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1 Persuasion mechanisms

In this paper we study a particular game where Sender chooses a signal π whose realization is

observed by Receiver who then takes her action. In Subsection 2.3 we made an observation that

Sender’s gain from persuasion is weakly greater in this game than in any other communication

game. In this section of the Online Appendix we provide a formal statement and proof of this

claim. To do so, we introduce the notion of a persuasion mechanism.

As before, Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A

and the state of the world ω ∈ Ω. Sender has a continuous utility function v (a, ω) that depends on

Receiver’s action and the state of the world. Sender and Receiver share a prior µ0 ∈ int (∆ (Ω)).

Let a∗ (µ) denote the set of actions that maximize Receiver’s expected utility given her belief is µ.

We assume that there are at least two actions in A and that for any action a there exists a µ s.t.

a∗ (µ) = {a}. The action space A is compact and the state space Ω is finite. We will relax the

latter assumption in Section 3.

A persuasion mechanism (π, c) is a combination of a signal and a message technology. Sender’s

private signal π consists of a finite realization space S and a family of distributions {π (·|ω)}ω∈Ω over

S. A message technology c consists of a finite message space M and a family of functions c (·|s) :
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M → R+ ; c (m|s) denotes the cost to Sender of sending message m after receiving signal realization

s.1 The assumptions that S and M are finite are without loss of generality (cf. Proposition 4) and

are used solely for notational convenience.

A persuasion mechanism defines a game. The timing is as follows. First, nature selects ω from

Ω according to µ0. Neither Sender nor Receiver observe nature’s move. Then, Sender privately

observes a realization s ∈ S from π (·|ω) and chooses a message m ∈M . Finally, Receiver observes

m and chooses an action a ∈ A. Sender’s payoff is v (a, ω)−c (m|s) and Receiver’s payoff is u (a, ω).

We represent the Sender’s and Receiver’s (possibly stochastic) strategies by σ and ρ, respectively.

We use µ (ω|m) to denote Receiver’s posterior belief that the state is ω after observing m.

A few examples help clarify the varieties of games that are captured by the definition of a

persuasion mechanism. If π is perfectly informative, M = R+, and c (m|s) = m/s, the mechanism

is Michael A. Spence’s (1973) education signalling game. If π is perfectly informative and c is

constant, the mechanism is a cheap talk game as in Vincent Crawford and Joel Sobel (1982). If

π is arbitrary and c is constant, the mechanism coincides with the information-transmission game

of Jerry R. Green and Nancy L. M. Stokey (2007). If π is perfectly informative and c (m|s) =

− (m− s)2, the mechanism is a communication game with lying costs developed in Navin Kartik

(2009). If π is perfectly informative, M = P (Ω), and c (m|s) =


0 if s ∈ m

∞ if s /∈ m

, the mechanism is

a persuasion game as in Sanford J. Grossman (1981) and Paul Milgrom (1981).2

A perfect Bayesian equilibrium of a persuasion mechanism is a triplet (σ∗, ρ∗, µ∗) satisfying the

usual conditions. We also apply an additional equilibrium selection criterion: we focus on Sender-

preferred equilibria, i.e., equilibria where the expectation of v (a, ω)− c (m|s) is the greatest. For

the remainder of this appendix, we use the term “equilibrium” to mean a Sender-preferred perfect

1R+ denotes the affinely extended non-negative real numbers: R+ = R+ ∪ {∞}. Allowing c to take on the value
of ∞ is useful for characterizing the cases where Sender cannot lie and cases where he must reveal all his information.

2P (X) denotes the set of all subsets of X.
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Bayesian equilibrium of a persuasion mechanism.3 We denote Sender’s equilibrium action when

her belief is µ by â (µ).4

We define the value of a mechanism to be the equilibrium expectation of v (a, ω) − c (m|s).

The gain from a mechanism is the difference between its value and the equilibrium expectation

of v (a, ω) when Receiver obtains no information. Sender benefits from persuasion if there is a

mechanism with a strictly positive gain. A mechanism is optimal if no other mechanism has higher

value.

The game we study in the paper is closely related to persuasion mechanism where M = S and

c (m|s) =


k if s ∈ m

∞ if s /∈ m

for some k ∈ R+. We call such mechanisms honest. Specifically, the

game we study in the paper is one where Sender chooses among the set of all honest mechanisms.

With these definitions in hand, we can formally state and prove the aforementioned observation

from Subsection 2.3.

Proposition 1. For any v∗ ∈ R, there exists a persuasion mechanism with value v∗ if and only if

there exists an honest mechanism with value v∗.

Proof. The ”if” part of the claim is immediate. To see the ”only if” part, consider an equilibrium

εo = (σo, ρo, µo) of some mechanism (πo, co) with value v∗. Let Ao be the set of actions induced

with positive probability in εo, and for any a ∈ Ao, let Ma be the set of messages which induce

a in εo. Define an honest mechanism by M = S = Ao, π (a|ω) =
∑

m∈Ma

∑
s∈S σ

o (m|s)πo (s|ω),

and c (m|s) equal to the ex ante expected messaging costs under εo if m = s and −∞ otherwise.

Reporting truthfully is clearly an equilibrium strategy for Sender. Because a was an optimal

response for Receiver to each m ∈ Ma in εo, it must also be an optimal response to the message

3For some mechanisms it might seem more suitable to focus on sequential, rather than merely perfect Bayesian,
equilibria. Given that we examine Sender-preferred equilibria, however, this distinction will not be particularly
relevant.

4If both Sender and Receiver are indifferent between two actions at a given belief, we focus on equilibria where
Receiver takes a deterministic action.
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a in the proposed honest mechanism, so the distribution of Receiver’s actions conditional on the

state is the same as in εo. Since the expected messaging costs are also the same as in εo, the value

of the honest mechanism is exactly v∗.

2 Verifiable messages

In Subsection 2.3 we also made an observation that it is not important to assume that Sender must

truthfully report realization s from π.

Specifically, if we instead assume that Sender observes s privately and then sends a verifiable

message about s, the same information is revealed in equilibrium and we obtain the same outcome.

As before, Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A and

the state of the world ω ∈ Ω. Sender has a continuous utility function v (a, ω) that depends on

Receiver’s action and the state of the world. Sender and Receiver share a prior µ0 ∈ int (∆ (Ω)).

The action space A is compact and the state space Ω is finite. In this section, we assume that

Receiver has a unique optimal action a∗ (µ) at every belief. When this assumption is not satisfied,

the equivalence of the outcomes with verifiable messages can be guaranteed by introducing a small

amount of private information for Receiver, so that the distribution of Receiver’s optimal actions

is uniquely determined conditional on µ.

Given A, Ω, µ0, u, and v, we define two games. Let Π be the set of all signals on Ω with a

finite realization space S. The baseline game is the game we study in the paper. Sender chooses

a signal π ∈ Π. Receiver observes Sender’s choice of the signal and the signal realization s ∈ S,

forms her beliefs, and then takes her action. Denote Sender’s strategy by ρ ∈ ∆ (Π). A strategy ρ

is an equilibrium if and only if each π in its support induces a τ ∈ arg maxτ Eτ (v̂ (µ)).

The other game we refer to as the verifiable message game. Sender chooses a signal π. Receiver

observes Sender’s choice of the signal. Sender privately observes a signal realization s from the
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signal. He then sends a message m ∈ P (S) s.t. s ∈ m. Receiver observes the message, forms her

belief, and then takes an action. Let σ =
(
ρ, (γπ)π∈Π

)
denote a strategy for Sender. This consists

of a possibly stochastic choice of signal ρ ∈ ∆ (Π) and a messaging policy γπ : S → ∆ (P (S))

following each signal π. Let γ∗ denote the truthful messaging policy, i.e., γ∗ (s) puts probability

one on {s} for all s. Let µ̃ (m) ∈ ∆ (S) denote Receiver’s belief about the signal realization observed

by Sender when she sees message m. The support of µ̃ (m) must be m. Each belief µ̃ (m) implies

a unique belief µ about ω. A pair (σ, µ̃) is a (perfect Bayesian) equilibrium if and only if µ̃ obeys

Bayes’ rule on the equilibrium path and σ is a best response to µ̃ at every information set.

In both games, we refer to the equilibrium distribution of Receiver’s beliefs conditional on the

state as the equilibrium outcome. We can now formally state our claim from Subsection 2.3:

Proposition 2. The set of equilibrium outcomes of the baseline game and the set of equilibrium

outcomes of the verifiable message game coincide.

Let V Gπ denote the subgame of the verifiable message game following Sender’s choice of π. A

(perfect Bayesian) equilibrium of the subgame V Gπ is a pair (γπ, µ̃π). Standard arguments ensure

that for any π, such an equilibrium of V Gπ exists.

Lemma 1. Suppose ρ is an equilibrium of the baseline game. Then for each π in the support of ρ

there exists an equilibrium of V Gπ in which γ = γ∗.

Proof. Consider some equilibrium ρ of the baseline game and some π in the support of ρ. There

exists an equilibrium (γπ, µ̃π) of V Gπ. It will suffice to show that given µ̃π, Sender’s payoff from

γ∗ must be the same as his payoff from γπ following any s. Define these payoffs to be y∗ (s) and

y (s) respectively.

Since (γπ, µ̃π) is an equilibrium, we must have y (s) ≥ y∗ (s)∀s. Moreover, because Sender can

choose a signal π′ in the baseline game to induce any Bayes-plausible distribution of Receiver’s
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beliefs, he can in particular choose a π′ that produces the same distribution of Receiver’s beliefs

as (γπ, µ̃π) . Sender’s expected payoff in the baseline game following π′ must be the same as his

payoff in V Gπ, which is Eπy (s). Since π is played in an equilibrium of the baseline game, we must

have Eπy
∗ (s) ≥ Eπy (s). Given y (s) ≥ y∗ (s) ∀s, this implies y (s) = y∗ (s)∀s.

With Lemma 1, it is straightforward to establish one direction of Proposition 2.

Lemma 2. Any equilibrium outcome of the baseline game is an equilibrium outcome of the verifiable

message game.

Proof. Consider any equilibrium ρ of the baseline game with outcome τ . Let v denote Sender’s

payoff in this equilibrium. We construct an equilibrium (σ̂, µ̂) of the verifiable message game as

follows. First, specify that σ̂ chooses signals according to ρ at the initial node, and set γπ = γ∗

for all π in the support of ρ. Note that the outcome of the verifiable message game under this

strategy is τ . Impose further that µ̂ is consistent with Bayes rule on the equilibrium path given

these strategies. To construct off-equilibrium messaging policies (γπ)π/∈Supp(ρ), consider for each

such π some equilibrium
(
γπeq, µ̃

π
eq

)
of V Gπ. Set γπ = γπeq and set µ̂ = µ̃πeq at nodes following π.

Because each γπeq is an equilibrium of V Gπ, we know that σ̂ is a best response to µ̂ at all

information sets following each π. Consider, then, the first node at which Sender chooses π. For

any π′, let vπ′ be Sender’s payoff if she chooses π′ followed by the γπ prescribes by σ̂. By Proposition

1 in the paper, we know that Sender could have chosen a signal in the baseline game that would

have generated the same distribution of posteriors and thus also yielded payoff vπ′ . Because ρ is

an equilibrium of the baseline game, any π ∈ Supp (ρ) followed by γ∗ must yield a payoff weakly

higher than vπ′ for all π′. This implies that σ̂ is a best response to µ̂ at the initial information set

of the verifiable message game.

It remains to establish the following Lemma:
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Lemma 3. Any equilibrium outcome of the verifiable message game is an equilibrium outcome of

the baseline game.

Proof. Consider some equilibrium of the verifiable message game (σ, µ̃), where σ =
(
ρ, (γπ)π∈Π

)
,

with outcome τ . Let v be Sender’s payoff in this equilibrium. Let vπ′ denote Sender’s payoff in

if he deviates to π′ followed by γπ
′
. Let v∗π′ denote Sender’s payoff if he deviates to π′ followed

by γ∗. We know (i) v ≥ vπ′∀π′ (by the fact that σ is an equilibrium); (ii) vπ′ ≥ v∗π′ (by the fact

that γπ
′

was a best response at the information sets following π′). By Proposition 1 in the paper,

we know that there exists a ρ̂ such that playing ρ̂ in the baseline game yields sender payoff v and

produces outcome τ . Since for any π′ Sender’s payoff in the baseline game from choosing π′ is v∗π′ ,

inequalities (i) and (ii) imply that ρ̂ is an equilibrium of the baseline game.

Lemmas 2 and 3 jointly establish Proposition 2.

3 Relaxing the assumption that Ω is finite

In the paper, we assumed that Ω is finite. We also claimed this assumption was made primarily

for expositional convenience. In this section, we show that the approach used in the paper extends

to the case when Ω is a compact metric space.5

As before, Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A

and the state of the world ω ∈ Ω. Sender has a continuous utility function v (a, ω) that depends

on Receiver’s action and the state of the world. The action space A is assumed to be compact

and the state space Ω is assumed to be a compact metric space. Let ∆ (Ω) denote the set of Borel

probabilities on Ω, a compact metric space in the weak* topology. Sender and Receiver share a

prior µ0 ∈ ∆ (Ω).

5We are very grateful to Max Stinchcombe for help with this extension.
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A persuasion mechanism is a combination of a signal and a message technology. A signal (π, S)

consists of a compact metric realization space S and a measurable function π : [0, 1] → Ω × S,

x 7→ (π1 (x) , π2 (x)). Note that we define π to be a measurable function whose second component

(i.e., the signal realization) is correlated with ω. We assume that x is uniformly distributed on

[0, 1] and that Sender observes π2 (x).

We denote a realization of π2 (x) by s. Note that since S is a compact metric space (hence,

complete and separable), there exists a regular conditional probability (i.e., a posterior probability)

obtained by conditioning on π2 (x) = s (A. N. Shiryaev 1996, p.230). A message technology c

consists of a message space M and a family of functions
{
c (·|s) : M → R+

}
s∈S . As before, a

mechanism is honest if M = S and c (m|s) =


k if s ∈ m

∞ if s /∈ m

for some k ∈ R+. A persuasion

mechanism defines a game just as before. Perfect Bayesian equilibrium is still the solution concept

and we still select Sender-preferred equilibria. Definitions of value and gain are same as before.

Let a∗ (µ) denote the set of actions optimal for Receiver given her beliefs are µ ∈ ∆ (Ω):

a∗ (µ) ≡ arg max
a

ˆ
u (a, ω) dµ (ω) .

Note that a∗ (·) is an upper hemicontinuous, non-empty valued, compact valued, correspondence

from ∆ (Ω) to A.

Let v̂ (µ) denote the maximum expected value of v if Receiver takes an action in a∗ (µ):

v̂ (µ) ≡ max
a∈a∗(µ)

ˆ
v (a, ω) dµ (ω) .

Since a∗ (µ) is non-empty and compact and
´
v (a, ω) dµ (ω) is continuous in a, v̂ is well defined.

We first show that the main ingredient for the existence of an optimal mechanism, namely the
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upper semicontinuity of v̂, remains true in this setting.

Proof. v̂ is upper semicontinuous.

Given any a, the random variable v (a, ω) is dominated by the constant random variable

maxω v (a, ω) (since v is continuous in ω and Ω is compact, the maximum is attained). Hence, by

the Lebesgue’s Dominated Convergence Theorem,
´
v (a, ω) dµ (ω) is continuous in µ for any given

a. Now, suppose that v̂ is discontinuous at some µ. Since u is continuous, by Berge’s Maximum

Theorem this means that Receiver must be indifferent between a set of actions at µ, i.e., a∗ (µ) is

not a singleton. By definition, however, v̂ (µ) ≡ maxa∈a∗(µ)

´
v (a, ω) dµ (ω).

Hence, v̂ is upper semicontinuous.

Now, a distribution of posteriors, denoted by τ , is an element of the set ∆ (∆ (Ω)), the set of

Borel probabilities on the compact metric space ∆ (Ω). We say a distribution of posteriors τ is

Bayes-plausible if
´

∆(Ω) µdτ (µ) = µ0. We say that π induces τ if conditioning on π2 (x) = s gives

posterior κs and the distribution of κπ2(x) is τ given that x is uniformly distributed. Since Ω is

a compact metric space, for any Bayes-plausible τ there exists a π that induces it.6 Hence, the

problem of finding an optimal mechanism is equivalent to solving

max
τ∈∆(∆(Ω))

ˆ
∆(Ω)

v̂ (µ) dτ (µ)

s.t.

ˆ
∆(Ω)

µdτ (µ) = µ0.

Now, let

V ≡ sup {z| (µ, z) ∈ co (hyp (v̂))} ,

where co (·) denotes the convex hull and hyp (·) denotes the hypograph. Recall that given a subset

K of an arbitrary vector space, co (K) is defined as ∩{C|K ⊂ C, C convex}. Let g (µ0) denote

6Personal communication with Max Stinchcombe. Detailed proof available upon request.
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the subset of ∆ (∆ (Ω)) that generate the point (µ0, V (µ0)), i.e.,

g (µ0) ≡

{
τ ∈ ∆ (∆ (Ω)) |

ˆ
∆(Ω)

µdτ (µ) = µ0,

ˆ
∆(Ω)

v̂(µ)dτ (µ) = V (µ0)

}
.

Note that we still have not established that g (µ0) is non-empty. That is the primary task of the

proof of our main proposition.

Proposition 3. An optimal mechanism exists. The value of an optimal mechanism is V (µ0).

Sender benefits from persuasion iff V (µ0) > v̂ (µ0). An honest mechanism with a signal that

induces an element of g (µ0) is optimal.

Proof. By construction of V , there can be no mechanism with value strictly greater than V (µ0).

We need to show there exists a mechanism with value equal to V (µ0), or equivalently, that g (µ0)

is not empty. Without loss of generality, suppose the range of v is [0, 1]. Consider the set H =

{(µ, z) ∈ hyp (V ) |z ≥ 0}. Since v̂ is upper semicontinuous, H is compact. By construction of V ,

H is convex. Therefore, by Choquet’s Theorem (e.g., Robert R. Phelps 2001), for any (µ′, z′) ∈ H,

there exists a probability measure η s.t. (µ′, z′) =
´
H (µ, z) dη (µ, z) with η supported by extreme

points of H. In particular, there exists η s.t. (µ0, V (µ0)) =
´
H (µ, z) dη (µ, z) with η supported

by extreme points of H. Now, note that if (µ, z) is an extreme point of H, then V (µ) = v̂ (µ);

moreover, if z > 0, z = V (µ) = v̂ (µ). Hence, we can find an η s.t. (µ0, V (µ0)) =
´
H (µ, z) dη (µ, z)

with support of η entirely within {(µ, v̂ (µ)) |µ ∈ ∆ (Ω)}. Therefore, there exists a τ ∈ g (µ0).

4 Bound on the size of S

In footnote 7, we claimed that |S| need not exceed min {|A| , |Ω|}. Proposition 1 implies that there

exists an optimal signal with |S| ≤ |A|. Hence, we only need to establish the following:

Proposition 4. There exists an optimal mechanism with |S| ≤ |Ω| .
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Proof. Since v̂ is bounded, hyp (v̂) is path-connected. Therefore, it is connected. The Fenchel-

Bunt Theorem (Hiriart-Urruty and Lemaréchal 2004, Thm 1.3.7) states that if S ⊂ Rn has no

more than n connected components (in particular, if S is connected), then any x ∈ co (S) can be

expressed as a convex combination of n elements of S. Hence, since hyp (v̂) ⊂ R|Ω|, any element

of co (hyp (v̂)) can be expressed as a convex combination of |Ω| elements of hyp (v̂). In particular,

(µ0, V (µ0)) ∈ co (hyp (v̂)) can be expressed a convex combination of |Ω| elements of hyp (v̂). This

further implies that (µ0, V (µ0)) can be expressed as a convex combination of |Ω| elements of the

graph of v̂. Hence, there exists an optimal straightforward mechanism which induces a distribution

of posteriors whose support has no more than |Ω| elements.

5 Monotonicity of v̂ and optimality of worst beliefs

In Section 5.1, we observed that when Sender’s payoffs are monotonic in Receiver’s beliefs, there is

a sense in which Sender always induces the worst belief consistent with a given action. Here we

formalize that claim.

Say that v̂ is monotonic if for any µ, µ′, v̂ (αµ+ (1− α)µ′) is monotonic in α. When v̂ is

monotonic in µ, it is meaningful to think about beliefs that are better or worse from Sender’s

perspective. The simplest definition would be that µ is worse than µ′ if v̂ (µ) ≤ v̂ (µ′). Note,

however, that because v (a, ω) depends on ω directly, whether µ is worse in this sense depends both

on how Receiver’s action changes at µ and how µ affects Sender’s expected utility directly. It turns

out that for our result we need a definition of worse that isolates the way beliefs affect Receiver’s

actions.

When v̂ is monotonic, there is a rational relation on A defined by a % a′ if v̂ (µ) ≥ v̂ (µ′)

whenever a = â (µ) and a′ = â (µ′). This relation on A implies a partial order on ∆ (Ω): say that
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µ B µ′ if

Eµu(a, ω)− Eµu
(
a′, ω

)
> Eµ′u (a, ω)− Eµ′u

(
a′, ω

)
for any a % a′. In other words, a belief is higher in this partial order if it makes better actions

(from Sender’s perspective) more desirable for Receiver. The order is partial since a belief might

make both a better and a worse action more desirable for Receiver. We say that µ is a worst belief

inducing â (µ) if there is no µ′ C µ s.t. â (µ) = â (µ′). We then have the following:

Proposition 5. Suppose Assumption 1 holds. If v̂ is monotonic, A is finite, and Sender benefits

from persuasion, then for any interior belief µ induced by an optimal mechanism either: (i) µ is a

worst belief inducing â (µ), or (ii) both Sender and Receiver are indifferent between two actions at

µ.

Proof. Suppose Assumption 1 holds, v̂ is monotonic, A is finite, and Sender benefits from persua-

sion. Now, suppose µ is an interior belief induced by an optimal mechanism. Since Assumption 1

holds and Sender benefits from persuasion, Receiver’s preference at µ is not discrete by Proposition

6. Therefore, Lemma 1 tells us ∃a such that Eµu(â (µ) , ω) = Eµu (a, ω) . If (ii) does not hold, we

know Eµv(â (µ) , ω) > Eµv(a, ω). Therefore, â (µ) % a. Hence, given any µ′ C µ,

0 = Eµu(â (µ) , ω)− Eµu (a, ω) > Eµ′u (â (µ) , ω)− Eµ′u (a, ω) .

Since Eµ′u (a, ω) > Eµ′u (â (µ) , ω), we know that â (µ) is not Receiver’s optimal action when her

beliefs are µ.

Hence, for any µ′ C µ, â (µ′) 6= â (µ), which means that µ is a worst belief inducing â (µ).
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