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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper examines the impacts of weather shocks, 
defined as rainfall or growing degree days more than a 
standard deviation from their respective long-run means, 
on household consumption per capita and child height-
for-age. The results reveal that the current risk-coping 
mechanisms are not effective in protecting these two 
dimensions of welfare from erratic weather patterns. 
These findings imply that the change in the patterns 
of climatic variability associated with climate change is 
likely to reduce the effectiveness of the current coping 

This paper is a product of the Poverty Reduction and Equity Unit, Poverty Reduction and Economic Management 
Network. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to 
development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://
econ.worldbank.org. The author may be contacted at eskoufias@worldbank.org.  

mechanisms even more and thus increase household 
vulnerability further. The results reveal that weather 
shocks have substantial (negative as well as positive) 
effects on welfare that vary across regions (North vs. 
Center and South) and socio-economic characteristics 
(education and gender). The heterogeneous impacts of 
climatic variability suggest that a “tailored” approach to 
designing programs aimed at decreasing the sensitivity 
and increasing the capacity of rural households to adapt 
to climate change in Mexico is likely to be more effective. 
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1. Introduction 
 

While there is a great deal of uncertainty over the exact magnitudes of the global 

changes in temperature and precipitation, it is widely accepted that significant deviations of the 

variability of climate from its historical patterns are likely to occur (IPCC, 2007).3 Considering 

that millions of poor households in rural areas all over the world are dependent on agriculture, 

there are increasing concerns that the change in the patterns of climatic variability is likely to 

add to the already high vulnerability of households in rural areas of developing countries, thus 

posing a serious challenge to development efforts all over the world. In view of this impending 

threat of climate change upon the poor, it is critical to have a deeper understanding of the 

household adaptation strategies and targeted measures that could mitigate the poverty impacts 

of erratic weather. With these considerations in mind, in this paper, we carry out an analysis of 

the welfare impacts of climatic variability in the rural areas of Mexico.  

Our objectives are threefold.  First, we try to quantify the extent to which unusual or 

erratic weather has any negative impacts on the welfare of households. Based on historical 

experience and the multiplicity of economic and institutional constraints faced, rural 

households in Mexico, as most rural households all over the world, have managed to develop 

traditional strategies for managing climatic risk. Eakin (2000), for example, documents how 

smallholder farmers have adapted to climatic risk in the Tlaxcala region of Mexico. Yet, 

quantitative evidence on how successful such risk management strategies are at protecting 

household welfare in Tlaxcala or elsewhere in Mexico is quite scarce.4 To the extent that the 

current risk-coping mechanisms are not very effective in protecting welfare from erratic 

weather patterns one can be quite certain that the change in the patterns of climatic variability 

associated with climate change is likely to reduce the effectiveness of the current coping 

mechanisms even more and thus increase household vulnerability further. We use two separate 

nationally representative household surveys—the first two waves of the Mexican Family Life 

                                                                 
3 According to the Intergovernmental Panel on Climate Change (IPCC) a narrow definition of climate refers to the 
statistical description in terms of the mean and variability of quantities such as temperature, precipitation and wind 
over a period of time ranging from months to thousands of years.  The norm is 30 years as defined by the World 
Meteorological Organization (WMO).  Climate is different from weather which refers to atmospheric conditions in a 
given place at a specific time.  The term ―climate change‖ is used to indicate a significant variation (in a statistical 
sense) in either the mean state of the climate or in its variability for an extended period of time, usually decades or 
longer (Wilkinson 2006). 
4  Other studies relying on the perceptions of respondents about the incidence of different types of shocks, such as 
floods, droughts, freeze, fires and hurricanes include Garcia Verdu (2002), Skoufias (2007) and de la Fuente (2010). 
None of these earlier studies, however, make use of actual meteorological data.  
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Survey (MxFLS), carried out in 2002 and in 2005, and the 1999 National Survey on Nutrition 

(ENN)—to examine whether climatic variability, namely the incidence of rainfall and 

temperature  more than one standard deviation from their respective long run means, have 

significant impacts on the wellbeing of rural households and vulnerable individuals.  Well-being 

or welfare is defined by two (of many) important dimensions—household consumption 

expenditures per capita, and individual health outcomes.  

Second, we attempt to shed light on the channels through which climatic variability can 

impact the two different dimensions of welfare examined. On the one hand, erratic weather 

may affect agricultural productivity which, depending on how effective was the portfolio of ex 

ante and ex post risk management strategies employed, may translate into reduced income and 

reduced food availability at the household level.5  Such reductions in food availability may not 

affect all household members equally.  On the other hand, both temperature and precipitation 

may affect the prevalence of vector borne diseases, water borne and water washed diseases, as 

well as determine heat or cold stress exposure (Confalonieri et al., 2007).  Many parasitic and 

infectious species have very specific environmental conditions in which they survive and 

reproduce, and a slight change in precipitation or temperature could render previously 

uninhabitable areas suitable for a particular parasitic and infectious species.  Specifically in 

Mexico, several studies have shown positive correlations between temperature, and vector- and 

food-borne illnesses (Ministry of Environment and Natural Resources, 2007).  

It is also the case, that changes in the environmental conditions do not uniformly affect 

the health of household members.  Children are more likely to contract or die from vector borne 

diseases, more likely to suffer from diarrhea, more likely to suffer psychologically from extreme 

weather events, and more likely to suffer from maltreatment due to household economic stress 

(Bartlett, 2008).  Early childhood health not only affects children‘s current wellbeing but may 

determine their adulthood quality of life including their productivity and cognitive 

development.  Malnutrition, from having insufficient food intake or as a byproduct of repeated 

diarrheal infections, can cause structural damage to the brain and impair motor development in 

                                                                 
5  For example, households may undertake ex-ante income-smoothing strategies and adopt low return-low risk crop 
and asset portfolios (Rosenzweig and Binswanger, 1993).   Households may use their savings (Paxson, 1992), take 
loans from the formal financial sector to carry them through the difficult times (Udry, 1994), sell assets (Deaton, 
1993), or send their children to work instead of school in order to supplement income (Jacoby and Skoufias, 1997).  
These actions enable households to spread the effects of income shocks through time. Additional strategies include 
the management of income risk through ex-post adjustments in labor supply such as multiple job holding, and 
engaging in other informal economic activities (Morduch, 1995; Kochar, 1988). 
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infants which in turn affect the cognitive development of a child (Victora et al., 2008; Guerrant 

et al., 2008).  Furthermore, Eppig, Fincher and Thornhill (2010) find a correlation between 

infectious diseases and IQ.  They explain their findings as the competition between energy 

needs for the development of the brain and energy needs needed to fight off disease.  They 

single out diarrheal diseases as potentially being the most energy consuming ones.  Overall, 

childhood health has been found to have an impact on adult health, and employment (Case, 

Fertig and Paxson, 2005), cognitive abilities (Case and Paxson, 2008; Grantham-McGregor et al., 

2007; Maluccio et al., 2009), educational outcomes (Alderman, Hoddinott and Kinsey, 2006; 

Glewwe and Miguel, 2008; Maluccio et al., 2009), and productivity (Hoddinott et al., 2008).  

These findings underline the importance of focusing on the health outcomes for young children. 

Third, we investigate the extent to which certain household or individual characteristics, 

such as gender, educational attainment, or participation in supplemental nutrition programs, or 

where the household lives, alter the welfare impacts of climatic variability in rural areas. It is 

quite possible that the resilience and the ability to adapt to changes in weather and 

environmental conditions differs significantly across the spectrum of socio-economic 

characteristics in the population and across geographical regions.  

In view of these considerations, we carry out two sets of analyses. We first estimate the 

impact of weather shocks on household consumption controlling for a variety of socio-economic 

characteristics of the household and interact the weather shocks with key household 

characteristics. We then examine the effect of the climatic variability on child health, and again 

interact the weather shocks with different individual characteristics. By analyzing two aspects 

of welfare and separating the impacts by key sub-populations, we gain a deeper understanding 

of who and what aspects of welfare are most affected by weather shocks allowing for a more 

informed and more cost-effective policy design.    

The rest of the paper is organized as follows: The next section gives an overview of past 

research on the impact of weather on consumption and on health outcomes.  Section 3 outlines 

our estimation strategy. Section 4 gives background on Mexican agriculture and describes the 

data sources.  Section 5 presents the results and Section 6 concludes.   
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2. Past Research  
 

One could think of the environment, health and consumption as being part of a simple 

system (Figure 1) where health and consumption are two important dimensions of welfare.  

Consumption, measured at the household level is influenced by the environment; and health, 

measured at the individual level, is influenced both by the environment and consumption.6  To 

see the interaction among the three facets, it is instructive to think of each of the impacts in 

isolation from the other two. 

 

 

 

Environment: Precipitation 

and temperature 

Agricultural 

income 

Consumption 

Prevalence of vector-, 

water- and food-borne 

illnesses 

Health outcomes 

Other income 

Coping 

mechanisms 
Coping 

mechanisms 

Figure 1 

 
The environment affects consumption mainly through its impacts on current 

agricultural production or income.  This is especially true in rural areas where crop yields are a 

function of precipitation and temperature, but the environment could also affect non-

                                                                 
6 There may also be some feedback from the health status of an individual to his/wage earning capacity and 
ultimately to the consumption expenditures at the household level. For now, we do not explore this pathway.  Also, 
health affects the consumption bundle directly in two ways—ex post (e.g. being sick requires buying medicines) and 
ex ante (e.g. preventive health care). 
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agricultural income to the extent that it is connected to weather, such as providing outdoor 

activities, or vendors with open-air stalls. Depending on the household‘s ability to cope with 

income fluctuations, a negative income shock brought on by bad weather may translate into a 

reduction in consumption (e.g. Jacoby and Skoufias , 1998;  Dercon and Krishnan, 2000).  In 

general, households are better able to insure their consumption against idiosyncratic shocks, 

which are shocks that affect only a particular household, such as the death of a household 

member, than they are able to insure against covariant shocks, shocks that affect a large number 

of households in the same locality, such as weather related shocks (Harrower and Hoddinott, 

2005).  Furthermore, when consumption is affected by a shock, different types of consumption 

may be impacted differently.  In general, food consumption is better insured than non-food 

consumption, including health (Skoufias and Quisumbing, 2005).7   

Even if at the household level there does not appear to be a significant impact on total 

consumption, the intra-household allocation of resources may change after a weather shock 

possibly leading members to be differentially impacted.  Differences in the health outcomes of 

individuals within a household would be brought about if the food resources to a particular 

individual were reduced sufficiently for them to experience malnutrition or if his share of other 

resources, such as preventive or curative health related goods, was lower than in a typical year.  

Such a reduction is likely in a household which in a typical year is only barely able to access 

sufficient nutrition for each household member.  Furthermore, an environmental shock may 

also directly affect the health of an individual, for example, by changing the prevalence of 

diseases or the risk of exposure to heat or cold stress.  Assuming no changes in consumption 

choices, a change in the prevalence of diseases itself has an impact on individual‘s health and 

again the impact depends on the individual‘s characteristics. Studies have shown negative 

impacts of weather events, such as droughts on health outcomes (both concurrent and 

persistent impacts), but in most cases the studies estimate aggregate impacts and it is not clear if 

the impacts stem from lower consumption levels or from the changes in environmental 

conditions.   

Studies on the impacts of shocks on individual welfare generally use some health 

outcome as the preferred measure.  The evidence from other countries suggests that both 

gender and age matter.  For example, Rose (1999) finds that in rural India a positive rainfall 

                                                                 
7 There is also some evidence that in some societies weather shocks affect household consumption differently 
depending on whose agricultural income (male or female) is impacted by the shock (Duflo and Udry, 2004). 
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shock increases the survival probabilities of girls more than the survival probabilities of boys. 

Similarly, Hoddinott (2006) finds that there is a small but transient effect of drought on the BMI 

of women, but not on men‘s. Also, the age of the individual at the time of the shock matters.  

For example, Hoddinott and Kinsey (2001) find that a drought experienced at 12 months to 24 

months of age, had an impact on annual growth rate, and that the impact persisted for the four 

years of the study.  No such impact was found for shocks experienced later in life.  Maccini and 

Yang (2009) find a slightly different result where an individual is susceptible to weather.  In 

their study on rural Indonesia weather shocks experienced in the first year of life have an 

impact on adult outcomes.  Namely, women born in localities with greater than average rainfall 

are taller as adults, have completed more years of education, and live in wealthier households.  

No impacts on men‘s outcomes are observed.   

The final impact of a weather-related shock on health is an interplay among the indirect 

impact of weather on health through changes in income or production, the direct impact from 

changes in the environmental conditions, and the changes in the types of consumption that the 

household and individual is able to make.  That is, weather conditions not only alter the budget 

constraint faced by a household, but also may alter the optimal consumption composition.  The 

impact from an environmental shock on welfare depends on the household‘s and individual‘s 

ability to cope against income fluctuations and changes in the environmental conditions.  Such 

coping mechanisms may include availability of different assets, access to government 

sponsored programs, or access to healthcare.   

A particular environmental shock may have a direct negative impact on health but a 

positive impact on health indirectly through consumption.  Table 1 summarizes the expected 

direction of impacts from weather events on consumption and on health.  The first column 

states the type of weather event, namely an extreme event or increase in rainfall or temperature 

within a normal range.  The second column describes the impacts on agricultural production 

and income. Both extremes of rainfall (drought or flood) and temperature (extremely cold or 

extremely hot) will negatively impact yields and thus, potentially, income and consumption as 

well.  In general within a normal range of rainfall and temperature, additional rainfall or 

warmer days should increase yields in temperate climates, but will most likely reduce yields in 

tropical climates. Specific to Mexico, Galindo (2009) identifies both states where higher 

temperatures lead to higher yields and states where they lead to lower yields.  Given concave 
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production functions, similar differences occur with precipitation.  Malnutrition (and negative 

health outcomes) is possible if food consumption is reduced as a result of a weather event 

especially if prior to the event the household or individual was barely consuming the required 

nutritional needs (column 3). 

The impacts of changes in weather on health are even more complex (columns 4, 5, and 

6).8  The prevalence and range of a particular pathogen, disease vector, or animal reservoir are 

determined by specific ranges of temperature, precipitation and humidity (Patz et al., 2003).  

Whether an atypically rainy or dry period increases the prevalence of a disease depends on the 

specific climate of a region. In regions bordering a pathogen‘s habitat, even a small deviation 

from the normal climate, can make large areas susceptible to the infectious disease.  That is, if a 

region is just too cold (or too hot) for a particular pathogen or vector then an unusually hot (or 

cold) year could make the region susceptible to the disease caused by the pathogen or carried 

by the vector. Evidence of the importance of climatic factors can be seen from the seasonality of 

many infectious diseases, such as influenza (to temperature), and malaria and dengue (to 

rainfall and humidity).   

In general, extreme temperatures are lethal to vector-born disease pathogens.  An 

increase in precipitation will in general improve breeding conditions.  However, extremely high 

precipitation, i.e. floods, may, on one hand, reduce infectious diseases by eliminating breeding 

grounds but, on the other hand, may cause other vectors, such as rodents, to come in more 

frequent contact with humans.  Extremely low precipitation, or droughts, may create stagnant 

pools of water from streams and rivers, which are good breeding grounds for pathogens and 

vectors, thus increasing the prevalence of the diseases associated with the pathogen or vector.   

In addition, besides vector-borne pathogens, water- and food-borne pathogens (causing 

enteric infections) are also susceptible to precipitation and temperature.  Unlike vector-borne 

illnesses, both heavy and low precipitation have been found to increase enteric infections.  

Furthermore, there is evidence of a positive relationship between temperature and diarrheal 

diseases. 

 
 
 
 

                                                                 
8 The discussion on the impact of climate on health relies heavily on Patz et al. (2003). 
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3. Estimation Strategy 
 

In our estimation strategy for the first set of analyses we use pooled panel data.  To 

estimate the impact of weather variability on consumption we estimate the following equation.  

 

                                               (1) 

 

where            is the logarithm of consumption expenditures per capita of household, h, 

located in locality l, in the year t.      is a vector describing the weather shocks in locality l, at 

time t,         is a vector of other factors explaining consumption levels, such as assets, and 

household characteristics.    are locality fixed effects which control for all local, time invariant 

characteristics including the agro-climatic characteristics of each locality,    and    control for 

survey year and season (wet or dry) differences, respectively, and    is the error term.   

measures the impact of weather shocks on consumption.  In the absence of insurance against 

income shocks any weather shock that reduces income should also reduce consumption. 

In order to determine if the impact of a weather shock differs among different 

populations, we introduce into equation (1) an interaction term, such that it becomes,  

 

                                                                       (2) 

 
Here        identifies the type of household.  It could indicate, for example, whether or 

not the household head is female or has completed at least primary school.  In this case    

measures the impact of the weather shock on households without the particular characteristic 

and         measures the impact of weather on households with the particular characteristic, 

with    denoting the difference in the impact between the two groups.   

For the second set of analyses, relating weather shocks to health outcomes, we use cross 

sectional individual level data.  The health outcome of an individual can be written as: 

 

                                             (3) 

 

where        is the health outcome of individual i in locality l at time t,      is a vector describing 

the weather shocks in locality l, at time t,    is a vector of other factors influencing the health of 



 
 

10 
 

an individual, such as household and housing characteristics,    are location fixed-effects,    

and    control for survey year and season (wet or dry) differences, and        is the error term.   

Similarly to the consumption equation, the health outcome equation can be expanded to 

include interaction terms to test for the relevance of specific policy measures.  Equation (3) 

becomes, 

 

                                                                     (4) 

 

where        identifies the type of individual or household.  It could indicate, for example, the 

gender of the individual or whether or not the individual participates in a supplemental 

nutrition program.  In the case of gender, if we set       for girls,      would measures the 

impact of the weather shock on boys and         the impact of weather on girls. Again,    

measures the difference in the impact between the two sexes.   

 
 
4. Background and Data Sources 

 

For our empirical analyses we focus on rural households in Mexico.  CONEVAL 

estimates that in 2005, 47% of the population lived in poverty, with 18% of the population living 

in extreme poverty.  In 2006, 15.5% of 0 to 5 year-olds had a height-for-age z-score of less than -2 

(stunted) and 3.4% of 0 to 5 year-olds had a weight-for-age z-score less than -2.  In rural areas 

the rates were slightly higher with the height-for-age and weight-for-age z-scores below -2 for 

4.9% and 24.1% of the 0 to 5 year olds, respectively (WHO).  These statistics suggest that a 

relatively large population of the country could be at risk from even small decreases in their 

income. 

In Mexico, about 82% of cultivated land is rainfed (INEGI, 2007), and thus being very 

susceptible to weather fluctuations.  Corn is produced in 59% of cultivated land in the wet 

season and 31% of the land in the dry season.  The total area cultivated is more than six times 

greater in the wet season than in the dry season (INEGI, 2007).  More importantly, corn is used 

by many small-scale farmers not only as a source of income but also directly as a subsistence 

crop.  Switching to other crops, such as wheat or barley, which have a shorter growth cycle but 

are not as useful for household consumption, is considered a last resort (Eakin, 2000).  



 
 

11 
 

Both rainfall and temperature are important factors affecting crop yields and exhibit a 

concave relationship with agricultural productivity (Galindo, 2009).  Whether increased 

precipitation or temperature is beneficial to the agricultural production process depends on the 

crop, region, and the season in which the change occurs.  For example, corn production is found 

to benefit from additional temperature in Hidalgo, Estado de México, Puebla and Querétaro 

and decrease with additional temperature in Baja California de Sur, Campeche, Chiapas and 

Guerrero (Galindo, 2009).   Similarly, he finds the optimal levels of rainfall below and above 

which yields fall depend on the class of crops considered.  Alternatively, Conde et al. (1997) find 

that in the long run a climatic change with an increase of 2°C and a 20% decrease in rainfall 

would increase the amount of unsuitable land for corn production by 8% in a sample of seven 

corn producing municipalities (from the states of Mexico, Puebla, Veracruz and Jalisco).  

Similarly a 2°C increase in temperature but a 20% increase in rainfall would increase the 

amount of land unsuitable for corn production by 18%.  Simulating a temperature increase of 

4°C over the mean temperature, the amount of land unsuitable for production, with a 20% 

increase and a 20% decrease in rainfall, increased by 20% and 37%, respectively.  Based on 

actual production estimates, Appendini and Liverman (1994) estimate that in Mexico droughts 

are responsible for more than 90% of all crop losses.   

The agricultural year in Mexico runs from October to September.  It is composed of a 

dry season, from October to the end of March, and a wet season, from April to the end of 

September.  Given the water and temperature requirements of corn, most of the rainfed corn is 

planted and harvested during the wet season.  The growing cycle for corn can be divided into 

three phases (Neild and Newman).9  The first phase (vegetative phase) lasts between 60 to 40 

days. The longer it takes for the seed to germinate (i.e. the colder it is after planting) the higher 

the probability that the seed is weak and subject to disease producing a lower yielding crop. For 

the first half of this time the growing point is usually below ground and the plant can withstand 

to some degree cold temperatures.  After the growing point is above ground level then frost can 

cause significant damage to the plant.  With the ear formation begins the reproductive phase 

with the ear forming stage lasting for about 20 days and an additional 20 to 30 days are required 

for the grain fill stage.  Inadequate water availability during this phase greatly affects yields 

with the impacts being the greatest during the ear forming stage.  Also extremely warm 

                                                                 
9 The description of corn‘s growth cycle is adapted from Neild and Newman. 
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temperature (above 32˚C) during the second half of the vegetative phase and the reproductive 

phase reduce yields.  The last phase (maturation phase) lasts between 20 to 35 days.    

Planting later in the season ensures that the seed germinates quicker, however waiting 

too long does not allow the crop to complete the maturation stage before the growing season 

ends. Furthermore, specific to Mexico, in July and August there is a period of mid-summer 

drought called canícula (Figure 2) affecting farmer‘s planting decisions.  In general, farmers 

want the corn to flower (for the ear formation stage to be complete) before the onset of the 

canícula in order to better the odds of the crop survival in case it is a drier than normal canícula 

(Eakin, 2000).  This implies that the months leading up to the canícula are of special importance 

in Mexico.  

 
 
  

Figure 2: Agricultural Cycle in Mexico 

Feb  Mar Apr May Jun Jul Aug  Sep Oct Nov Dec Jan Feb Mar Apr May 

Dry Wet Season Dry Season Wet season 

 
 

Pre-canícula Canícula         

 

  
     1999: ENN     

 2001: MxFLS I           

     2005:  MxFLS II (until 2007)   →  

 
 

For the household data we use the first two waves of surveys from the Mexico Family 

Life Survey (MxFLS) (Rubalcava and Teruel, 2006). The first wave of the survey in 2002 

interviewed 3,353 rural households10 in 75 different localities located in all regions of the 

country and was conducted between March 2002 and August 2002, with the majority of the 

information collected between April and June.   The second wave of the survey was collected 

between 2005 and 2007 with the majority of the data collection occurring from May 2005 to 

September 2005.  The follow-up survey interviewed 3,271 households in 112 rural localities.11  

Both waves collected detailed information on each household member including information on 

educational attainment, migration and anthropometric measures, and as well as on household 

                                                                 
10 Rural households are considered to be those that lived in localities with less than 2,500 inhabitants. 
11 Given that some households (or parts of households) had moved between the surveys, in Wave 2 the households 
are spread out over a larger number of localities.  
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expenditures.12  Separate surveys were administered to the leaders of each locality on services 

and programs available at the locality. 

For the health outcome analyses we use the Encuesta Nacional de Nutricíon (National 

Nutrition Survey) collected by the Instituto Nacional de Estadística y Geografía (INEGI) (National 

Institute of Statistics and Geography) and the Secretaría de Salud of Mexico (Secretary of Health) 

in the last quarter of 1999.13  The survey interviewed 7,180 rural households in 767 different 

localities.  The survey collected general information on all members of the household and more 

detailed information, including anthropometric measures and illnesses in the past 2 weeks, for 

females between 12 and 49 years of age, and for all children 12 years or younger.    

The climate data used in this paper come from the Mexican Water Technology Institute 

(Instituto Mexicano de Tecnología del Agua—IMTA). The IMTA has compiled daily weather data 

from more than 5,000 meteorological stations scattered throughout the country. The data span a 

very large period of time—from as far back as the 1920s to 2007—and contain information on 

precipitation, and maximum and minimum temperature. 

The meteorological stations registered these variables on a daily basis and we used this 

information to interpolate daily values of these variables for a geographic centroid in each of the 

country‘s municipalities14. The centroid was determined as the simple average of the latitude 

and longitude coordinates of all the localities listed in INEGI‘s 2005 catalogue corresponding to 

each municipality, which resulted in a locality-based centroid. We chose this method over a 

population-weighted average because that alternative would bias the interpolation towards 

urban rather than rural areas. The interpolation method used is taken from Shepard (1968), a 

commonly used method which takes into account relative distance and direction between the 

meteorological stations and the centroids (see Appendix 5). 

We carried out an independent interpolation for every day between 1950 and 2007, for 

each municipality. Since not all meteorological stations existed throughout the entire period and 

                                                                 
12 MxFLS collects information on the value spent purchasing various categories of goods—food, dining out, 
healthcare, transportation, personal items, education, recreation, cleaning services, communications, toys/baby 
articles/childcare, kitchen items and bedding, clothing, tobacco, gambling, appliances and furniture, and other 
expenses—as well as the value of goods consumed from own production or received as gifts.  Unfortunately the 
value of goods consumed from own production versus the value of goods received from others cannot be separated. 
13 Although the MxFLS also collected anthropometric measures for the household members, we choose not to use 
them as we can only get accurate height-for-age information for the first wave observations and of the potential 
under 36 month olds we lose about 30% due to non-measurement  and an additional 20% due to other missing 
information. 
14 We took INEGI‘s 2005 catalogue of localities, which contained 2451 municipalities. 
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given that during the time they were in operation they sometimes failed to report their records, 

each interpolation is based on a different number of data points—and indeed different weather 

stations. These problems as well as the accuracy of the data get worse as one looks at earlier 

years, which has a corresponding effect on our interpolations. Thus, interpolations for the year 

1950 are less reliable than those for 2007. 

From these weather data, we calculate the total rainfall and growing degree days (GDD) 

for each agricultural year (October to September), for each wet season (April to September) and 

for each pre-canícula period (April, May, June), or the months leading to the canícula, from 1951 

to 2002.15  Instead of maximum of minimum temperatures we use GDD, a cumulative measure 

of temperature based on the minimum and maximum daily temperatures.  GDD measures the 

contribution of each day to the maturation of the crop.  Each crop, depending on the specific 

seed type and other environmental factors, has its own heat requirements for maturity.  

Different corn varieties, for example require between 2,450 and 3,000 GDDs to mature, whereas 

different wheat varieties only require between 1,800 and 2,000 GDDs.16   

Each crop has specific base and ceiling temperatures,        and          , respectively, 

which contribute to growth.  The base bound sets the minimum temperature required for 

growth and the ceiling temperature sets the temperature above which the growth rate does not 

increase any further.  Thus, the contribution of each day,  j, to the cumulative GDD is given by  

 

                                                  (3) 

 

where              and              are the minimum and maximum daily temperature truncated at the base 

and ceiling values.  In other words, any daily temperature (minimum or maximum) below the 

base temperature is assigned the base temperature value and any daily temperature above the 

ceiling temperature is assigned the ceiling temperature value.17  To determine the cumulative 

GDD at any point in time for a specific cultivation the daily GDDs since planting are summed. 

                                                                 
15 Given that the agricultural year starts runs from October to September, the first agricultural year that we use is 
1951, and we only use the last three months of the 1950 calendar year. 
16 For other important crops in Mexico the required GDDs are 2,400 for beans and 2,200 to 2,370 for sorghum.  The 
GDD values are taken from The Institute of Agriculture and Natural Resources Cooperative Extension, University of 
Nebraska-Lincoln.  Growing Degree Days & Crop Water Use. http://www.ianr.unl.edu/cropwatch/weather/gdd-
et.html,  Accessed July 22, 2010.  
17 We use the Modified Growing Degree Days formula where the minimum and maximum temperatures are adjusted 
prior to taking the average.  
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Given the mixture of different crops grown in the survey areas, we use the generalized 

bounds of 8° Celsius and 32° Celsius (for example, Schlenker and Roberts, 2008).  In our specific 

case, any daily minimum or maximum temperature below 8° Celsius is treated as being 8° 

Celsius and any daily minimum or maximum temperature above 32° Celsius is treated as being 

32° Celsius.  Thus a day with a minimum and maximum temperature of 8° Celsius or below will 

yield no GDDs, whereas a day with a maximum and a minimum temperature of 32° Celsius or 

above will yield 24 GDDs.    

For our measures of weather shocks we first calculate the municipal historic mean 

rainfall and GDD between 1951 and 1985 for the agricultural year, for the wet season and for the 

pre-canícula period. Given that there is incomplete information for some months for some of the 

municipalities (i.e. none of the 20 closest weather stations reported data for 5 or more 

consecutive days), in our sample of rural municipalities, the average climate is based on 15 to 35 

years of information.  75% of the rural households in our samples live in municipalities with at 

least 30 years of complete weather information from 1951 to 1985.18    

Our chosen measures of weather shocks,  , are based on the degree of deviation from 

the 1951-1985 average weather.  A shock is defined by an indicator variable identifying those 

observations where the weather variable is more than one standard deviation from its long-run 

mean.  A municipality is defined to have experienced a negative rainfall shock if the prior 

period‘s rainfall was at least one standard deviation less than the average 1951-1985 rainfall; 

and a municipality is defined to have experienced a positive rainfall shock if the prior period‘s 

rainfall was at least one standard deviation more than the average 1951-1985 rainfall.  Thus, 

there are in total four measures describing the prior year‘s (or wet season‘s or pre-canícula 

period‘s) weather. Table 2 shows the 1951 to 1985 average weather conditions by regions for 

Mexico. One standard deviation rainfall shock translates to an average of about 30% difference 

in annual or wet season rainfall and a 50% difference for the pre-canícula period.  The GDD 

shocks are, on average, about 8% deviations from the mean.  The climate in each of the regions 

is distinct and even within a region there is much variability.  In general, however, the North is 

drier than the rest of the country and the Center is colder than the rest of the country.   

                                                                 
18 To balance the need to calculate the historic means with as many years of information as possible but excluding 
recent years which may have been affected by changing climate, we construct the historic means and standard 
deviations of the weather variables using data from 1951 to 1985.  
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Comparing weather data from 1986 to 2002 with their historic means (from 1951 to 

1985), there appears to be an increase in the number of temperature shocks (both negative and 

positive), but no similar increase in rainfall shocks (Table 3) in Mexico.19  The survey date is used 

to match each household to the weather information.  Each household is assigned the wet 

season and dry season prior to the survey.  That is, if a household was surveyed in dry season 

of year t, the weather shocks would based on the weather in the dry season t-1 and the wet 

season t-1.  However, if the household was surveyed in the wet season of year t, the weather 

shocks would be based on weather in dry season t and wet season t-1.   As an illustration, for 

the households in the 2002 wave of the MxFLS, the weather variables of interest are rainfall and 

GDD from the 2001 wet season and the 2002 dry season (Figure 2).  The harvest from the 2002 

wet season would not have been harvested prior to the surveys and thus the households‘ 

income and production would be based on the 2001 wet season and the 2002 dry season 

harvests.   

Tables 4a and 4b show the distribution of rainfall and GDD shocks for the rural 

municipalities in the final samples from MxFLS and ENN, respectively.  Although the number 

of municipalities from which the household surveys are drawn is relatively small, we do still 

have some variability in the weather variables.  There are municipalities that experienced 

positive and negative rainfall as well as GDD events.  As Table 4 shows, there are more GDD 

shocks than rainfall shocks in the sample.   

The original MxFLS localities, those chosen for the 2002 survey, come from 16 different 

Mexican states and from all the different regions of the country.  Although these states vary in 

the percentage of land cultivated under rainfed technologies, in most at least 75% of the land is 

rainfed (Table 5).  Also, in most at least 50% of the land cultivated in the wet season is in corn 

and in all the area cultivated in the wet season is greater than the area cultivated in the dry 

season.  These figures suggest that we can expect for an average rural household in our sample 

the income, as well as production for self consumption, to be relatively highly dependent on the 

weather and especially on the weather during the wet season.  Also, given the relative 

importance of corn, the pre-canícula period is of interest.   

                                                                 
19 The correlation of the 6 different weather shock variables for the MxFLS sample is given in Appendix 1.  The 
rainfall deviations from mean for the various periods (annual, wet season and pre-canícula period) are positively 
correlated with annual rainfall and wet season rainfall being very highly correlated.  The GDD deviations from mean 
are all very highly correlated.  Given the high correlations among the different time periods, we only include weather 
variables from one time period in each regression.   
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Besides differing in the types of crops cultivated, the localities also differ in the 

availability of services and programs.  Table 6a summarizes some of the locality characteristics 

for the 2002 and 2005 MxFLS samples.20 The information is only available for those localities in 

the original sample.  In 2005 there were households from 85 different localities since some of the 

households had moved to non-MxFLS localities.  In most of the original MxFLS localities there 

was access to primary education but access to higher education was only readily accessible in a 

few localities.  In many localities there were health services available, as about 75% of the 

localities had a public health clinic, but not all had such services locally.  In the majority (about 

75% in the 2002 sample and 99% in the 2005 sample), but not in all, qualifying households were 

able to access Oportunidades.21  Table 6b shows some characteristics of the ENN sample 

localities.  Although on average 76% of the households in the localities have electricity, only 

27% have access to a sewage system.  

 
 
5. Results 

 

Following we present the results from our analyses on the impacts of rainfall and GDD 

shocks on household consumption and on the health outcomes of children. To examine whether 

or not weather shocks impact household consumption, we estimate equation (1).  We measure 

consumption by the logarithm of per capita expenditures on all non-health related items.  We 

subtract health spending from the total expenditures since most health spending follows illness 

and thus is not welfare improving (Thomas et al., 2010).  We also look at the impact of weather 

on food expenditures given that households may spend on different spending categories after 

weather shocks.  The average share of food expenditures in our sample is 41% of total 

expenditures (without considering health expenditures).  Included in the expenditures are the 

estimated value of goods consumed from own production and the value of goods received as 

                                                                 
20 The information is more complete, although maybe more unreliable, for the 2002 sample.  In 2005 information was 
sought from both official and unofficial sources.  Information from official sources was used as the primary source of 
information and if no official information was available then the unofficial information was used instead. If more 
than one official source of information was used, and the information was conflicting, i.e. one source responding yes 
to the presence of a secondary school in the locality and the other responding no, the variable was coded as missing.  
Given this fact, in 2005 there are more observations with missing information than in 2002. 
21 Oportunidades, originally named PROGRESA, is a conditional cash transfer (CCT) program aimed to alleviate 
current poverty through monetary and in-kind benefits. 
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gifts.22 That is, the expenditure measure we use reflects wellbeing after taking into account any 

self-production or any coping mechanisms used by households to smooth consumption (such as 

selling assets, help from friends and relatives, or benefits from government programs).  The 

extent to which these impacts have long-run implications on the poverty status of the future 

welfare and poverty status of the household is beyond the scope of this paper.   

Besides the weather shock variables we include variables that capture household 

composition (number of children in the household, number of adult males in the household, 

number of adult females in the household), characteristics of the household head (years of 

schooling of the household head, gender of the household head, and the age of the household 

head), an asset index,23 and the characteristics of the housing unit (presence of a kitchen, access 

to tapped water indoors, presence of a toilet, access to piped sewage or septic tank, electricity, 

and flooring material).  These variables are all thought to explain expenditures.  To control for 

the agro-climatic conditions and other time invariant characteristics we introduce locality fixed 

effects.  To account for any systematic change between the two survey periods, we control for 

the survey wave.  Furthermore to account for the potentially different amount of resources 

available depending on the season in which the household responded to the survey, we 

introduce a season indicator variable.  Appendix 2 gives the descriptive statistics of the 

variables used in the analyses.   

 

5.1   Impacts of climatic variability on expenditures 

We run six different specifications with different measures of welfare and different 

measures of weather shocks based on equation (1).  Given differences in the average climatic 

conditions in the North, and the Centre and South regions of the country besides including all 

rural households, we limit the sample to only those households in the North and to only those 

households in the Centre and South. The first set of specifications uses the (ln) per capita 

expenditures on all non-health items and the second set uses the (ln) per capita expenditures on 

                                                                 
22 Given the way in which the expenditure survey was administered, we are unable to separate the value of 
consumption from own production from the value of goods received as gifts.  For about 7% of the rural households 
more than 50% of their food comes from non-purchased sources.  On average for a rural household about 7% of all 
food comes from non-purchased sources. 
23 The asset index is based on the principal factor analysis of how many parcels of land the household owns, whether 
or not the household owns their residence, another house, bicycle, motor vehicle, an electric device, a washing 
machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses or mules, pigs or goats, or 
poultry. 
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food as the dependent variable.  For each welfare measure we estimate 3 different 

specifications.  The first uses weather shocks in the prior agricultural year‘s annual rainfall and 

annual GDD.  The second uses weather shocks in the prior wet season and the third in the prior 

pre-canícula period.  We introduced fixed effects first at the state level and then at the locality 

level.  The results were relatively insensitive to which geographic fixed effects are used and we 

report the coefficient estimates for the weather shock variables with locality fixed effects.24   

In terms of rainfall, on average a rural Mexican household spends more on non-health 

items after negative annual rainfall shocks and more on food after a positive annual rainfall 

shock (Table 7).  Namely, if the prior agricultural year was at least one standard deviation drier 

than the 1951-1985 average, the per capita expenditures are 14 percent higher and per capita 

expenditures on food are 18 percent greater when the annual rainfall is at least one standard 

deviation more than the 1951 - 1985 average.   

The results are quite different when equation (1) is estimated separately for each of the 

two regions—North and Center/South.25  In the North, the more arid region of the country and 

with a higher percentage of irrigated land, a negative rainfall shock has no impacts on 

expenditures.  However, for the Centre/South region both negative and positive rainfall shocks 

are associated with higher expenditures on non-health items (by 25%) and positive rainfall 

shocks are also associated with higher expenditures on food (Table 7).  The results suggest that 

in the Centre/South regions both types of rainfall shocks are welfare improving. 26   

The results in terms of temperature indicate that the warmer than average wet seasons 

are associated with 18 percent higher expenditures per capita (Table 7).  That is, on average, for 

our sample of Mexican households, warmer weather is in fact welfare improving.  However, 

when we separate the sample in two—North and Center/South—positive wet season GDD 

shocks no longer are statistically significantly welfare improving.27  In addition, negative GDD 

shocks during the pre-canícula period are associated with higher expenditures on all non-health 

                                                                 
24 Appendix 3 shows the complete set of coefficient estimates for all rural households using fixed effects at the state 
and at the locality level.   
25 The North includes the states of Baja California, Baja California Sur, Chihuahua, Coahuila, Durango, Nuevo Leon, 
Sinaloa, Sonora, Tamaulipas, and Zacatecas.  All the other states are part of Center/South region. 
26 It is possible that  the higher expenditure may be a consequence of the higher local prices faced by households 
rather than due to an increase in the quantity of goods consumed.  We tried to shed some light on this issue, by 
regressing the average price (based on one to three stores) of a food item on the weather shocks controlling for state 
fixed effects. We found rather mixed results since  for those municipalities in the Center/South of the country, the 
prices of five items are positively correlated with a positive rainfall shock (potato, lemon, chili, pork, and white 
bread) and four items are negatively correlated (tomato, apple, beef, and whole fish).  
27 The coefficient estimate is positive for both samples 
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items as well as higher expenditures on food in the Central/South sample and lower non-health 

expenditures in the North sample. In the North, food expenditures are also lower after a 

negative GDD shock during the prior agricultural year (37% lower) and during the prior wet 

season (28% lower).  These results reflect Galindo‘s (2009) findings of variable impacts on 

agricultural production from changes in temperature by region and by the type of crop 

cultivated.   

It is interesting to note that in our sample, on average, unusual weather (that is, weather 

that is at least one standard deviation from the mean) is never associated with lower welfare, 

with the exception of negative GDD shocks in the North.  That is, even if the shocks do have a 

negative impact on agricultural production, the households do not see a reduction in their 

expenditures.  This suggests that households are either able to protect themselves ex-ante by 

changing their agricultural practices in response to the weather shocks, or in the case of reduced 

agricultural revenue, that households are able ex-post to keep expenditures (and welfare) from 

deteriorating by drawing down on their assets, or receiving help from formal and informal 

safety networks, such as relatives or social programs, or accessing credit. While these types of 

responses used by the households are deserving of deeper analysis they are not within the 

scope of this paper.  

 

5.2  Heterogeneity of impacts  
 

The average impacts may mask difference in response between types of households to 

weather shocks. We examine the difference in welfare levels by the sex and by the educational 

attainment of the household head by estimating equation (2). Table 8 summarizes the results of 

interacting the gender of the household head with the weather shocks. Table 9 summarizes the 

results of interacting education of the household head with the weather shocks.   

In general, a household headed by a female is never worse off because of a weather 

shock than a household headed by a male (Table 8).  In fact, if there is a positive annual or pre-

canícula period rainfall shock female headed households have a higher per capita expenditure 

than male headed households by 16 percent and 25 percent, respectively (Table 8a). 

Furthermore, with positive annual rainfall shocks food expenditures per capita are 28 percent 

higher in female headed households than in male headed ones (Table 8b).  Similarly a female 
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headed household in a municipality with a positive pre-canícula GDD shock has, on average, 44 

percent higher per capita expenditures on food than male headed households.   

Examining the households by the two regions—North, Center/South—separately, we 

find differences between female and male headed households.  Female headed households in 

the central and southern parts of the country have higher expenditures after a positive rainfall 

shock than the region‘s male headed households.  Both non-health expenditures as well as food 

expenditures are between 28 percent and 42 percent higher, respectively.  In contrast, female 

headed households in the North have 30 percent lower non-health expenditures than male 

headed households after a positive wet season rainfall shock.  However, female headed 

households in the North are not statistically significantly different from male headed 

households in terms of food expenditures, suggesting that food expenditures are protected from 

the effects of the positive rainfall shock. Also, it is the northern female headed households who 

are positively affected by a positive pre-canícula GDD shock.    

The education level of the household head also matters (Table 9).  On average, for some 

weather shocks, households where the head has not completed primary school have lower non-

health and food expenditures per capita than households where the head has completed 

primary school.  In terms of rainfall, on average households with less educated heads have 16% 

lower non-health expenditures after a positive pre-canícula rainfall shock, and 29% lower food 

expenditures after a negative pre-canícula rainfall shock.  After separate analyses for the two 

regions, we do not find any statistically significant differences in the impacts of rainfall shocks 

on non-health expenditures, but do find regional differences on food expenditures.  In the 

northern states, households with less educated heads have 38 percent higher expenditures on 

food and 51 percent lower expenditures on food than households where the head has 

completed primary school after a negative rainfalls shock during the prior year and the prior 

pre-canícula, respectively.    

Less educated households are more affected by GDD shocks than rainfall shocks and 

these differential effects are observed only in food expenditures.  The less educated households 

have on average 14% lower food expenditures after a negative annual GDD shock and 34% 

lower food expenditures after a positive annual GDD shock than household where the 

household head has completed primary schooling.  Separating the household regionally, we 

observe no differential impacts either in the Center/South grouping or in the North after a 
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negative GDD shock.28  We do observe large negative differentials in the North after positive 

GDD shocks, regardless of the timing of the shock during the agricultural year (i.e., during the 

wet season or during the pre-canícula period).  The negative differential suggests that 

households with less educated heads are less able to modify their agricultural practices to take 

advantage of more advantageous weather or to counter negative impacts of unfavorable 

weather. Another possibility is that households with less educated heads cannot access other 

mechanisms to offset negative effects of weather shocks on welfare.  The only exception is a 

negative rainfall shock in the North when the less educated households do not have lower food 

expenditures whereas the more educated households do.  This peculiar differential effect could 

be explained if crop choice is determined by education. 

 

 

5.3  Impacts of climatic variability on child health 
 

To analyze the impacts of weather on health outcomes we focus on children 36 months 

or younger living in rural areas.  This is the age group most likely to suffer negative health 

outcomes and any impacts potentially have long term consequences.  Between the ages of zero 

and three the growth rates are faster than at any other point and thus any delays have a greater 

probability of affecting overall growth (Martorell, 1999).  Shrimpton et al. (2001) find that in 

developing countries although the children when born are on average at the mean of 

standardized height-for-age there is a sharp decline in the height-for-age from ages 0 months to 

24 months and no subsequent catching up in the first 5 year of life.  Furthermore, Martorell et al. 

(2010) find evidence that weight gain the first 2 years of life had a strong impact on schooling 

outcomes whereas weight gain between 2 years and 4 years of life had a weaker impact. 

Alderman (2010) emphasizes the fact that weather caused nutritional shocks experienced in the 

first years of life have lasting impacts on productivity even if the household is able to later on 

overcome poverty.  Victora et al. (2008) find in their meta-analysis that height-for-age and 

weight-for-age are strong predictors of school achievement and that stunting between 12 and 36 

months of age is associated with poorer cognitive development.  

                                                                 
28 The coefficient estimates for negative annual GDD shocks are negative in both regions, but not statistically 
significant.   
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To analyze the impacts of weather on child outcomes we estimate equation (3).  We use 

the standardized height-for-age z-score for children 36-months or younger as our measure of 

health.29  Unlike weight-for-age, height-for-age is not as sensitive to very short-term and 

immediate scarcities or illness, but would capture more chronic conditions.30  Given that all the 

data were collected during the 1999 dry season, the year and season terms drop out.  Given that 

the weather data are at the municipal level, we use state level fixed effects to control for the time 

invariant characteristics, such as the agro-climatic conditions at the state level.  

Besides our measures of weather shocks, we also include information on household 

composition (the number of children, the number of adult males, and the number of adult 

females), on mother‘s characteristics (mother‘s education, height, and whether she speaks an 

indigenous language), information about the child (gender, if the child has an older sibling who 

was born alive within 2 years of the child‘s birth, multiple birth, the birth order of the child, 

whether the child was characterized as very small at birth, and the age of the child at the time 

anthropometric measurement was taken), an asset index, 31 housing characteristics (presence of 

indoor toilet, tap water, type of floor), and information about the child‘s locality (altitude) as 

regressors in the analyses. 32   Table 10 describes the variables used in the analyses.  Given the 

differences in the average climate in the North and in the Centre/South regions, we also 

analyze the children in each region separately.   

There are 1,995 rural children less than 36 months in the ENN dataset. Our sample 

consists of only 1,540 children.33  We only include those children whose mother has not moved 

in the past year to ensure that the weather shocks match what the child experienced.  Of the 

excluded children, there are 138 children with missing height information and 91 children with 

improbable z-scores,34 suggesting data entry errors.  The other excluded children have 

incomplete information on the covariates.  The children measured (and with probable z-scores) 

are statistically significantly older than those who are not measured.  This poses a problem 

                                                                 
29 We use, WHO Anthro for personal computers, version 3, 2009: Software for assessing growth and development of 
the world's children. Geneva: WHO, 2009 (http://www.who.int/childgrowth/software/en/ ) for calculating the 
standardized height-for-age scores.  
30 The measure does not capture any differences in mortality from unusual weather. 
31 The asset index is based on the principal factor analysis of  the household‘s ownership of a radio, a television, a 
VCR, a telephone, a computer, a refrigerator, a washing machine, a stove, a heater, and motor vehicle.  
32 Only when analyzing the effects by participation in a nutritional program, we also include nutritional program 
participation as a regressor.  
33 This is the pre-canícula sample without nutritional supplement program variables and access to health care 
included as explanatory variables. 
34 That is, their height-for-age z-scores are less than -6 or more than 6. 
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given that those children who were not measured are different, and they may be systematically 

different in other characteristics besides age as well.35  Furthermore, since only a few children 

(less than 2 percent of the sample) experienced a positive pre-canícula rainfall shock, the 

coefficient estimates for positive pre-canícula rainfall should be interpreted with caution (Table 

11).   

Bearing these caveats in mind, Table 12 summarizes the average relationship between 

weather shocks and height-for-age.  The full results for the specification are included in 

Appendix 4. A positive rainfall shock is associated with lower height-for-age scores.  This is true 

for both a positive annual and a positive wet season rainfall shocks. The coefficient estimate of 

around 0.5 points is non-trivial given that a z-score of -2 is indicative of stunting and the 

average height-for-age z-score for the children in the sample is -1.09.36  The earlier results based 

on the MxFLS consumption data suggest that there is no correlation between a positive rainfall 

shock and non-health expenditures, and that households spend more on food. Yet, the height of 

children under three years of age is negatively affected after such a shock.  Together, these 

results suggest that direct environmental effects are important and that an analysis of the 

impacts of weather shocks at the household level has serious limitations in terms of capturing 

the impacts of these shocks on certain individuals in the household.  

The negative impacts of a positive rainfall shock during the prior agricultural year or 

wet season are consistent in both of the regional subsamples (Table 12).  The biggest impact is 

from a positive rainfall shock during the wet season in the North.  Children who experienced 

such a shock are 0.7 points shorter than children who experienced an average amount of rain.  

Negative rainfall shocks appear to have different impacts in the Centre/South regions than in 

the North.  Children living in the Center/South region are taller if the prior agricultural year or 

wet season was at least one standard deviation drier than average.  In the North, however, 

children are shorter after such a shock.   

Not all children experience the same kind of health outcomes from weather shocks.  

Tables 13, 14, and 15 present the results between weather shocks and sex of the child, the 

                                                                 
35 If those who are not measured are more likely to be sick (and some of these illness are due to the weather), then the 
coefficient estimates of the weather shock variables is likely to provide a lower bound of the impact of the weather 
shock. 
36 The average does include the 144 children who lived in a locality where the rainfall was at least one standard 
deviation more than on average.  However, excluding these children the average z-score does not change 
significantly and is -1.08. 
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mother‘s educational level, and the household‘s participation in a supplemental nutrition 

program, respectively.   

Although, on average in this sample, the girls‘ and boys‘ average height-for age 

measures are not statistically significantly different, they are significantly different when the 

child experiences a positive GDD shock in the prior agricultural year (Table 13).  Boys are 

shorter when the prior year, wet season or pre-canícula period was at least one standard 

deviation warmer than on average.  Girls are statistically significantly different from the boys 

and in girls there are no differences between those who experienced an unusually warm year 

and those who did not.  The result may reflect the differences in disease morbidity rates by 

gender.  In general, infant boys, especially those with even slight malnutrition, have higher 

mortality and morbidity rates from early childhood infections and diseases (Wells, 2000).  It is 

also possible that there are differences in the types of activities that the children engage in (for 

example boys may play more outside and be more exposed to the new set of diseases) or that 

there are differences in the care.  The average results are driven by children in the central and 

southern regions of the country. In the North boys are not any worse off from a positive GDD 

shock than girls are.  The regional result may reflect the regional differences in the climate.  It 

may be that on average in the North positive GDD shock does not alter the environment in a 

way to change the prevalence of diseases or households are better apt at dealing with such 

changes.  However, in the North, we do observe that girls are worse off than boys from rainfall 

shocks—from a negative pre-canícula rainfall shock and from positive annual and wet season 

rainfall shocks.  Again, the result may reflect differences in the type of activities that the 

children engage in or indicate differences in care.   

When faced with a weather shock, the mother‘s educational attainment is not associated 

with a child‘s height-for-age (Table 14).  That is, even though children of less educated 

mothers—those mothers who have not completed primary school—are on average shorter than 

children of more educated mothers, there are no differences in the height-for-age measure 

associated with weather shocks.37 These results suggest that mothers have similar resources 

available to adjust their caretaking practices to weather shocks regardless of their educational 

attainment.  Furthermore, there are no regional differences in the result.   

                                                                 
37 The observed difference in the two groups from a positive rainfall shock in the prior pre-canícula period needs to be 
interpreted with caution given the low number of children who experienced such a shock.   
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Another household characteristic that may differentiate the results between heath 

outcomes and weather is the household‘s participation in some type of social protection or 

assistance program.  Supplemental nutrition programs (such as PROGRESA and LICONSA in 

Mexico) attempt to improve childhood nutrition in the poorest households.  Households 

participating in such targeted programs are from the poorest households in the country and 

they may have fewer resources to cope with weather shocks.  For our sample of children, when 

faced with a positive rainfall shock the health of children living in households receiving 

supplemental nutrition is statistically significantly worse than the health of children not in such 

programs (Table 15).  Since program participation is not random (that is, the participants come 

from the most impoverished households), the results do not suggest that participation in such 

programs is disadvantageous to children.  The results do suggest that participation in a 

supplemental nutrition program does not fully level the playing field in terms of child health 

outcomes after a positive rainfall shock.  In order to determine the causal impact of the program 

(and the interaction of weather shocks with program participation) we would need to 

determine the counterfactual, that is, the health outcomes for children who participated in such 

programs had they not benefitted from the programs.   

 
 
6. Discussion and Conclusions  

 

Weather-related events can have an impact on the welfare of individuals either through 

changes in agricultural production and therefore on consumption, and/or through changes in 

the prevalence of certain types of diseases and ailments associated with different weather 

conditions.  We analyze the impacts of rainfall and temperature deviations from their long-run 

means on rural households and young children in Mexico.  On average, we do not find any 

consistently strong effects from weather shocks on welfare as measured by expenditures.  

However, we do find regional differences as well as differential impacts based on household 

and individual characteristics.  

Regarding rainfall shocks, we find that dry years are associated with increased per 

capita expenditures.  The result is driven by higher expenditures in the central and southern 

parts of the county and not observed in the semi-arid North.  In the North, rainfall shocks do 
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not have an impact on expenditures which may partly be explained by the higher percentage of 

irrigated land in the North than in the rest of Mexico. 

For an average rural household, food expenditures are higher after a positive annual 

rainfall shock.  Again the result is driven by the states in the central and southern parts of the 

country, where per capita non-health spending is also higher after a positive rainfall shock.  

Regarding temperature shocks, we do not find any evidence that warmer weather leads 

to lower expenditures, at least in for our sample of rural households in Mexico.  In fact, we find 

that warmer weather during the wet season is associated with higher expenditures (and thus of 

income if expenditures track income).  Also, we do not observe any negative impacts on welfare 

(as measured by expenditures) from weather shocks.   These results suggest that, on average, 

the risk management strategies adopted by rural households ex-ante combined with their 

coping strategies ex-post are successful at keeping expenditures decreasing after unusual 

weather. In fact, households may benefit from some types of weather shocks with the average 

expenditures being higher than when such shocks did not occur.   

However, there are significant regional differences.  Households in the North have 

lower non-health expenditures after a cold pre-canícula period, and lower food expenditures 

after a cold agricultural year or wet season, whereas expenditures are higher after a cold pre-

canícula period elsewhere in Mexico.   That is, colder weather appears to be welfare decreasing 

in the North, but welfare increasing elsewhere, at least immediate after the shock.  

Climatic variability also appears to have heterogenous impacts depending on the 

socioeconomic characteristics of the household head.  Positive rainfall shocks appear to affect 

only female headed households as do positive GDD shocks.  Some shocks (positive annual, wet 

season and pre-canícula rainfall, and positive pre-canícula GDD) impact female and male headed 

households statistically significantly differently; other shocks do not have a statistically 

significant impact in male headed households but do so in female headed households (positive 

annual rainfall, positive wet season rainfall, and positive annual GDD).  In the central and 

southern states, all the differences are positive such that, after a weather shock, female headed 

households are never worse off than male headed households.  In the North, female headed 

households have lower non-health expenditures after a positive rainfall shock during the wet 

season, but higher food expenditures after a positive GDD shock in the prior pre-canícula 
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period.  The differences depending on the gender of the household head may reflect differences 

in occupation and types of crops grown.   

Another factor that differentiates the impact of climatic variability on household welfare 

is the educational attainment by the head of the household.  Households headed by less 

educated heads (those who have not completed primary school) tend to have lower 

expenditures after weather shocks than households headed by more educated heads.  On 

average after a weather shock, households with less educated heads are never better off than 

households with more educated heads and, in fact, households with less educated heads have, 

on average, lower food expenditures after a negative annual GDD shock than similar 

households not experiencing such a shock.  The only exceptions are households with less 

educated heads in the North after a negative rainfall shock.  The results could signal the 

inability of households with less educated heads to adjust their agricultural production as easily 

as those headed by a more educated head or their inability to draw on external resources when 

weather shocks affect their agricultural production to keep expenditures constant.  

Exploring the impacts of weather on the health of a group of vulnerable individuals 

(rural children under the age of three), we find some evidence of both unusual rainfall and 

unusual temperature having an impact on a child‘s height-for-age.  Precipitation has a more 

marked impact on height-for-age than temperature, such that an unusually rainy year or wet 

season is associated with lower average height-for-age everywhere in the country.  That is, even 

though rainier than usual weather does not decrease per capita non-health or food 

expenditures, young children have worse health outcomes after such shocks. In the North a dry 

wet season and pre-canícula period as well as a warm prior agricultural year are all also 

associated with shorter children.  Considering the available evidence to date linking childhood 

health to various aspects of adult wellbeing,38 these results warrant further research on the 

policy options that might be effective at reducing the negative impact of unusually rainy 

weather anywhere in Mexico and dry and hot weather in the North. 

The impacts of weather shocks on height-for-age are different for boys and girls, and for 

those children in households benefitting from supplemental nutrition programs.  Although girls 

are not affected by positive GDD shocks, boys are negatively impacted by unusually warm 

                                                                 
38 Childhood health has been shown to have an impact on employment (Case, Fertig and Paxson, 2005), cognitive 
abilities (Case and Paxson, 2008; Grantham-McGregor et al., 2007), educational outcomes (Glewwe and Miguel, 2008), 
and productivity (Hoddinott et al., 2008).   
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years, wet seasons and pre-canícula periods. This is in spite of the fact that after an unusually 

warm wet season, households‘ expenditures on non-health items are higher and after an 

unusually warm year or pre-canícula period are similar to a normal year‘s expenditures.  One 

possible explanation for a negative impact on boys is the difference in morbidity rates between 

girls and boys especially when marginally malnourished (Wells, 2000).  The results suggest that, 

in order to mitigate any negative impact on boys, some counteractive measures need to be taken 

during a warmer than usual year.  Furthermore, in the North, during a rainy year, especial 

attention needs to be given to girls who are on average, much shorter, than boys after a positive 

rainfall shock.   

Additionally, we find that children who benefit from supplemental nutrition programs 

are shorter than non-beneficiaries when the prior agricultural year or wet season was unusually 

rainy.  That is, even though all children are affected by unusually rainy weather, those who 

participate in supplemental nutrition programs are affected even more.  Given that the 

households who participate in these programs are in general the poorest ones, the results 

suggest the additional nutrition provided does not (fully) protect the children from the impacts 

of a positive rainfall shock.  The results also suggest that poorer families are less able to draw on 

other resources to counter negative health impacts associated with higher levels of 

precipitation. 

All, in all, our results reveal that the current risk-coping mechanisms are not very 

effective in protecting the two dimensions of welfare examined here from erratic weather 

patterns. These findings imply that the change in the patterns of climatic variability associated 

with climate change is likely to reduce the effectiveness of the current coping mechanisms even 

more and thus increase household vulnerability further. Moreover, the heterogeneous impacts 

of climatic variability documented in this study suggest that a ―tailored‖ approach to designing 

programs aimed at decreasing the sensitivity and increasing the capacity of rural households to 

adapt to climate change in Mexico is likely to be more effective.   
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Table 1: Impact of weather conditions on consumption and health outcomes in rural areas  

Weather condition 

Agricultural production / 
Income 

Impact on consumption Incidence of disease 1 
Impact on health2 

From food consumption Direct environmental 

Extremely dry Yields will be lower.  
Negative if cannot smooth 
consumption.   

Generally reduces the 
prevalence of vector-born 
diseases, but increases 
water/food-born diseases 

Negative, possible 
malnutrition, if cannot 
smooth food consumption  

Indeterminate, but most 
likely positive 

An increase in 
rainfall (within 
normal range) 

Yields will likely increase 
with additional rain 
(temperate) or decrease 
(tropical) 

Depends on climate  
Increases the prevalence of 
both vector and 
water/food-born diseases.   

Depends on specific climate 
Indeterminate, but most 
likely negative 

Extremely wet Yields will be lower. 
Negative if cannot smooth 
consumption.   

Increases the prevalence of 
both vector and 
water/food-born diseases.   

Negative, possible 
malnutrition, if cannot 
smooth food consumption 

Negative 

Extremely cold Yields will be lower. 
Negative if cannot smooth 
consumption.   

May reduce the prevalence 
both vector and 
water/food-born diseases.  
Increases cold stress related 
health problems. 

Negative, possible 
malnutrition, if cannot 
smooth food consumption 

Indeterminate, but most 
likely positive 

An increase in 
temperature 
(within normal 
range) 

Yields will likely increase 
with warmer temperatures 
(temperate) or decrease 
(tropical) 

Depends on climate  
Increases prevalence of 
both vector and water/born 
diseases.  

Depends on specific climate 
Indeterminate, but most 
likely negative 

Extremely hot Yields will be lower. 
Negative if cannot smooth 
consumption.   

Generally decreases 
prevalence of vector-born 
diseases.  Potentially 
increases water/food –born 
diseases. Increases heat 
stress related health 
problems.  

Negative, possible 
malnutrition, if cannot 
smooth food consumption 

Indeterminate 

1 As do crop yields, the impact on the incidence of disease depends on the general climatic conditions of the region.  For example, if the average temperature is 
very high, then a decrease in the annual temperature may in fact increase the prevalence of vector born diseases.   
2 Also, there may be some impacts such as extremely cold weather inducing people to heat their homes using methods not apt for indoor use. 
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Table 2: Average climate (1951 – 1985)  in Mexico, by region 

Variable 
North  Center Pacific 

Gulf and 
Caribbean 

Mean 
Std. 
Dev. Mean 

Std. 
Dev. Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

Annual rainfall (mm) 533 233 966 494 1302 787 1565 574 

Annual rainfall (std. dev.) 180 108 255 210 334 181 371 164 

Annual GDD (days) 4444 806 3998 1082 4763 1130 5531 1184 

Annual GDD (std. dev.) 307 151 308 182 401 251 273 169 

Wet season rainfall (mm) 402 187 788 345 1051 532 1110 384 

Wet season rainfall (std. dev.) 147 77 217 165 304 150 295 133 

Wet season GDD (days) 2782 480 2243 600 2564 572 3065 603 

Wet season GDD (std. dev.) 178 98 179 101 227 136 149 104 

Pre-canícula rainfall (mm) 104 77 253 110 361 168 368 121 

Pre-canícula rainfall (std. dev.) 71 51 112 71 145 68 157 57 

Pre-canícula GDD (days) 1313 218 1155 278 1317 268 1531 280 

Pre-canícula GDD (std. dev.) 95 46 95 49 122 66 82 55 

Municipalities 396 919 766 354 

Average climate is calculated using weather data from IMTA from 1951 to 1985.  The North includes 
municipalities from the states of Baja California, Baja California Sur, Chihuahua, Coahuila, Durango, 
Nuevo Leon, Sinaloa, Sonora, Tamaulipas, and Zacatecas; Center includes municipalities from 
Aguascaliente, Colima, Guanajuato, Hidalgo, Jalisco, Estado de Mexico, Michoacan, Morelos, Nayarit, 
Puebla, Queretaro, San Luis Potosi, and Tlaxcala; Pacific includes municipalities from Chiapas, Guerrero, 
and Oaxaca; and Gulf and Caribbean includes municipalities from Campeche, Quintana Roo, Tabasco, 
Veracruz, and Yucatan.  The regional assignations are taken from Conroy, Hector V. (2009), pg. 39. 

 
 
 
 

Table 3: Prevalence of weather shocks in Mexican municipalities between 1986 and 2002 from mean 1951 to 
1985 weather 

SD's 
from 
norm 

Annual 
rainfall 

Wet season 
rainfall 

Pre-canícula 
rainfall Annual GDD 

Wet season 
GDD 

Pre-canícula 
GDD 

Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % 

-2 3,487 4.27 3,122 3.69 1,476 1.74 6,102 7.47 7,312 8.63 7,598 8.93 

-1 13,925 17.05 13,230 15.62 13,142 15.45 10,961 13.42 12,174 14.37 12,654 14.88 

0 53,475 65.48 58,014 68.48 59,242 69.64 45,515 55.73 48,346 57.07 48,870 57.45 

1 6,827 8.36 6,804 8.03 8,106 9.53 12,045 14.75 11,198 13.22 10,970 12.9 

2 3,951 4.84 3,542 4.18 3,102 3.65 7,042 8.62 5,682 6.71 4,976 5.85 

Average climate is calculated using weather data from IMTA from 1951 to 1985 and the shocks based on 
annual/wet season/pre-canícula weather from 1986 to 2002.   
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Table 4a: Weather shocks in MxFLS sample  

Standard 
deviation

s from 
mean 

Rainfall GDD 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % 

-2 10 4.63 6 2.67 8 3.54 13 6.02 13 5.78 14 6.19 

-1 36 16.67 39 17.33 26 11.5 35 16.2 35 15.56 35 15.49 

0 142 65.74 147 65.33 167 73.89 126 58.33 135 60.00 142 62.83 

1 20 9.26 22 9.78 23 10.18 33 15.28 35 15.56 29 12.83 

2 8 3.70 11 4.89 2 0.88 9 4.17 7 3.11 6 2.65 

NOTE: Deviations from 1951 to 1985 mean weather in rural MxFLS municipalities for agricultural years prior to 
household survey. 

 

Table 4b: Weather shocks in ENN sample  

Standard 
deviation

s from 
mean 

Rainfall GDD 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % 

-2 3 1.67 6 3.33 14 7.78 9 5.00 8 4.44 7 3.89 

-1 31 17.22 32 17.78 83 46.11 25 13.89 15 8.33 20 11.11 

0 128 71.11 128 71.11 79 43.89 93 51.67 100 55.56 100 55.56 

1 15 8.33 11 6.11 3 1.67 41 22.78 40 22.22 35 19.44 

2 3 1.67 3 1.67 1 0.56 12 6.67 17 9.44 18 10.00 

NOTE: Deviations from 1951 to 1985 mean weather in rural ENN municipalities for agricultural years prior to 
household survey. 
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Table 5: Agricultural production in Mexican states included in the MxFLS  

    Hectares cultivated 
% of land in 

corn % of land in beans 
% of land in 

sorghum 
% of land in 

other 
wet 

season/ 
dry season 

hectares 
% land 
rainfed Region State 

Dry 
season 

Wet 
season 

Dry 
season 

Wet 
season 

Dry 
season 

Wet 
season 

Dry 
season 

Wet 
season 

Dry 
season 

Wet 
season 

National production 2,167,069  13,758,639  31 59 11 12 13 13 45 15 6.35 82 

North 

Baja California Sur     16,722       28,987  12 41 11 11 2 8 74 41 1.73 27 

Coahuila    44,874      281,365  3 27 1 6 9 47 87 20 6.27 66 

Durango     57,155      691,738  12 42 16 30 17 6 55 22 12.10 80 

Nuevo Leon 33,360      209,576  12 49 3 3 15 39 70 9 6.28 78 

Sinaloa    418,177      588,288  63 39 13 4 3 44 21 13 1.41 54 

Sonora 276,237      341,731  4 12 1 4 2 36 94 49 1.24 41 

Center 

Guanajuato    38,385      823,889  13 56 4 11 0 24 83 9 5.95 67 

Jalisco    52,172       732,411  26 87 5 2 3 7 66 4 14.04 85 

Estado de Mexico     42,074      544,033  25 81 7 2 7 0 61 17 12.93 89 

Michoacán     86,904       668,846  18 79 2 1 28 13 52 7 7.70 78 

Morelos 50,639         83,328  3 37 1 3 92 43 4 16 1.65 72 

Puebla      39,153      709,046  41 73 13 9 2 3 45 15 18.11 88 

Mexico 
City 

Distrito Federal 2,924    12,297  4 42 1 2 11 0 84 55 4.21 94 

South 
Pacific 

Oaxaca    54,170      611,187  64 84 22 7 2 4 12 5 11.28 96 

Gulf and 
Caribbean 

Veracruz  106,147      517,278  83 86 9 5 1 2 8 7 4.87 97 

Yucatan    8,370      220,175  46 79 33 11 0 0 20 10 26.31 92 

INEGI.  Censo Agricola, Ganadero y Forestal 2007. 
Regional assignations are taken from Conroy, Hector V. (2009), pg. 39. 
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Table 6a: Select characteristics of localities in MxFLS sample 

Characteristic of locality 

Localities 
with 

information 
in 2002 

% of 
localities 
in 2002 

with 
service / 
program 

Localities 
with 

information 
in 2005 

% of 
localities 
in 2005 

with 
service / 
program 

OPORTUNIDADES available  70 0.757 65 0.985 

Primary school in locality 69 0.986 66 0.970 

Secondary school in locality 70 0.343 66 0.364 

Technical/trade school in locality 70 0.071 66 0.045 

Public health clinic in locality 70 0.743 66 0.652 

Tabulated from MxFLS Community Survey Module.  In the original survey households from 70 
different localities were surveyed. For the 2005 survey information from official sources was used 
as the primary source. If there was no information from an official source, unofficial information 
was used.  When two or more official sources reported information and the information was 
conflicting, the variable was treated as a missing value.   

 

Table 6b. Select characteristics of localities in ENN sample 

Locality characteristic Mean Std. Dev. 

Percentage of household with electricity 0.755 
 

Percentage of household with running water 0.585 
 

Percentage of household with a sewage system 0.265 
 

Average household size 5.19 0.89 

Altitude from sea level (m) 1168 867 

Based on 547 rural localities where there are households with children under 3 years 
of age in the Encuesta Nacional de Nutricion. 
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Table 7: Weather shocks and expenditures per capita 

Variable 
All rural households Central and South North 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

Dependent variable: Per capita expenditures (ln) in non-health items 

Negative rainfall shock 
0.141* 0.065 -0.000 0.246*** 0.110 -0.075 0.057 -0.030 0.121 

(0.082) (0.096) (0.080) (0.090) (0.112) (0.103) (0.143) (0.154) (0.189) 

Positive rainfall shock 
0.068 -0.008 -0.014 0.247** 0.109 -0.026 -0.024 -0.086 0.026 

(0.087) (0.072) (0.086) (0.100) (0.095) (0.104) (0.109) (0.094) (0.133) 

Negative GDD shock 
-0.023 0.022 -0.013 -0.039 0.183 0.205** 0.076 -0.057 -0.328*** 

(0.093) (0.131) (0.129) (0.127) (0.111) (0.095) (0.132) (0.209) (0.107) 

Positive GDD shock 
0.027 0.183** 0.081 -0.127 0.142 0.075 0.032 0.149 0.092 

(0.092) (0.082) (0.115) (0.115) (0.090) (0.126) (0.151) (0.134) (0.180) 

Number of observations 4,929 4,950 4,951 2,624 2,641 2,642 2,305 2,309 2,309 

Dependent variable: Per capita expenditures (ln) in food 

Negative rainfall shock 
-0.085 0.057 -0.028 -0.070 0.126 -0.103 -0.111 -0.150 0.131 

(0.109) (0.111) (0.148) (0.185) (0.167) (0.192) (0.103) (0.111) (0.246) 

Positive rainfall shock 
0.179* 0.131 0.036 0.404** 0.322 0.030 0.085 0.019 0.062 

(0.107) (0.119) (0.119) (0.184) (0.209) (0.163) (0.102) (0.099) (0.155) 

Negative GDD shock 
-0.249 -0.041 0.221 -0.045 0.329 0.396* -0.369*** -0.276** 0.032 

(0.162) (0.184) (0.159) (0.300) (0.231) (0.198) (0.122) (0.129) (0.157) 

Positive GDD shock 
0.150 -0.062 -0.110 0.022 -0.281 -0.020 0.156* 0.010 -0.193 

(0.099) (0.140) (0.154) (0.164) (0.244) (0.221) (0.090) (0.166) (0.203) 

Number of observations 4,929 4,950 4,951 2,624 2,641 2,642 2,305 2,309 2,309 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.  Calculated using MxFLS rounds 1 and 2 with locality level fixed 
effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period) had at least 1 standard 
deviation less rain (or GDD) than in an average year.  Similarly, a positive weather shock identifies those municipalities which in the previous agricultural year (or 
wet season or pre-canícula period) had at least 1 standard deviation more rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), characteristics of 
the household head (sex, age and education), assets ( index based on how many parcels of land the household owns, whether or not the household owns their 
residence, another house, bicycle, motor vehicle, an electric device, a washing machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses 
or mules, pigs or goats, or poultry), characteristics of the housing unit (presence of a kitchen, access to tapped water indoors, toilet, access to piped sewage or septic 
tank, electricity, floor type).  
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Table 8a: Per capita expenditures (ln) on non-health items 

Variables 
All rural households Central and South North 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

HH head is female 
0.007 0.011 -0.084 -0.095 -0.114 -0.158 0.106 0.151 -0.001 

(0.070) (0.083) (0.083) (0.113) (0.111) (0.122) (0.079) (0.109) (0.108) 

Negative rainfall shock 
0.153* 0.066 -0.010 0.269** 0.130 -0.107 0.043 -0.051 0.118 

(0.084) (0.101) (0.080) (0.103) (0.130) (0.104) (0.140) (0.153) (0.191) 

...  X female HH head 
-0.089 -0.018 0.049 -0.123 -0.091 0.153 0.211 0.209 0.000 

(0.207) (0.236) (0.232) (0.258) (0.329) (0.243) (0.191) (0.176) (0.000) 

Positive rainfall shock 
0.032 -0.007 -0.065 0.170 0.042 -0.118 -0.013 -0.021 0.043 

(0.088) (0.067) (0.086) (0.104) (0.089) (0.099) (0.107) (0.087) (0.150) 

...  X female HH head 
0.163* -0.004 0.250* 0.351** 0.284** 0.423** -0.042 -0.303* -0.083 

(0.095) (0.120) (0.128) (0.135) (0.127) (0.160) (0.117) (0.167) (0.159) 

Negative GDD shock 
0.016 0.043 -0.016 -0.016 0.180* 0.199* 0.103 -0.064 -0.346*** 

(0.096) (0.132) (0.126) (0.123) (0.106) (0.099) (0.146) (0.217) (0.112) 

...  X female HH head 
-0.153 -0.092 -0.020 -0.093 -0.051 -0.076 -0.108 0.014 0.102 

(0.112) (0.115) (0.123) (0.166) (0.163) (0.169) (0.135) (0.123) (0.161) 

Positive GDD shock 
0.043 0.197** 0.057 -0.134 0.126 0.053 0.064 0.179 0.068 

(0.095) (0.090) (0.115) (0.123) (0.117) (0.131) (0.156) (0.144) (0.180) 

...  X female HH head 
-0.078 -0.077 0.132 0.061 0.056 0.062 -0.189 -0.166 0.148 

(0.140) (0.163) (0.138) (0.169) (0.238) (0.281) (0.208) (0.212) (0.114) 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.  Calculated using MxFLS rounds 1 and 2 with locality level fixed 
effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period) had at least 1 
standard deviation less rain (or GDD) than in an average year.  Similarly, a positive weather shock identifies those municipalities which in the previous agricultural 
year (or wet season or pre-canícula period) had at least 1 standard deviation more rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), characteristics of 
the household head (sex, age and education), assets ( index based on how many parcels of land the household owns, whether or not the household owns their 
residence, another house, bicycle, motor vehicle, an electric device, a washing machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses 
or mules, pigs or goats, or poultry), characteristics of the housing unit (presence of a kitchen, access to tapped water indoors, toilet, access to piped sewage or septic 
tank, electricity, floor type). 
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Table 8b: Per capita expenditures (ln) on food 

Variables 
All rural households Central and South North 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

HH head is female 
-0.042 -0.080 -0.082 -0.060 -0.067 -0.063 -0.019 -0.098 -0.105 

(0.129) (0.126) (0.109) (0.199) (0.172) (0.153) (0.165) (0.170) (0.147) 

Negative rainfall shock 
-0.080 0.032 -0.024 -0.081 0.102 -0.102 -0.066 -0.174 0.120 

(0.106) (0.117) (0.148) (0.183) (0.175) (0.195) (0.111) (0.117) (0.246) 

...  X female HH head 
-0.059 0.190 -0.061 0.060 0.136 -0.015 -0.540 0.290 0.000 

(0.190) (0.187) (0.223) (0.218) (0.240) (0.248) (0.603) (0.191) (0.000) 

Positive rainfall shock 
0.122 0.087 -0.015 0.320 0.235 -0.036 0.055 0.019 0.055 

(0.115) (0.130) (0.119) (0.206) (0.232) (0.163) (0.097) (0.120) (0.157) 

...  X female HH head 
0.279** 0.208 0.238 0.395* 0.384* 0.288 0.123 0.012 0.079 

(0.121) (0.141) (0.161) (0.231) (0.195) (0.215) (0.121) (0.204) (0.170) 

Negative GDD shock 
-0.218 -0.021 0.218 0.005 0.352 0.400** -0.378*** -0.276* 0.017 

(0.153) (0.174) (0.151) (0.288) (0.213) (0.194) (0.134) (0.143) (0.166) 

...  X female HH head 
-0.121 -0.083 -0.006 -0.166 -0.154 -0.085 -0.003 0.079 0.110 

(0.154) (0.134) (0.154) (0.232) (0.179) (0.222) (0.175) (0.159) (0.157) 

Positive GDD shock 
0.103 -0.107 -0.189 -0.018 -0.303 -0.080 0.118 -0.056 -0.277 

(0.116) (0.149) (0.168) (0.211) (0.254) (0.237) (0.092) (0.187) (0.220) 

...  X female HH head 
0.244 0.244 0.438** 0.238 0.128 0.248 0.243 0.371 0.567** 

(0.178) (0.185) (0.171) (0.271) (0.198) (0.217) (0.249) (0.257) (0.225) 

Number of observations 4,929 4,950 4,951 2,624 2,641 2,642 2,305 2,309 2,309 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.  Calculated using MxFLS rounds 1 and 2 with locality level fixed 
effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period) had at least 1 
standard deviation less rain (or GDD) than in an average year.  Similarly, a positive weather shock identifies those municipalities which in the previous agricultural 
year (or wet season or pre-canícula period) had at least 1 standard deviation more rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), characteristics of 
the household head (sex, age and education), assets ( index based on how many parcels of land the household owns, whether or not the household owns their 
residence, another house, bicycle, motor vehicle, an electric device, a washing machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses 
or mules, pigs or goats, or poultry), characteristics of the housing unit (presence of a kitchen, access to tapped water indoors, toilet, access to piped sewage or septic 
tank, electricity, floor type). 
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Table 9a: Per capita (ln) expenditure on non-health items 

Variables 
All rural households Central and South North 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

HH head  has not completed 
primary school 

-0.154** -0.180*** -0.168** -0.264*** -0.348*** -0.303*** -0.089 -0.037 -0.087 

(0.064) (0.067) (0.066) (0.078) (0.083) (0.088) (0.107) (0.108) (0.093) 

Negative rainfall shock 
0.184* 0.061 0.079 0.233* 0.023 -0.107 0.085 0.023 0.277 

(0.100) (0.123) (0.097) (0.137) (0.176) (0.108) (0.160) (0.157) (0.194) 

...  X no primary school 
-0.075 0.006 -0.127 0.017 0.131 0.050 -0.051 -0.099 -0.365 

(0.136) (0.149) (0.119) (0.196) (0.256) (0.122) (0.140) (0.116) (0.221) 

Positive rainfall shock 
0.090 0.012 0.090 0.282*** 0.096 0.020 -0.011 -0.026 0.117 

(0.091) (0.075) (0.086) (0.099) (0.101) (0.098) (0.118) (0.095) (0.138) 

...  X no primary school 
-0.038 -0.036 -0.159** -0.050 0.030 -0.062 -0.025 -0.107 -0.154 

(0.075) (0.074) (0.079) (0.081) (0.086) (0.096) (0.108) (0.118) (0.122) 

Negative GDD shock 
0.001 0.021 -0.041 -0.074 0.095 0.114 0.106 -0.004 -0.316** 

(0.100) (0.135) (0.124) (0.124) (0.122) (0.106) (0.155) (0.216) (0.129) 

...  X no primary school 
-0.042 0.001 0.039 0.055 0.160 0.128 -0.054 -0.106 -0.006 

(0.072) (0.076) (0.072) (0.084) (0.095) (0.091) (0.126) (0.141) (0.142) 

Positive GDD shock 
0.032 0.175* 0.078 -0.074 0.102 0.041 0.061 0.209 0.139 

(0.094) (0.092) (0.109) (0.129) (0.125) (0.190) (0.153) (0.144) (0.150) 

...  X no primary school 
-0.007 0.016 0.007 -0.076 0.053 0.062 -0.054 -0.119 -0.096 

(0.086) (0.104) (0.094) (0.102) (0.200) (0.202) (0.124) (0.114) (0.113) 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.  Calculated using MxFLS rounds 1 and 2 with locality level fixed 
effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period) had at least 1 
standard deviation less rain (or GDD) than in an average year.  Similarly, a positive weather shock identifies those municipalities which in the previous agricultural 
year (or wet season or pre-canícula period) had at least 1 standard deviation more rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), characteristics of 
the household head (sex, age and education), assets ( index based on how many parcels of land the household owns, whether or not the household owns their 
residence, another house, bicycle, motor vehicle, an electric device, a washing machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses 
or mules, pigs or goats, or poultry), characteristics of the housing unit (presence of a kitchen, access to tapped water indoors, toilet, access to piped sewage or septic 
tank, electricity, floor type). 
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Table 9b: Per capita (ln) expenditure on food 

Variables 
All rural households Central and South North 

Annual Wet season Pre-canícula Annual Wet season Pre-canícula Annual Wet season Pre-canícula 

HH has not completed 
primary school 

0.080 0.052 0.069 -0.025 -0.103 -0.039 0.159* 0.182 0.119 

(0.064) (0.081) (0.071) (0.089) (0.098) (0.100) (0.081) (0.117) (0.097) 

Negative rainfall shock 
-0.153 -0.002 0.151 -0.111 0.005 0.000 -0.317** -0.161 0.362* 

(0.127) (0.147) (0.136) (0.185) (0.198) (0.197) (0.151) (0.150) (0.192) 

...  X no primary school 
0.118 0.100 -0.285* 0.063 0.174 -0.146 0.376* 0.012 -0.509** 

(0.180) (0.185) (0.157) (0.226) (0.259) (0.196) (0.194) (0.171) (0.199) 

Positive rainfall shock 
0.210* 0.156 0.132 0.406* 0.295 0.097 0.160 0.103 0.099 

(0.119) (0.136) (0.149) (0.240) (0.243) (0.210) (0.117) (0.115) (0.155) 

...  X no primary school 
-0.035 -0.046 -0.151 -0.002 0.046 -0.089 -0.120 -0.159 -0.057 

(0.101) (0.111) (0.120) (0.184) (0.175) (0.166) (0.092) (0.123) (0.103) 

Negative GDD shock 
-0.169 0.021 0.272* -0.023 0.342 0.398* -0.273** -0.227* 0.089 

(0.173) (0.191) (0.157) (0.311) (0.246) (0.206) (0.125) (0.126) (0.167) 

...  X no primary school 
-0.135* -0.100 -0.083 -0.036 0.008 -0.013 -0.142 -0.085 -0.068 

(0.080) (0.086) (0.085) (0.097) (0.117) (0.117) (0.106) (0.116) (0.125) 

Positive GDD shock 
0.356*** 0.041 -0.033 0.137 -0.396 -0.220 0.427*** 0.259 0.020 

(0.092) (0.144) (0.162) (0.153) (0.316) (0.384) (0.103) (0.157) (0.167) 

...  X no primary school 
-0.344*** -0.196 -0.152 -0.168 0.189 0.338 -0.531*** -0.469** -0.452* 

(0.103) (0.155) (0.192) (0.170) (0.247) (0.325) (0.135) (0.172) (0.235) 

Number of observations 4,929 4,950 4,951 2,624 2,641 2,642 2,305 2,309 2,309 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.  Calculated using MxFLS rounds 1 and 2 with locality level fixed 
effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period) had at least 1 
standard deviation less rain (or GDD) than in an average year.  Similarly, a positive weather shock identifies those municipalities which in the previous agricultural 
year (or wet season or pre-canícula period) had at least 1 standard deviation more rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), characteristics of 
the household head (sex, age and education), assets ( index based on how many parcels of land the household owns, whether or not the household owns their 
residence, another house, bicycle, motor vehicle, an electric device, a washing machine or a stove, a domestic appliance, machinery or a tractor, bulls or cows, horses 
or mules, pigs or goats, or poultry), characteristics of the housing unit (presence of a kitchen, access to tapped water indoors, toilet, access to piped sewage or septic 
tank, electricity, floor type). 
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Table 10: Characteristics of rural children  

Variable 
All Center/South North 

Mean 
Std. 
Dev. Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

Number of adult males in hh 1.375 0.942 1.349 0.857 1.434 1.114 

Number of adult females in hh 1.502 0.912 1.475 0.799 1.566 1.132 

Number of children (16 yrs or younger) in hh 3.449 1.893 3.693 2.000 2.876 1.464 

Mother's height 148 23 146 22 152 24 

Mother speaks an indigenous language 0.164   0.198   0.085   

Education mother: has not completed primary 0.456   0.526   0.293   

Sex 0.517   0.518   0.514   

Birth order 3.372 2.480 3.651 2.679 2.720 1.775 

Multiple birth 0.017   0.017   0.017   

Categorized as  very small at birth 0.071   0.071   0.069   

Has an older sibling less than 2 years apart 0.184   0.195   0.158   

Age: 6 months to 12 months 0.180   0.174   0.193   

Age: 12 months to 24 months 0.333   0.332   0.336   

Age: 24 months to 36 months 0.329   0.338   0.306   

Altitude of locality (in km) 1.192 0.892 1.305 0.870 0.929 0.888 

Household asset score -0.305 0.719 -0.487 0.652 0.120 0.688 

Floor of dirt 0.338   0.383   0.234   

No tap water to kitchen or bath 0.866   0.908   0.766   

No proper indoor toilet 0.745   0.758   0.716   

Observations 1540 1079 461 

Data come from the Encuesta Nacional de Salud.   
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Table 11: Number of observations for different sub-populations and types of weather shocks 

Sub population 
 

Rainfall GDD 

Negative shock Positive shock Negative shock Positive shock 

Annual 
Wet 

season 
Pre-

canícula 
Annual 

Wet 
season 

Pre-
canícula 

Annual 
Wet 

season 
Pre-

canícula 
Annual 

Wet 
season 

Pre-
canícula 

Boys 117 128 417 59 50 7 102 57 75 238 241 227 

Girls 106 127 444 85 73 14 104 73 81 238 274 249 

Mother  has completed 
primary school 

112 124 443 79 77 9 100 62 75 267 301 262 

Mother hasn‘t completed 
primary school 

111 131 418 65 46 12 106 68 81 209 214 214 

Not in a nutritional 
program 

107 145 463 90 79 19 85 54 68 254 270 272 

In a nutritional program  116 110 398 54 44 2 121 76 88 220 245 204 

Total number of 
observations 

1,536 1,536 1,540 1,536 1,536 1,540 1,536 1,536 1,540 1,536 1,536 1,540 

 NOTE: Based on ENN and includes all children under 36 months and with non-missing information on all co-variates. 
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Table 12: Impact of weather on child's height-for-age 

Variables 
All Centre/South North 

Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season Pre-canícula Annual 
Wet 

season 
Pre-

canícula 

Negative rainfall shock 
0.185 0.246 -0.025 0.384* 0.479** 0.127 -0.265 -0.294** -0.371* 

(0.150) (0.166) (0.128) (0.204) (0.228) (0.149) (0.174) (0.142) (0.199) 

Positive rainfall shock 
-0.526*** -0.513*** 0.960^ -0.518*** -0.478*** 5.143***^ -0.524*** -0.701* -0.401^ 

(0.111) (0.132) (1.040) (0.134) (0.142) (1.023) (0.143) (0.367) (0.257) 

Negative GDD shock 
0.004 0.032 0.008 0.045 -0.081 -0.062 -0.075 0.113 -0.034 

(0.152) (0.167) (0.178) (0.177) (0.189) (0.217) (0.256) (0.369) (0.211) 

Positive GDD shock 
-0.100 -0.084 -0.152 -0.062 -0.048 -0.121 -0.343* -0.251 -0.313 

(0.090) (0.092) (0.105) (0.105) (0.110) (0.127) (0.176) (0.157) (0.189) 

Observations 1,536 1,536 1,540 1,079 1,079 1,079 457 457 461 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.   
^ Less than 2% of the sample experienced a positive rainfall shock in the pre-canícula period.  
Calculated using ENN with state fixed effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or 
wet season or pre-canícula period) had at least 1 standard deviation less rain (or GDD) than in an average year.  A positive weather shock identifies 
those municipalities which in the previous agricultural year (or wet season or pre-canícula period (had at least 1 standard deviation more rain (or 
GDD) than in an average year.  Other independent variables included are: household composition (number of children in the household, number 
of adult males in the household, number of adult females in the household), characteristics of the mother (height, speaks an indigenous language 
and education), characteristics of the child (age, sex, birth order, multiple birth, small at birth, older sibling less than 2 years older, household 
assets and housing characteristics (asset index, presence of a kitchen, access to tapped water indoors, toilet, floor type), and altitude of locality. 
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Table 13: Impact of weather shocks on height-for-age, by sex 

Variables 

All Center/South North 

Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season 
Pre-

canícula 

Girl 
-0.155 -0.178 -0.091 -0.186 -0.288** -0.228 0.010 0.146 0.160 

(0.114) (0.116) (0.119) (0.142) (0.144) (0.167) (0.194) (0.179) (0.197) 

Negative rainfall shock 
0.139 0.216 0.006 0.253 0.287 0.051 -0.140 -0.181 -0.080 

(0.192) (0.190) (0.148) (0.258) (0.279) (0.179) (0.285) (0.203) (0.258) 

...  X girl 
0.110 0.082 -0.065 0.272 0.410 0.139 -0.274 -0.275 -0.506** 

(0.279) (0.250) (0.159) (0.352) (0.353) (0.203) (0.439) (0.321) (0.251) 

Positive rainfall shock 
-0.518*** -0.519** 0.562^ -0.651*** -0.670*** 5.331***^ -0.153 -0.213 -0.245^ 

(0.188) (0.213) (0.902) (0.226) (0.232) (1.105) (0.225) (0.458) (0.299) 

...  X girl 
-0.013 0.001 0.549^ 0.266 0.326 

 
-0.699** -1.103*** -0.285^ 

(0.226) (0.282) (0.553) (0.252) (0.298) 
 

(0.316) (0.263) (0.248) 

Negative GDD shock 
0.072 0.131 0.139 0.273 0.101 0.180 -0.257 -0.012 0.005 

(0.195) (0.267) (0.220) (0.226) (0.328) (0.280) (0.331) (0.573) (0.300) 

...  X girl 
-0.142 -0.167 -0.276 -0.464 -0.310 -0.471 0.335 0.171 -0.093 

(0.212) (0.302) (0.272) (0.287) (0.368) (0.304) (0.300) (0.548) (0.533) 

Positive GDD shock 
-0.297** -0.300** -0.294** -0.291* -0.357** -0.282* -0.285 -0.127 -0.251 

(0.126) (0.121) (0.131) (0.149) (0.144) (0.158) (0.267) (0.230) (0.250) 

...  X girl 
0.382** 0.412** 0.270 0.448** 0.602*** 0.302 -0.092 -0.239 -0.112 

(0.178) (0.169) (0.179) (0.214) (0.206) (0.221) (0.327) (0.273) (0.294) 

Number of observations 1,536 1,536 1,540 1,079 1,079 1,079 457 457 461 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.   
^ Less than 2% of the sample experienced a positive rainfall shock in the pre-canícula period.  
Calculated using ENN with state fixed effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet 
season or pre-canícula period) had at least 1 standard deviation less rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), 
characteristics of the mother (height, speaks an indigenous language and education), characteristics of the child (age, sex, birth order, multiple birth, 
small at birth, older sibling less than 2 years older, household assets and housing characteristics (asset index, presence of a kitchen, access to tapped 
water indoors, toilet, floor type), and altitude of locality.  
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Table 14: Impact of weather shocks on height-for-age, by mother's education 

Variables 

All Center/South North 

Annual 
Wet 

season 
Pre-

canícula 
Annual 

Wet 
season 

Pre-
canícula 

Annual 
Wet 

season 
Pre-

canícula 

Mother has not completed 
primary school 

-0.213** -0.207** -0.162 -0.120 -0.138 -0.068 -0.222 -0.172 -0.146 

(0.106) (0.104) (0.109) (0.121) (0.127) (0.146) (0.240) (0.218) (0.186) 

Negative rainfall shock 
0.140 0.159 -0.042 0.421* 0.426 0.166 -0.252 -0.305 -0.433* 

(0.190) (0.212) (0.141) (0.246) (0.339) (0.157) (0.239) (0.196) (0.233) 

...  X mother has not completed 
primary school 

0.068 0.148 0.028 -0.046 0.102 -0.087 -0.004 0.050 0.074 

(0.321) (0.265) (0.161) (0.393) (0.410) (0.189) (0.424) (0.329) (0.306) 

Positive rainfall shock 
-0.447** -0.457** 1.807*^ -0.462* -0.399* 5.183***^ -0.349* -0.522 0.010^ 

(0.181) (0.196) (1.038) (0.246) (0.233) (1.011) (0.196) (0.532) (0.406) 

...  X mother has not completed 
primary school 

-0.155 -0.143 -1.674**^ -0.088 -0.157 
 

-0.313 -0.360 -0.604*^ 

(0.241) (0.282) (0.722) (0.326) (0.332) 
 

(0.399) (0.728) (0.341) 

Negative GDD shock 
-0.105 -0.091 0.111 0.057 -0.147 -0.034 -0.225 -0.077 -0.040 

(0.192) (0.201) (0.226) (0.247) (0.186) (0.211) (0.295) (0.592) (0.369) 

...  X mother has not completed 
primary school 

0.206 0.218 -0.222 -0.017 0.105 -0.060 0.414 0.398 -0.043 

(0.241) (0.276) (0.297) (0.299) (0.289) (0.280) (0.402) (0.680) (0.650) 

Positive GDD shock 
-0.125 -0.072 -0.161 0.025 0.066 -0.070 -0.452** -0.289 -0.469** 

(0.117) (0.119) (0.131) (0.139) (0.155) (0.161) (0.217) (0.189) (0.232) 

...  X mother has not completed 
primary school 

0.054 -0.040 0.023 -0.175 -0.232 -0.104 0.504 0.141 0.533 

(0.175) (0.174) (0.181) (0.205) (0.214) (0.209) (0.345) (0.286) (0.405) 

Number of observations 1,536 1,536 1,540 1,079 1,079 1,079 457 457 461 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.   
^ Less than 2% of the sample experienced a positive rainfall shock in the pre-canícula period.  
Calculated using ENN with state fixed effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet 
season or pre-canícula period) had at least 1 standard deviation less rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), 
characteristics of the mother (height, speaks an indigenous language and education), characteristics of the child (age, sex, birth order, multiple birth, 
small at birth, older sibling less than 2 years older, household assets and housing characteristics (asset index, presence of a kitchen, access to tapped 
water indoors, toilet, floor type), and altitude of locality. 
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Table 15: Impact of weather shocks on height-for-age, by participation in a nutritional supplement program 

Variables 

All Center/South North 

Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season Pre-canícula Annual 
Wet 

season 
Pre-

canícula 

HH receives any nutritional 
supplement 

0.195 0.092 0.154 0.222 0.107 0.243 0.253 0.090 0.065 

(0.126) (0.119) (0.140) (0.143) (0.134) (0.179) (0.243) (0.251) (0.228) 

Negative rainfall shock 
0.173 0.181 -0.009 0.428** 0.468 0.197 -0.217 -0.351* -0.348 

(0.162) (0.184) (0.135) (0.214) (0.293) (0.152) (0.223) (0.181) (0.247) 

...  X nutritional 
supplement 

0.001 0.091 -0.061 -0.090 -0.012 -0.184 -0.173 0.112 -0.045 

(0.259) (0.254) (0.168) (0.327) (0.395) (0.200) (0.409) (0.347) (0.318) 

Positive rainfall shock 
-0.377*** -0.329** 0.708^ -0.408** -0.352** 6.541***^ -0.256 0.157 -0.508^ 

(0.143) (0.166) (1.090) (0.161) (0.167) (0.383) (0.266) (0.456) (0.321) 

...  X nutritional 
supplement 

-0.370* -0.611** 1.627^ -0.255 -0.421* -2.860***^ -0.711 -1.418*** 0.617^ 

(0.207) (0.265) (1.101) (0.190) (0.252) (0.389) (0.537) (0.474) (0.386) 

Negative GDD shock 
0.039 -0.156 0.062 0.162 -0.249 -0.109 -0.024 -0.130 -0.092 

(0.179) (0.163) (0.249) (0.288) (0.182) (0.235) (0.251) (0.340) (0.238) 

...  X nutritional 
supplement 

-0.088 0.378 -0.136 -0.225 0.304 -0.028 -0.133 0.545 0.102 

(0.242) (0.277) (0.318) (0.373) (0.354) (0.355) (0.318) (0.445) (0.380) 

Positive GDD shock 
-0.059 -0.098 -0.170 -0.016 -0.076 -0.181 -0.183 -0.182 -0.196 

(0.115) (0.117) (0.121) (0.125) (0.137) (0.144) (0.278) (0.225) (0.262) 

...  X nutritional 
supplement 

-0.123 -0.005 0.047 -0.133 0.021 0.100 -0.449 -0.168 -0.439 
(0.176) (0.173) (0.170) (0.197) (0.199) (0.198) (0.419) (0.357) (0.420) 

Number of observations 1,536 1,536 1,540 1,079 1,079 1,079 457 457 461 

Robust standard errors in parentheses, clustered by locality, and *** p<0.01, ** p<0.05, * p<0.1.   
^ Less than 2% of the sample experienced a positive rainfall shock in the pre-canícula period.  
Calculated using ENN with state fixed effects.  A negative weather shock identifies those municipalities which in the previous agricultural year (or wet 
season or pre-canícula period) had at least 1 standard deviation less rain (or GDD) than in an average year.  Other independent variables included are: 
household composition (number of children in the household, number of adult males in the household, number of adult females in the household), 
characteristics of the mother (height, speaks an indigenous language and education), characteristics of the child (age, sex, birth order, multiple birth, 
small at birth, older sibling less than 2 years older, household assets and housing characteristics (asset index, presence of a kitchen, access to tapped 
water indoors, toilet, floor type), and altitude of locality.  Also, the household‘s participation in a supplemental nutrition program is included.  
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Appendix 1.  Correlations between weather shock variables (in rural MxFLS 
municipalities) and average (1951 to 1985) weather 
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Wet season rainfall: Standard 
deviations from1951-1985 average 

0.928           

Pre-canícula rainfall: Standard 
deviations from1951-1985 average 

0.569 0.645         

Annual GDD Standard deviations 
from1951-1985 average 

-0.206 -0.172 -0.164       

Wet season GDD: Standard deviations 
from1951-1985 average 

-0.198 -0.176 -0.171 0.896     

Pre-canícula GDD: Standard deviations 
from1951-1985 average 

-0.118 -0.093 -0.168 0.812 0.912   

Average annual rainfall (1951-1985) -0.162 -0.154 0.142 -0.033 0.009 -0.074 

Average wet season rainfall (1951-1985) -0.176 -0.171 0.135 -0.050 -0.001 -0.088 

Average pre-canícula rainfall (1951-
1985) 

-0.127 -0.114 0.131 -0.057 -0.056 -0.139 

Average annual GDD (1951-1985) 0.024 0.032 0.001 0.008 0.022 0.053 

Average wet season GDD (1951-1985) 0.052 0.051 -0.046 0.057 0.034 0.071 

Average pre-canícula GDD (1951-1985) 0.034 0.031 -0.016 0.010 -0.021 -0.004 
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Appendix 2: Characteristics of MxFLS households 

 

  All households 
1992 

households 
1995 

households 

Variable Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Number of children in the 
household 

1.679 1.655 1.785 1.711 1.552 1.575 

Number of adult males (over 16) in 
the household 

1.335 0.881 1.238 0.811 1.452 0.945 

Number of adult females (over 16) 
in the household 

1.468 0.887 1.361 0.769 1.595 0.996 

Household head has not completed 
primary school 

0.581   0.595   0.564   

Gender of household head 
(1=female) 

0.196   0.195   0.198   

Age of household head 50.59 16.26 49.71 16.06 51.66 16.45 

No separate kitchen 0.085   0.092   0.076   

No tap water 0.236   0.300   0.158   

No toilet 0.457   0.541   0.358   

No sewage 0.490   0.584   0.378   

No electricity 0.025   0.027   0.021   

Dirt floor 0.182   0.205   0.155   

Asset Index 0.078 0.810 0.120 0.810 0.026 0.807 

Observation from 2005 survey 0.455           

Surveyed in the wet season 0.958   1   0.908   

Number of observations 4929 2687 2242 
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Appendix 3: Full results of weather on expenditures 
 

Table A3.1: Weather shocks and per capita expenditures on non-health items 

 
Year Wet Season Pre-canícula 

Fixed effects State FE  
Locality 

FE  State FE 
Locality 

FE State FE 
Locality 

FE 

Negative rainfall shock 
0.004 0.141* -0.070 0.065 -0.110 -0.000 

(0.076) (0.082) (0.079) (0.096) (0.089) (0.080) 

Positive rainfall shock 
0.002 0.068 -0.031 -0.008 0.039 -0.014 

(0.079) (0.087) (0.073) (0.072) (0.085) (0.086) 

Negative GDD shock 
-0.066 -0.023 0.006 0.022 0.004 -0.013 

(0.080) (0.093) (0.082) (0.131) (0.077) (0.129) 

Positive GDD shock 
0.022 0.027 0.120* 0.183** 0.089 0.081 

(0.056) (0.092) (0.062) (0.082) (0.086) (0.115) 

Number of children in the 
household 

-0.140*** -0.136*** -0.140*** -0.137*** -0.141*** -0.137*** 

(0.010) (0.009) (0.010) (0.009) (0.009) (0.009) 

Number of adult males (over 
16) in the household 

-0.131*** -0.130*** -0.131*** -0.129*** -0.130*** -0.129*** 

(0.029) (0.029) (0.029) (0.029) (0.028) (0.028) 

Number of adult females (over 
16) in the household 

-0.108*** -0.104*** -0.108*** -0.104*** -0.108*** -0.105*** 

(0.018) (0.018) (0.019) (0.018) (0.018) (0.018) 

Household head has not 
completed primary school 

-0.199*** -0.184*** -0.202*** -0.184*** -0.202*** -0.186*** 

(0.037) (0.040) (0.037) (0.040) (0.037) (0.040) 

Gender of household head 
(1=female) 

-0.035 -0.033 -0.035 -0.033 -0.035 -0.034 

(0.053) (0.054) (0.052) (0.054) (0.052) (0.054) 

Age of household head 
-0.004** -0.004** -0.004** -0.004** -0.004** -0.004** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

No separate kitchen 
-0.018 -0.025 -0.018 -0.024 -0.023 -0.026 

(0.054) (0.053) (0.054) (0.052) (0.053) (0.053) 

No tap water 
-0.040 -0.053 -0.038 -0.052 -0.037 -0.052 

(0.052) (0.056) (0.051) (0.055) (0.051) (0.055) 

No toilet 
-0.187*** -0.164*** -0.185*** -0.166*** -0.183*** -0.163*** 

(0.047) (0.048) (0.047) (0.048) (0.046) (0.048) 

No sewage 
0.039 0.042 0.038 0.035 0.040 0.042 

(0.049) (0.054) (0.047) (0.053) (0.048) (0.053) 

No electricity 
-0.038 -0.011 -0.043 -0.018 -0.042 -0.015 

(0.137) (0.128) (0.136) (0.127) (0.138) (0.127) 

Dirt floor 
-0.235*** -0.238*** -0.230*** -0.233*** -0.234*** -0.238*** 

(0.045) (0.047) (0.045) (0.047) (0.046) (0.047) 

Asset Index 
0.276*** 0.267*** 0.279*** 0.267*** 0.278*** 0.267*** 

(0.027) (0.027) (0.026) (0.027) (0.026) (0.027) 

Observation from 2005 survey 
-0.118** -0.119** -0.102** -0.097** -0.118** -0.109** 

(0.046) (0.045) (0.047) (0.045) (0.046) (0.045) 

Surveyed in the wet season 
-0.208 -0.268* -0.213 -0.234 -0.232 -0.248* 

(0.149) (0.152) (0.140) (0.145) (0.145) (0.145) 

Annual rainfall (dm) 
0.001   0.004   0.003   

(0.009)   (0.009)   (0.008)   

Annual gdd / 1000 days 
0.012   0.007   0.019   

(0.038)   (0.038)   (0.038)   

Constant 
7.393*** 7.450*** 7.366*** 7.400*** 7.346*** 7.457*** 

(0.249) (0.164) (0.236) (0.167) (0.253) (0.186) 

Observations 4,929 4,929 4,950 4,950 4,951 4,951 
R-squared 0.178 0.209 0.179 0.210 0.179 0.210 
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Table A3.2: Weather shocks and per capita expenditures on food 

 
Year Wet Season Pre-canícula 

Fixed effects State FE 
Locality 

FE State FE 
Locality 

FE State FE 
Locality 

FE 

Negative rainfall shock 
-0.049 -0.085 -0.007 0.057 -0.076 -0.028 

(0.088) (0.109) (0.090) (0.111) (0.093) (0.148) 

Positive rainfall shock 
0.150* 0.179* 0.097 0.131 0.046 0.036 

(0.086) (0.107) (0.087) (0.119) (0.107) (0.119) 

Negative GDD shock 
-0.101 -0.249 -0.029 -0.041 0.038 0.221 

(0.096) (0.162) (0.094) (0.184) (0.088) (0.159) 

Positive GDD shock 
-0.045 0.150 -0.096 -0.062 -0.082 -0.110 

(0.083) (0.099) (0.088) (0.140) (0.108) (0.154) 

Number of children in the 
household 

-0.131*** -0.126*** -0.128*** -0.122*** -0.127*** -0.123*** 

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) 

Number of adult males (over 
16) in the household 

-0.171*** -0.165*** -0.172*** -0.167*** -0.170*** -0.166*** 

(0.036) (0.037) (0.036) (0.037) (0.036) (0.037) 

Number of adult females (over 
16) in the household 

-0.055** -0.056** -0.053** -0.051* -0.052* -0.050* 

(0.026) (0.027) (0.026) (0.027) (0.026) (0.027) 

Household head has not 
completed primary school 

-0.022 -0.011 -0.027 -0.010 -0.029 -0.007 

(0.049) (0.052) (0.049) (0.052) (0.049) (0.052) 

Gender of household head 
(1=female) 

0.010 0.008 0.008 0.009 0.008 0.009 

(0.061) (0.059) (0.060) (0.059) (0.060) (0.059) 

Age of household head 
-0.007*** -0.008*** -0.007*** -0.007*** -0.007*** -0.007*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

No separate kitchen 
-0.257** -0.246** -0.248** -0.245** -0.248** -0.240* 

(0.121) (0.121) (0.122) (0.122) (0.120) (0.121) 

No tap water 
-0.076 -0.080 -0.088 -0.087 -0.094 -0.087 

(0.074) (0.078) (0.072) (0.078) (0.074) (0.079) 

No toilet 
-0.200*** -0.210*** -0.188*** -0.203*** -0.178*** -0.203*** 

(0.062) (0.068) (0.062) (0.067) (0.062) (0.067) 

No sewage 
-0.066 -0.064 -0.050 -0.046 -0.048 -0.047 

(0.055) (0.060) (0.055) (0.060) (0.054) (0.060) 

No electricity 
0.112 0.148 0.119 0.154 0.120 0.153 

(0.198) (0.196) (0.196) (0.194) (0.195) (0.194) 

Dirt floor 
-0.105 -0.125 -0.106 -0.115 -0.104 -0.112 

(0.077) (0.080) (0.078) (0.081) (0.077) (0.081) 

Asset Index 
0.215*** 0.208*** 0.221*** 0.213*** 0.221*** 0.214*** 

(0.042) (0.043) (0.043) (0.044) (0.043) (0.044) 

Observation from 2005 survey 
0.087 0.066 0.078 0.056 0.074 0.044 

(0.057) (0.055) (0.059) (0.062) (0.059) (0.059) 

Surveyed in the wet season 
-0.249* -0.401*** -0.225 -0.371** -0.214* -0.330** 

(0.141) (0.149) (0.137) (0.144) (0.128) (0.133) 

Annual rainfall (dm) 
-0.004   0.000   -0.000   

(0.013)   (0.012)   (0.011)   

Annual gdd / 1000 days 
0.046   0.036   0.031   

(0.047)   (0.047)   (0.047)   

Constant 
6.151*** 6.503*** 6.096*** 6.395*** 6.091*** 6.333*** 

(0.259) (0.170) (0.264) (0.177) (0.261) (0.175) 

Observations 4,929 4,929 4,950 4,950 4,951 4,951 
R-squared 0.078 0.098 0.076 0.094 0.075 0.095 
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Appendix 4: Full results of weather on child’s height-for-age  

VARIABLES 
All Centre/South North 

Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season 
Pre-

canícula Annual 
Wet 

season 
Pre-

canícula 

Negative rainfall shock 
0.185 0.246 -0.025 0.384* 0.479** 0.127 -0.265 -0.294** -0.371* 

(0.150) (0.166) (0.128) (0.204) (0.228) (0.149) (0.174) (0.142) (0.199) 

Positive rainfall shock 
-0.526*** -0.513*** 0.960^ -0.518*** -0.478*** 5.143***^ -0.524*** -0.701* -0.401^ 

(0.111) (0.132) (1.040) (0.134) (0.142) (1.023) (0.143) (0.367) (0.257) 

Negative GDD shock 
0.004 0.032 0.008 0.045 -0.081 -0.062 -0.075 0.113 -0.034 

(0.152) (0.167) (0.178) (0.177) (0.189) (0.217) (0.256) (0.369) (0.211) 

Positive GDD shock 
-0.100 -0.084 -0.152 -0.062 -0.048 -0.121 -0.343* -0.251 -0.313 

(0.090) (0.092) (0.105) (0.105) (0.110) (0.127) (0.176) (0.157) (0.189) 

Number of adult males in 
hh 

-0.021 -0.019 -0.023 -0.010 -0.010 -0.021 -0.036 -0.028 -0.039 

(0.052) (0.051) (0.051) (0.068) (0.069) (0.070) (0.065) (0.063) (0.064) 

Number of adult females 
in hh 

-0.022 -0.028 -0.026 -0.059 -0.061 -0.053 0.004 -0.000 -0.001 

(0.060) (0.060) (0.059) (0.078) (0.078) (0.077) (0.088) (0.088) (0.089) 

Number of children (16 
yrs or younger) in hh 

-0.044 -0.044 -0.043 -0.062 -0.060 -0.056 0.047 0.053 0.041 

(0.035) (0.035) (0.035) (0.038) (0.038) (0.038) (0.088) (0.087) (0.089) 

Mother's height 
-0.000 -0.000 -0.000 -0.002 -0.002 -0.003 0.005 0.005 0.005 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.005) (0.005) (0.005) 

Mother speaks an 
indigenous language 

-0.172 -0.170 -0.114 -0.181 -0.192 -0.101 -0.137 -0.169 -0.245 

(0.135) (0.135) (0.144) (0.152) (0.150) (0.170) (0.228) (0.238) (0.228) 

Education mother: 
primary 

-0.174** -0.191** -0.190** -0.196** -0.211** -0.166* -0.059 -0.105 -0.067 

(0.075) (0.075) (0.075) (0.087) (0.087) (0.084) (0.165) (0.162) (0.165) 

Sex 
-0.039 -0.040 -0.065 -0.021 -0.024 -0.072 -0.075 -0.061 -0.063 

(0.084) (0.085) (0.085) (0.107) (0.109) (0.109) (0.139) (0.142) (0.139) 

Birth order 
-0.003 -0.004 -0.004 0.012 0.009 0.007 -0.066 -0.063 -0.068 

(0.023) (0.023) (0.024) (0.026) (0.026) (0.026) (0.054) (0.054) (0.055) 

Multiple birth 
-0.663*** -0.700*** -0.732*** -0.660*** -0.709*** -0.697*** -0.910 -0.933 -0.916* 

(0.215) (0.223) (0.208) (0.234) (0.257) (0.233) (0.632) (0.670) (0.482) 
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Categorized as  very 
small at birth 

-0.466*** -0.475*** -0.449*** -0.492** -0.502** -0.509** -0.355 -0.327 -0.349 

(0.168) (0.168) (0.169) (0.208) (0.208) (0.214) (0.301) (0.301) (0.295) 

Has an older sibling less 
than 2 years apart 

-0.230** -0.235** -0.206** -0.240** -0.249** -0.240** -0.276* -0.247 -0.234 

(0.096) (0.097) (0.096) (0.120) (0.120) (0.117) (0.163) (0.160) (0.153) 

Age: 6 months to 12 
months 

-0.306** -0.301** -0.295** -0.493*** -0.472*** -0.480*** 0.103 0.090 0.072 

(0.139) (0.139) (0.139) (0.162) (0.161) (0.165) (0.257) (0.259) (0.248) 

Age: 12 months to 24 
months 

-0.869*** -0.860*** -0.851*** -1.078*** -1.062*** -1.087*** -0.422* -0.402 -0.412 

(0.136) (0.136) (0.136) (0.161) (0.159) (0.159) (0.248) (0.252) (0.249) 

Age: 24 months to 36 
months 

-1.070*** -1.065*** -1.056*** -1.202*** -1.193*** -1.218*** -0.764*** -0.755*** -0.791*** 

(0.131) (0.129) (0.131) (0.158) (0.156) (0.158) (0.219) (0.220) (0.215) 

Altitude of locality (in 
km) 

-0.307*** -0.312*** -0.353*** -0.320*** -0.318*** -0.367*** -0.133 -0.180 -0.269 

(0.093) (0.091) (0.094) (0.116) (0.110) (0.108) (0.184) (0.155) (0.197) 

Household asset score 
0.316*** 0.312*** 0.331*** 0.312*** 0.284*** 0.309*** 0.328*** 0.339*** 0.360*** 

(0.075) (0.077) (0.078) (0.100) (0.102) (0.104) (0.121) (0.119) (0.114) 

Floor of dirt 
-0.044 -0.044 -0.026 0.027 0.020 0.037 -0.165 -0.134 -0.155 

(0.103) (0.104) (0.106) (0.119) (0.121) (0.121) (0.213) (0.220) (0.225) 

No tap water to kitchen 
or bath 

0.092 0.076 0.084 0.075 0.029 0.093 0.081 0.106 0.122 

(0.150) (0.152) (0.149) (0.209) (0.212) (0.201) (0.221) (0.217) (0.215) 

No proper indoor toilet 
-0.045 -0.051 -0.039 -0.081 -0.085 -0.074 -0.055 -0.042 -0.040 

(0.108) (0.109) (0.108) (0.136) (0.141) (0.140) (0.199) (0.196) (0.201) 

Constant 
0.547 0.553 0.638* 0.956** 0.980** 0.979** -0.481 -0.509 -0.199 

(0.376) (0.373) (0.381) (0.438) (0.438) (0.431) (0.846) (0.844) (0.840) 

Observations 1,536 1,536 1,540 1,079 1,079 1,079 457 457 461 

R-squared 0.249 0.248 0.245 0.230 0.231 0.238 0.207 0.206 0.207 

Robust standard errors in parentheses, clustered by locality and *** p<0.01, ** p<0.05, * p<0.1.   
^ Less than 2% of the sample experienced a positive rainfall shock in the pre-canícula period.  

Calculated using ENN with state fixed effects.  A negative weather shock identifies those municipalities which in the previous 
agricultural year (or wet season or pre-canícula period) had at least 1 standard deviation less rain (or GDD) than in an average year.  A 
positive weather shock identifies those municipalities which in the previous agricultural year (or wet season or pre-canícula period (had at 
least 1 standard deviation more rain (or GDD) than in an average year. 
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Appendix 5. Interpolation of weather data 
 
IMTA‘s dataset contains daily information on several meteorological variables for more than 
5,000 stations across Mexico, since the 1920s to 2007. These data were used to interpolate an 
observation of those three variables at the centroid of each of the 2,451 municipalities in the 
country, on a day-by-day basis. Municipality centroids were determined as the simple average 
of the latitude and longitude coordinates of all the localities listed within each municipality in 
INEGI‘s catalogue of localities. 
 
The approach used to interpolate the weather data is the two-dimensional, weighted average 
method proposed by Shepard (1968). He summarizes it as follows:  
 
―In essence, an operational solution to the problem of two-dimensional interpolation from 
irregularly-spaced data points is desired. It is assumed that a finite number of N triplets (xi,yi,zi) 
are given, where xi, yi are the locational coordinates of the data point Di, and zi is the 
corresponding data value. Data point locations may not be coincident. An interpolation 
function z=f(x,y) to assign a value to any location P(x,y) in the plane is sought. This two-
dimensional interpolation function is to be ―smooth‖ (continuous and once-differentiable), to 
pass through the specified points (i.e., f(xi,yi)=zi), and to meet the user‘s intuitive expectations 
about the phenomenon under investigation.‖ (p. 517) 
 
The interpolation function is simply a weighted average of the observed values from a certain 
number of data points (weather stations). Shepard chooses this number to be variable (ranging 
from 4 to 10, with an average of 7) by defining a radius around the interpolation point which, 
on average, will include 7 data points. Since in IMTA‘s dataset the weather stations are much 
more sparse in some areas of the country than others, choosing Shepard‘s number would have 
yielded a radius to small in some areas or too large in others. In addition, weather stations 
reported data intermittently, which implied that having a small number of stations to 
interpolate from ran the risk of not having any data values with which to do the interpolation. 
Instead, for every municipality centroid, we first chose the 20 stations that were closest to it39. 
We then kept only those stations that reported information on the day to be interpolated. The 
result was that less than 6% of the interpolations were based on only one weather station, 
around 8% (the highest proportion) were based on 7 stations, and around 1% were based on 18 
or more stations. 
 
The weights (wi) used in the interpolation function consider two aspects: Distance and direction. 
Distance is used to give a bigger weight to data points that are closer to the point of 
interpolation. Direction is used to take into account ―shadowing‖ effects: A weather station B 
that is ‗behind‘ another weather station A (as seen from the point of interpolation P) provides 
less information than another station C which is located in another direction—even if station B 
is closer to the point of interpolation than station C—because station B has been shadowed by 
station A (see Figure A.1) 
 
 

                                                                 
39 The number 20 was chosen because it was the smallest number of stations with which less than 1 percent of the 
interpolations would have to be made based on the data of only one station (the rest of the stations having failed to 
report data on that day). 
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Figure A.1. Weather station B is shadowed by station A. 

|--B---A---P------------------C--| 
 
 
 
 
The interpolation function for each of the 2,451 interpolation points P (for each day since 
January 1st, 1950 to December 31st, 2007) was the following: 
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Where di is the distance between interpolation point P and station i (among the N stations that 
reported information that day, out of the 20 stations closest to P), zi is weather station i's 
measure of the variable of interest (rain, maximum temperature, or minimum temperature), and 
wi is station i‘s weight for that day‘s interpolation. 
The weights are defined as 
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(with D being the distance to the farthest station), and 
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(with DiPDj being the angle between weather stations i and j with interpolation point P as 
vertex). 
 


