

Corollary 11 If there are more groups that are decisive with respect to a non
empty intersection of target variables, then the equilibrium either does not exist
or is multiple. The latter is the case if there is no implicit con�ict among the
two groups, i.e. the outcomes associated with the two �-games are the same.

The �rst corollary shows that the selection of the targets of the �-game
implies that the �rst order conditions of the agents of group � for the �-game
are the same as for the original game. For the �rst corollary we assume that an
equilibrium of the entire game exists: as agents in � are decisive, whatever the
outcome vector x� that satis�es lemma 3 for the �-game is reached and is fully
determined; since the �rst order conditions are invariant, any strategy change of
the other agents (not belonging to �) will be ine¤ective on the vector of targets
x� and results in being policy neutral. The second corollary shows that, if two
groups � and �0 have overlapping targets (x�

T
x�0 6= 0 ), the equilibrium either

does not exist or is multiple. In particular, since both groups are decisive, each
of them has a set of outcomes that satis�es �rst order conditions (by Lemma 3)
and can be achieved independently of the choices of the other agents. Therefore,
if these sets of targets have a non-empty intersection, an equilibrium exists but
it is not unique, since the system is overdetermined (it is at least determined for
each group of agents); if, conversely, the intersection is empty, no equilibrium
exists.
In a similar context, Acocella et al. (2009b) show that policy neutrality

emerges when there is an implicit coalition21 that controls its targets: if a
coalition controls its subsystem, its members are able to individually set their
instruments to achieve the �rst best outcome independently of the strategy set
by non members; in some sense the players implicitly coordinate to get their �rst

21An implicit coalition is de�ned as a group of agents that have non contrasting interests..
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best, thus o¤setting the action of the other agents. Moreover, if there is a con�ict
between two implicit coalitions that control their targets, the equilibrium either
does not exist or is multiple (non existence of a Nash equilibrium arises when
there are two controlling implicit coalitions with con�icting interests).
Our corollaries extend the results in Acocella et al. (2009b). Implicit co-

alition controllability is a particular case of group decisiveness. It arises when
the targets of interest to the members of the group coincide (symbiosis). Our
result is more general, since controllability is not required for decisiveness. De-
cisiveness does not need symbiosis among the group members (then con�ict is
possible and controllability may not be achieved); it only requires that the con-
�ict among them is completely interior to the group (i.e. independent of the
policy of the non members).

4 Conclusions

We have provided an analysis of the linear-quadratic static policy game frame-
work and shown that di¤erent scenarios may emerge depending on the number
of variables of interest, the existence of a con�ict,�symbiosis� or group decis-
iveness among the agents and the e¤ectiveness of the instruments. Our results
appear to be essential to fully understand policy games and for model building,
as they state the conditions for the consistency of the optimal strategies of all
the players (and thus the existence of the equilibrium of the game) as well as the
e¤ectiveness of policy instruments. In addition, they are relevant for institution
building, as they can help us to show the conditions under which a decentralized
equilibrium may fail to exist or to be Pareto e¢ cient.
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