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Abstract

This paper shows the existence of an equilibrium pragmatic Lan-
guage with a universal grammar as a coordination device under com-
munication misunderstandings. Such a language plays a key role in
achieving efficient outcomes in those Sender-Receiver games where there
may exist noisy information transmission. The Language is pragmatic
in the sense that the Receiver’ best response depends on the context, i.e,
on the payoffs and on the initial probability distribution of the states of
nature of the underlying game. The Language has a universal grammar
because the coding rule does not depend on such specific parameters
and can then be applied to any Sender-Receiver game with noisy com-
munication.
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1 Introduction

There is an increasing interest in explaining the role of language in human
interactions from Economic Theory and Game Theory (see Rubinstein 1996,
2000; Blume 2005; Blume and Board 2008; Segal 2001; Selten and Warglien
2007; Balinski and Laraki 2007a,b, among others). Why is so? Why would
such research fields be relevant for linguistic issues? It is well known on the one
hand that Economic Theory and Game Theory deal with regularities in human
interactions and language is one of the more fundamental ones. On the other
hand, both Economic Theory and Game Theory analyze the design of social
mechanims and language can be considered a mechanism of communication.

Language is a symbolic system of communication making it possible the
inference of meaning. When we nowadays communicate by language, our utter-
ances (signals conveying information within a context) have meaning. In fact,
the meaning of a linguistic utterance is not transmitted directly, but is inferred
indirectly by the hearer, through pragmatic insights and the social context in
which the utterance is received. Furthermore, since linguistic communication
became combinatorially richer, then certain markers, alias grammar, started
to be used to disambiguate the communicative context1.

Language helps human beings to coordinate but coordination takes place
many times in different environments and in diverse contexts and here hu-
man ”natural” languages may experience some difficulties in trying to reduce
inefficient outcomes. For instance, empirical analyses have revealed that the
use of non-standard or non-native grammatical variants only rarely leads to
any communication breakdown, whereas most breakdowns occur due to lexical
or phonetic obstacles2. To explore the role of languages as coordination de-
vices under communication misunderstandings, we design a symbolic language
leading to coordination. The language that we propose is pragmatic in the
sense of Grice (1975). Pragmatics examines the influence of context3 on the

1These considerations lead naturally to queries about the efficiency of language to com-
municate and learn, inference models of creation of meanings and the role of grammar and
categorization in linguistic structures. Several answers have come from Linguistics (Grice,
1975; Gärdenfors, 2000; Azrieli and Lehrer, 2007; Jäger, 2007, etc.), Mathematics and Com-
puter Science (Batali, 1998; Nowak and Krakauer, 1999; Smith, 2003; Kirby, 2002, 2007;
Voght, 2005, etc), etc.

2In fact, as reported in Reiter and Sripada (2002), linguists have acknowledged that
people may associate different meanings with the same word.

3In Linguistics, a context comprises the speaker, the hearer, the place, the time and so
forth. How the hearer views the intentions of the speaker and how the speaker views the
presuppositions of the hearer are relevant to the understanding of an utterance.
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interpretation of an utterance.
Our context is a Sender-Receiver game where there may be communication

misunderstandings4. To formally develop this idea, our model specifies to an
incomplete information Sender-Receiver game with noisy information trans-
mission. The informed Sender, has to tell the uninformed one, the Receiver,
which action to choose. The set of the Sender’s meanings is the set of the
Receiver’s actions. To communicate the Sender encodes her meanings in a set
of public signals which are sent to the Receiver. Each signal can, in principle,
be anything, for example, letters or merely symbols in an alphabet of salient
features which is used to create signals. Signals could be subject to extrane-
ous factors that would distort or interfere with its reception. This unplanned
distortion or interference is known as noise5. The noise we are concerned with
is such that the messages are always received but they can differ from those
sent by the Sender, that is, signals may be distorted in the communication
process. We model this noise by assuming that each signal can randomly be
mapped to the whole set of possible signals6 and that the language dictionary
is a combination of elements of this set. More precisely, an input sequence is
a concatenation of signals. The Sender utters one of these sequences and the
Receiver hears an output sequence, which is a probabilistic transformation of
the signal string. To isolate the effect of noise from that of strategic uncer-

4For instance, though native English speakers may remember 80.000 words, very few of
them will use more than 7500 English words in their communication and even in this case
communication misunderstandings may appear.

5Noise refers to anything introduced into messages that is not included in them by the
Sender. Noise may range from mechanical noise, such as the distortion of a voice in the
telephone, to any noise generated in human communication such as semantic, psycholog-
ical or cultural noise. Semantic noise is generated because the ambiguity inherent in all
languages and other sign systems; psychological noise occurs when the psychological state
of the receiver is such as to produce an unpredictable decoding and cultural noise takes
place when the culture or subculture of the audience is so different from that of the sender
that messages are understood in ways that the sender might not have anticipated. Such
phenomena are pervaisve in many information transmission processes.

6In economics there are many situations where ”rational” agents have erroneous per-
ceptions, there are signaling models with noise, and, in general, information transmission
models with incomplete information such as those of Crawford and Sobel (1982), Lipman
and Seppi (1995), Koessler (2001, 2004), among others. In many of these models the noise
mainly refers to the strategic uncertainty of the agents about the relevant parameters of
the strategic situation under study rather than communication misunderstandings. Blume,
Board and Kawamura (2007) examines the possibilities for communication in the Crawford
and Sobel’s model in a noisy environment. In linguistics, Nowak, Krakauer and Dress (1999)
investigate the evolution of communication in the presence of noise: individual may mistake
one signal for another.
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tainty, it is assumed that the game is one of aligned interests, where the costs
of miscoordination are different in distinct states of nature.

The encoding rule or grammar and the decodification rule design a com-
munication device between the Sender and the Receiver. From a given and
common knowledge set of public signals and a communication length, a dic-
tionary or ”corpus” of sequences is defined, generating the set of standard
prototypes which are a one-to-one mapping into the set of Receiver’s actions.
The structure or grammar specifies that each prototype sequence is position-
ally arranged and maximally separated from any other sequence. The Receiver
has to infer a meaning from each heard sequence or, in other words, to assign
an action to each received sequence. Without any noise, the Receiver would
accurately infer the action to play from any received prototype. With noise
each received sequence belongs to the whole set of possible language sequences
and could have been generated from any prototype. Then, the Receiver’s cri-
terion is a best-response decoding which partitions the set of possible language
sequences into subsets, with a unique action assignment to each of them. In
linguistic terms, each of these subset is called the pragmatic variation of a
given prototype.

A Language is defined as the pair corpus and pragmatic variations: the
way in which the Sender transmits the meanings and that of the Receiver’s
understandings. We show that our proposed Language is an equilibrium of the
noisy communication game: an equilibrium coordination device under inter-
pretation failures. To the best of our knowledge we are the first ones to present
an equilibrium approach to the design of pragmatic Languages under general
communication misunderstandings. This equilibrium approach is interesting
for several reasons. The first one is that it stresses the role of language as a
communication mechanism and hence as a coordination device. The proposed
pragmatic Language facilitating coordination shares the spirit of Balinski and
Laraki (2007)’s work in the Theory of Social Choice. They show that a more
”realistic” model in this field, in the sense that messages are grades expressed
in a common language, allows preferences to be aggregated. A recent paper on
the evolution of language is Demichelis and Weibull (2008), were two parties
have a common language and agree on its meaning. They show that such a
shared culture -language and honesty code- facilitates coordination on socially
efficient equilibrium outcomes in strategic interactions. A different approach
is Blume and Board (2008) who take it as given that language is an imper-
fect technology that leaves messages subject to interpretation. Contrary to us,
they investigate the strategic use of interpretable messages.

The second reason deals with the structural regularities of languages. The
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grammar of our Language ensures the successful transmission7 of language it-
self and universality guarantees the language implementation in very different
contexts. Thus, our work stresses that of Nowak and Krakauer (1999) who
argue that grammar can be seen as a simplified rule system that reduces the
chances of mistakes in implementation and comprehension and it is therefore
favored by natural selection in a world where mistakes are possible. Our results
also match those of Selten and Warglien (2007), who show in a series of labora-
tory experiments that in an environment with novelty compositional grammar
offer considerable coordination advantages and therefore is more likely to arise.

The third reason is related to communication efficiency. Our pragmatic
Language is an efficient inference of meaning model for a not too short com-
munication length, that is, in spite of initial misunderstandings, the Receiver
is able to infer with a high probability the Sender’s meaning. This result guar-
antees expected payoffs close to those of communication without noise. Fur-
thermore, we characterize the time needed to span the pragmatic variations in
order to reduce the chances of misunderstandings and increase expected pay-
offs. A related paper is Crémer, Garicano and Prat (2007), who characterize
efficient technical languages and study their interaction with the scope and
structure of organizations.

Finally, the receiver’s best reply to any pure sender’s strategy induces a
partition of the underlying set of public signals around the standard protoypes
(as conjectured in linguistic studies, see Gärdenfors 2000). This partition is
related to the work on categorization based on prototypes (see Azrieli and
Lehrer, 2007, Jäger, 2007 and references herein). The closest result to ours is
Jäger (2007), who investigates communication in a partnership signaling game
where the set of meanings is equipped with an Euclidean geometrical structure.
Under an evolutionary approach, he shows that the sender’s strategy partitions
the meaning space into quasi-convex categories.

The paper is organized as follows. Section 2 presents the Sender-Receiver
game and the extended noisy communication game. The existence of a lan-
guage supporting players’ coordination is presented in section 3, where the
equilibrium pure strategies for the Sender and the Receiver are constructed. To
highlight the main features of our construction we offer some examples in sec-

7The structure of a language helps to enhance efficiency in communication. In Linguistics
Kirby (2002, 2007) focuses on the emergence of composition and recursion in languages. In
Economics, Rubinstein (1996, 2000) is concerned with the structure of binary relations ap-
pearing in natural language and Blume (2005) explores the use of structure in languages and
how such efficient structures facilitate coordination and learning in repeated coordination
games.
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tion 4. In section 5, the efficiency of our equilibrium for finite communication
length is measured and the time needed to approach the full communication
payoffs is calculated. Some concluding remarks close the paper.

2 The Model

2.1 The coordination game

Consider the possibilities of communication between two players, called the
Sender (S) and the Receiver (R) in an incomplete information game Γ: there
is a finite set of feasible states of nature Ω = {ω1, . . . ,ω|Ω|}. Nature chooses
first randomly ωj ∈ Ω with probability qj and then the Sender is informed
of such state ωj, the Receiver must take some action in some finite action
space A, and payoffs are realized. The agents’ payoffs depend on the Sender’s
information or type ω and the Receiver’s action a. Let u : A× Ω → R be the
(common) players’ payoff function, i.e., u(at,ωj), j = 0, 1, . . . , |Ω|−1. Assume
that for each realization ωj ∈ Ω, there exists a unique Receiver’s action âj ∈ A
with positive payoffs:

u(at,ωj) =

{
Mj if at = âj
0 otherwise

The most8 that players can get without any communication is the max{qjMj}j.
In Sender-Receiver games, players try to share their private information to
achieve coordination and increase their payoffs. They usually communicate
using a human or an artificially constructed language. To communicate the
Sender encodes the meanings to be transmitted in a set of public signals from
the underlying common language. To simplify the model it is assumed that
the set of basic signals is the binary alphabet and that the Sender combines
elements of this set to communicate. Signals may be distorted in the communi-
cation process. This distortion or noise is such that while messages are always
received by the Receiver, they may differ from those sent by the Sender. We
follow a unifying approach to this noisy information transmission and consider

8Suppose that R plays according to the mixed strategy α = (α1, . . . ,α|A|) that assigns
probability αt to action at, then the payoffs obtained by both players are

∑
ωj∈Ω qjαMj .

Since this expression is linear on α, then the optimal election of the probabilities of α (from
the viewpoint of R) corresponds to a pure strategy (the one corresponding to the vertex j∗

such that j∗ = argmax{qjMj}j).
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that agents communicate through a discrete noisy channel: a system con-
sisting of input and output alphabets, and a probability transition matrix9.
Formally, a noisy binary channel υ is defined by:

1. Two sets X = Y = {0, 1} as the input and the output basic signal sets
respectively

2. A transition probability p: an input signal s ∈ X is transformed by the
channel in an output signal r ∈ Y with a probability p(r|s). Let εl be
the probability of a mistransmission of the input signal l, then since the
channel is binary p(1|0) = ε0 and p(0|1) = ε1. The noisy communication
channel is denoted by υ(ε0, ε1).

We define next what an informative noisy channel is. The key point is that
the ’informativeness’ of the channel is not related to the probability of properly
understanding each basic signal 0 and 1, but instead to the relation between
these two probabilities, i.e., to the probability of discriminating between input
basic signals once an output basic signal is observed.

Let s be an input signal belonging to some space X, and r a realized output
signal in space Y . Let p(s) be the a priori probability that signal s is delivered
through the channel. The channel transforms s into r according to p(r|s).
From the observed r, input signal s is updated by Bayes’ rule yielding its
posterior conditional probability. Given two output signals r and r̂ and two
input signals s and ŝ, it is said that r is more favorable than r̂ for s, whenever
the posterior odds of inputs s and ŝ given the output r are at least as high as
those of inputs s and ŝ given the output r̂. Furthermore, the noisy channel
υ(ε0, ε1) is informative whenever for any realized output signal r and any pair
of input signals s, ŝ: p(s|r)

p(ŝ|r) =
p(r|s)p(s)
p(r|ŝ)p(ŝ) &=

p(s)
p(ŝ) .

Whether the channel is informative and which output signals are more
favorable than others are crucial to design the Sender’s set of input sequences
and the Receiver’s decodification procedure. Applying the above concepts to
channel υ(ε0, ε1), where s ∈ {0, 1} and r ∈ {0, 1} it is obtained (the proof is
given in the Appendix):

Lemma 1 If ε0 + ε1 &= 1, then υ(ε0, ε1) is informative. Moreover:

9The introduction of noise into a defined channel is well understood in another strand of
literature. Such information transmission has been mainly tackled by Information Theory
tools. Traditional Information Theory, pioneered by Shannon (1948) abstracts away from
equilibrium queries, and focuses on the process of information transmission itself. We will
come back to this appoach in subsection 3.1
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1. If ε0 + ε1 < 1, then for input signal 0, output signal 0 is more favorable
than output signal 1, and for input signal 1, output signal 1 is more
favorable than output signal 0.

2. If ε0 + ε1 > 1, then for input signal 1 output signal 0 is more favorable
than output signal 1, and for input signal 0, output signal 1 is more
favorable than output signal 0.

Noisy channels are only characterized by their levels of aggregate noise.
Firstly, if channel υ(ε0, ε1) is informative with low levels of aggregate noise
(ε0 + ε1 < 1), then the matching between the output and the input signal will
yield a more accurate posterior odds. For symmetric channels, i.e. ε0 = ε1 = ε,
this condition implies that the misunderstandings are not too high, i.e. ε < 1

2 .
Nevertheless, ε0 = 0.2 and ε1 = 0.7 in asymmetric channels also fulfil the
condition. Secondly, when channel υ(ε0, ε1) is informative with high levels
of aggregate noise (ε0 + ε1 > 1), then the unmatching between the output
and the input signal will yield now a more accurate posterior odds. Finally,
when ε0 + ε1 = 1, there is no way to discriminate between input signals once
an output signal is observed and the channel is not-informative. This happens
when ε = 1

2 in symmetric channels, or, for instance, when ε0 = 0.1 and ε1 = 0.9
in asymmetric ones.

Communication goes on for n periods. It is also assumed that the channel is
memoryless, i.e., the probability distribution of the output depends only on the
input at that time and is conditionally independent of previous channel inputs
or outputs. Then, given a communication length n, the Sender utters to the
channel an input sequence, x ∈ Xn = {0, 1}n, which is a concatenation of basic
binary signals and the Receiver hears an output sequence, y ∈ Y n = {0, 1}n,
which is an independent probabilistic transformation of the signal string. Thus
Γ is extended by a pre-play phase of communication where the Sender uses
n times the channel υ(ε0, ε1). Let Γn

υ denote this extended communication
game, where after the communication stage the uninformed player R chooses
an action from her action space (infers a meaning from y and the game context)
upon observing output sequence y and then payoffs are realized.

Since the Sender encodes her meanings in a set of public signals, her strat-
egy in Γn

υ is a rule suggesting the message to be sent at each ωj: a sequence
σS
j ∈ Xn sent by S given that the true state of nature is ωj. Each sequence

σS
j is called a standard prototype. The set of standard prototypes {σS

j }j is the
corpus.

A strategy of R is a 2n-tuple
{
σR
y

}
y
, where σR

y specifies an action choice as

a response to the realized output sequence y ∈ {0, 1}n. The action associated
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by R to each sequence, jointly with the context, is the meaning decodification.
Then, a Receiver’s strategy is the inference of a meaning for any sequence in the
language, even for those not included in the corpus. An univocal construction
of meanings partitions the set of output sequences Y n into |Ω| subsets, each of
them bringing together all the sequences whose meaning is the choice of action
âj, j = 1, . . . , |Ω|. Each subset of this partition is the pragmatic variation
associated to a particular standard prototype.

A Language is the pair corpus and pragmatic variations: the Sender’s mean-
ing transmission and the Receiver’s understandings. An equilibrium Language
is that for which the players’ strategies are a best response to each other.

Expected payoffs in Γn
υ are defined in the usual way. Let the tuple of the

Sender’s expected payoffs be denoted by: {πS
j }j = {πS

j (σ
S
j ,
{
σR
y

}
y
)}j, where

for each ωj,

πS
j = πS

j (σ
S
j ,
{
σR
y

}
y
) =

∑

y∈Y n

p(y|σS
j )u(σ

R
y ,ωj)

and where p(y|σS
j ) is the Sender’s probability about the realization of the

output sequence y ∈ {0, 1}n conditional on having sent sequence σS
j in state

ωj.
Let the tuple of the Receiver’s expected payoffs be {πR

y }y = {πR
y ({σS

j }j, σR
y )}y,

where for each output sequence y ∈ {0, 1}n,

πR
y = πR

y ({σS
j }j, σR

y ) =
|Ω|∑

j=1

p(σS
j |y)u(σR

y ,ωj)

and where p(σS
j |y) is the Receiver’s probability about input sequence σS

j in
state ωj conditional on having received the output sequence y.

A pure strategy Bayesian Nash equilibrium of the communication game is
a pair of tuples ({σ̂S

j }j, {σ̂R
y }y), i.e., a Sender’s corpus and a Receiver’s sets

of pragmatic variations, and a set of probabilities {p(σS
j |y)}j for the Receiver

such that for each ωj, and for any other strategy σ̃S
j of the Sender,

π̂S
j = πS

j (σ̂
S
j , {σ̂R

y }y) ≥ πS
j (σ̃

S
j , {σ̂R

y }y),

and for each y ∈ {0, 1}n and for any other Receiver’s strategy σ̃R
y ,

π̂R
y = πR

y ({σ̂S
j }j, σ̂R

y ) ≥ πR
y ({σ̂S

j }j, σ̃R
y ),

where by Bayes rule each p(σS
j |y) is given by: p(σS

j |y) =
p(y|σS

j )p(σ
S
j )

p(y) .

9



The ex-ante expected payoffs of this communication game are given by

ΠS({σS
j }j,
{
σR
y

}
y
) =

|Ω|∑

j=1

qjπ
S
j (σ

S
j , {σR

y }y) =
|Ω|∑

j=1

qj
∑

y∈Y n

p(y|σS
j )u(σ

R
y ,ωj)

for the Sender an those of the Receiver are defined by,

ΠR({σS
j }j,
{
σR
y

}
y
) =

∑

y∈Y n

p(y)πR
y ({σS

j }j, σR
y ) =

∑

y∈Y n

p(y)
|Ω|∑

j=1

p(σS
j |y)u(σR

y ,ωj)

Notice that ΠS({σS
j }j,
{
σR
y

}
y
) = ΠR({σS

j }j,
{
σR
y

}
y
), since Γ is symmetric

and
∑|Ω|

j=1

∑
y∈Y n qjp(y|σS

j ) =
∑

y∈Y n

∑|Ω|
j=1 p(y)p(σ

S
j |y). Denote this common

ex-ante expected payoffs by Πυ.

In order to distinguish among sequences, a distance function among them
has to be defined. A natural and intuitive function is the Hamming distance.
Formally, consider two n-dimensional sequence x = (x1, . . . , xn) and y =
(y1, . . . , yn). Let I stands for the indicator function. The Hamming distance
between two sequences x, y, denoted h(x, y), is defined as h(x, y) =

∑n
t=1 Ixt "=yt .

Suppose that n = m |Ω|. For 1 ≤ l ≤ |Ω|, the l−block of length m
of x = (x1, . . . , xn) is the subsequence (x(l−1)m+1, . . . , xlm). The Hamming
distance in the l-th block between x and y, denoted by hl(x, y) is equal to the
Hamming distance between the l-th block of x and l-th block of y. Formally,

hl(x, y) = h((x(l−1)m+1, . . . , xlm), (y(l−1)m+1, . . . , ylm)) =
m∑

t=1

Ix(l−1)m+t "=y(l−1)m+t

By additivity, the Hamming distance between x and y coincides with the sum
of the Hamming distances of the |Ω|−blocks between x and y: h(x, y) =∑|Ω|

l=1 hl(x, y).

3 Pure equilibrium strategies under informa-
tive noisy channels.

Our main finding shows the existence of an equilibrium pragmatic Language,
with a universal structure or grammar. In fact, we show how to construct such
a Language. Language is pragmatic in the sense that the Receiver’ decoding
rule depends on the context, i.e, on the payoffs and on the initial probability
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distribution of the states of nature of Γ. Language has a universal grammar
because the Sender’s corpus does not depend on such specific parameters of Γ
and can then be applied to any Sender-Receiver game. Both rules are a best
response to each other, generating an equilibrium Language.

In the noisy communication game Γn
υ , the cardinality of the set of commu-

nication sequences exceeds that of the set of states of nature. Then, given the
set of basic signals {0, 1} and n, a dictionary or ”corpus” of sequences from
{0, 1}n is designed by selecting |Ω| of them, one for each state of nature. Each
selected sequence is a standard prototype, {σS

j }j∈{1,...,|Ω|}. Standard prototypes
are constructed by dividing any input sequence (x1

j , . . . , x
n
j ) in |Ω| blocks of

length m in such a way that all blocks but the j-th consist of repetitions of
signal 1 and the j-th block is composed of m repetitions of signal 0. For each
realized state of nature, the Sender utters to the channel a standard prototype.
A Sender’s pure strategy is then the standard prototype to be sent at each ωj.

For each prototype, the noise induces any output sequence in Y n = {0, 1}n,
say y. Once y is observed, the Receiver chooses his best response. His choice
is based on the following meaning inference procedure: given the noisy infor-
mation transmission, he partitions the set of all possible received sequences
{0, 1}n in a collection of subsets which are called ”the pragmatic variation
classes”, denoted by {σR

y }y. Each pragmatic variation class is associated to
a particular standard prototype and hence to a particular action. Therefore,
the Receiver will play the action dictated by the pragmatic variation including
output sequence y. Since the Receiver maps the observed output sequence
into prototypes, his best reply to any pure Sender’s strategy induces a kind
of ”categorization”10 of the output space, Y n = {0, 1}n, around the standard
protoypes. Thus, at equilibrium the output message space is partitioned in a
finite number of sets.

Given that the Sender knows the Receiver’s partition of the output space,
her best response is truth-telling. Specifically, the Sender has no incentive
to lie uttering an input sequence different from the corresponding standart
prototype. This is so because the probability mass of the pragmatic variation
class associated to each standard prototype (and hence to each state of nature)
only decreases by lying. Therefore, the main result states that the transmission
of the corresponding standard prototype (for a realized output sequence) by
the Sender, and the choice of the action suggested by the classes of pragmatic
variations by the Receiver are a pure strategy Bayesian Nash equilibrium of

10Categorization is the way by which a set of entities, identified with some finite dimen-
sional Euclidean space, is partitioned into a finite number of categories. Categories are sets
of entities to which we react in an identical or similar way.
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Γn
υ . Firstly, we present the Theorem, proven in the Appendix, and then we

show how to construct such strategies.

Theorem 1 There exists an n0 ∈ N such that for all n ≥ n0 the pair of
tuples ({σ̂S

j }j, {σ̂R
y }y) and the set of probabilities {p(σS

j |y)}jis a pure strategy
Bayesian Nash equilibrium of Γn

υ.

The partition of the output space in the pragmatic variations of the stan-
dard prototypes is related to the work of Azrieli and Lehrer(2007), who suggest
a categorization model based on prototypes. Our result is also related to Jäger
(2007), who analyzes the class of Sender-Receiver games, where the cardinality
of the set of meanings exceeds the size of the set of signals by several orders of
magnitude. He shows that under the replicator dynamics, a strict equilibrium
set is such that for each Receiver’s pure strategy, the Sender’s best reply is a
categorization of the meaning space.

On the contrary, in our noisy communication game, the Receiver’s best
reply to any pure Sender’s strategy induces a categorization of the output
message space around the standard protoypes. This partition is due to an
inference process rather than to an evolutionary dynamics. Thus, noisy com-
munication processes induce pragmatic categorizations of the message space.
Unlike Jäger, the players’ utility function reflects different payoffs under dif-
ferent standard prototypes, this meaning that it is the weighted (by expected
payoffs) distance what matters for categorization. Our categorization takes
then into account not only the pure similarity or distance to the standard
prototypes but also the expected payoffs of game Γ.

In the sequel, we offer the construction of the pure equilibrium strategies
for the Sender and the Receiver, i.e. {σ̂S

j }j and {σ̂R
y }y, respectively, in Γn

υ when
the noisy channel υ(ε0, ε1) is informative with low levels of aggregate noise,
i.e., ε0 + ε1 < 1. The remaining case is similar and we omit it.

3.1 The corpus and the pragmatic variations of the stan-
dard prototypes.

One is tempted to look at Information Theory to design the players’ coding and
decoding strategies in our noisy communication game Γn

υ . More specifically,
Coding Theory is concerned with the design of practical encoding and decoding
systems to achieve reliable communication over a noisy channel. The general
idea is that the encoding system introduces systematic redundancy into the
transmitted message, while the decoding system uses this known redundancy
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to deduce from the received message both the original source vector and the
noise introduced by the channel11. The basic Theorem of Information Theory
is then the achievability of the channel capacity by a communication protocol
(based on encoding and decoding rules) under the implicit assumption that the
two communicating agents commit ex-ante to following a particular encoding
and decoding strategies before the communication stage.

In game theoretical analysis players are required to take actions when they
are called upon to do so, therefore given an encoding rule and an output
message, the Receiver’s equilibrium conditions summarize the choice of the
action corresponding to that state of nature for which his expected payoffs are
higher. Thus, unlike Information Theory, the role of a decoding rule in our
problem is not that of recovering a string potentially perturbed by the noise
channel but instead that of inferring at equilibrium which of the actual |Ω| valid
messages was actually sent through the channel. Since we are interested in
encoding systems supporting equilibria, there is only one feasible decoding rule
which is given by the ’best response’ decoding rule. Obviously, not all coding
and decoding rules12 from Information Theory can generate the conditions
to satisfy the Nash equilibrium requirements. This is so, even when players’
strategies come from a well-established theory guaranteeing a good rate of
information transmission (see, Hernandez, Urbano and Vila, 2009). For this
reason the application of standard encoding systems, which are more efficient
in terms of transmission rates may not be too appropriated when designing
simple and universal encoding systems supporting equilibria.

The next step is to design the encoding13 rule or corpus of the standard
prototypes which is a best response to the Receiver’s decoding. A coding rule
for our problem is a rule assigning a string of n symbols in {0, 1} to each state
of nature. We will use a variation of a repetition14 code: the block coding
rule. A general characterization of the Receiver’s best response decoding rule
for any feasible Sender’s corpus would depend of the game parameters, the

11There are mainly two different families of encoding rules for binary noisy channels:
repetition codes and linear block codes (where the most known are the Hamming codes).

12Decoding rules associated to standard code systems as for instance either the Hamming
code (7,4) or random codes may not be, in general, best responses to the received string.

13The framework in our paper is quite different from that of Coding Theory. In particular,
the number of states of nature (the cardinality of Ω), from which one has to be transmitted,
is fixed and usually small.

14Repetition codes generate redundancy by the repetition of every bit of the message a
prearranged number of times. This family of codes can achieve arbitrarily small probability
of error only by decreasing the rate of transmission. However, they are useful for many
practical purposes as, for instance, when universality is a desiderable property.

13



noise and the encoding parameters (the interested reader may consult the
authors’ web pages)15. To leave apart the encoding parameters, and focus on
the game theoretical aspects of the problem, we construct an easy and universal
encoding rule allowing a simple characterization (for instance, in terms of the
Hamming distance) of the best response decoding rule, only depending on both
the game and the noise parameters of any Sender-Receiver game with noisy
communication. As it will become clear in the sequel the block coding rule is
independent of the game payoffs and of the initial probabilities of the sates of
nature.

3.1.1 The Corpus: Block Coding

The corpus is constructed from the set of basic signals {0, 1} and the commu-
nication length. For a given length n, the set of possible utterances is then
{0, 1}n. Since each state ωj is associated with a receiver’s optimal action âj,
then, the corpus consists of the |Ω| sequences in {0, 1}n given by {σ̂S

1 , .., σ̂
S
|Ω|}

and each of the |Ω| sequences σ̂S
j is the standard prototype encoding the mean-

ing ”take the action âj”. The Sender’s pure strategy assigns to each state ωj

a tuple σ̂S
j = (x1

j , . . . , x
n
j ). Assume that the number of states of nature |Ω| is

a multiple16 of n, i.e., there exists an integer m such that n = m |Ω|.
Since many sequences in {0, 1}n are possible, some grammar is needed to

isolate structural regularities. In particular, our language grammar is based
on a block structure which allows us to construct a corpus as follows: each
σ̂S
j ∈ Xn = (x1

j , . . . , x
n
j ) where the element

xi
j =

{
0 if (j − 1)m− 1 ≤ i ≤ jm
1 otherwise

In other words, input sequence (x1
j , . . . , x

n
j ) is divided into |Ω| blocks of

length m in such a way that all blocks but the j-th consist of repetitions of
signal 1 and the j-th block is the m-repetition of signal 0. Thus, the structure
or grammar specifies that each prototype sequence is positionally arranged,
that is, in blocks. A first property of this grammar is that prototypes have the
maximal separation among them. Furthermore, the block structure permits
the block by block comparison among any sequence y and all the prototypes.
Thus, the relevant information when comparing output sequence y to prototype

15Either http://www.uv.es/penelope/ or http://www.uv.es/urbano/
16If n is not a multiple of m, one may consider m as the integer part of n

[Ω] . The remaining
elements would be considered without meaning.
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σ̂S
l is only contained in the corresponding block l. Moreover, all the remaining

prototypes give the same block l-information with respect to σS
l . The following

lemma formalizes this property, where the block Hamming distance between
sequences is the distance measure.

Lemma 2 For all k, k′ ∈ {1, 2, . . . , |Ω|}, we have that
1. hl(σ̂S

k , y) = hl(σ̂S
k′ , y) if k &= l &= k′

2. hk(σ̂S
k , y) + hk(σ̂S

k′ , y) = m if k &= k′

The players’ strategies can be understood as a communication protocol.
One of the most desired properties in communication protocol design is uni-
versality. The corpus satisfies this property since it does not depend on the
specific parameters of Γ, that is, on the payoffs and the initial probability
distribution of the states of nature.

3.1.2 The Receiver’s best response: The pragmatic variations of
the standard prototypes.

The Receiver has to take the action in Γ, after hearing an output sequence y,
which maximizes his expected payoffs. Equivalently, for each y he chooses the
action âl(y) such that

|Ω|∑

j=1

p(σ̂S
j |y)u(âl|ωj) ≥

|Ω|∑

j=1

p(σ̂S
j |y)u(ak|ωj),

for any other k &= l which, given both the linearity of the Receiver’s payoff
functions in probabilities {p(σS

l |y)}l, l = 1, . . . , |Ω|, and the matrix payoffs is
equal to p(σ̂S

l |y)Ml ≥ p(σ̂S
k |y)Mk, or

p(σ̂S
l |y)

p(σ̂S
k |y)

≥ Mk

Ml
(1)

The next proposition states that given a noisy communication channel υ =
{ε0, ε1} and an observed output sequence y, the likelihood ratio of any two
standard prototypes, say σ̂S

j and σ̂S
k , can be written in terms of their block

hamming distance with respect to output signal y and of the channel noise
parameters. In the Appendix some easy but cumbersome calculations show
that.
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Proposition 1 For all k, l = 1, . . . , |Ω|, k &= l and for all y ∈ Y,

p(σ̂S
l |y)

p(σ̂S
k |y)

=
ql
qk

(
ε0

1− ε0

ε1
1− ε1

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m

(2)

Substitution of (2) in (1) gives an expression which helps the Receiver to
assign each sequence y to one of the standard prototypes and hence to a specific
action. This assignment is based on both the number of different elements
(errors) that each two standard prototype sequences σ̂S

l and σ̂S
k may have with

respect to the observed output sequence y and on the ratio of their associated
expected payoffs Mkqk

Mlql
. More precisely, the Receiver’s pure equilibrium strategy

generates first a partition of output set Y n around the standard prototypes
based on both the prototype likelihood ratio and their relative expected payoffs.

To proceed with the construction of the message space partition, compute
first parameters {Clk}l "=k, for each l, k ∈ {1, . . . , |Ω|}, as the integer approxi-
mation of the number coming from the expression:

lnMkqk
Mlql

ln ε0
1−ε0

ε1
1−ε1

+m (3)

Parameters {Clk}l "=k are the ”vicinity bounds”; there are |Ω|× (|Ω|− 1) of
them and can be arranged in the following way,

Y1 Y2 Y3 Yl Y|Ω|





∗ C21 C31 · · · Cl1 · · · C|Ω|1
C12 ∗ C32 · · · Cl2 · · · C|Ω|2
C13 C23 ∗ · · · Cl3 · · · C|Ω|3
· · · · · · · · · · · · · · · · · · · · ·
C1l C2l C3l · · · ∗ · · · C|Ω|l
· · · · · · · · · · · · · · · · · · · · ·
C1|Ω| C2|Ω| C3|Ω| · · · Cl|Ω| · · · ∗





where each column gives the constraints defining subsets of Y n and with
typical element Clk. Each Clk is an upper bound on the distance between blocks
l and k in y and the corresponding ones in σ̂S

l . Thus, parameter Clk is the
maximum number of permitted mistakes to infer that output sequence y comes
from σ̂S

l instead of coming from σ̂S
k . For a given noisy channel υ(ε0, ε1) and

communication length n, expression (3) measures the relative expected payoff
loss from taking one action instead of the other. Therefore the minimum over
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the k’s of vicinity bounds {Clk}k, k &= l, is the maximum of such relative
expected payoff losses.

To precisely specify each subset Yl, we divide the set of states of nature in
two subsets:

1. One containing those states k, different from states l in expected payoffs,
that is qlMl &= qkMk. Let Ω̃l = {k ∈ {1, . . . , |Ω|} such that qlMl &=
qkMk} be such a set17.

2. Another one with the remaining states where their expected payoffs co-
incide with those of state l. In this (symmetric) later case, a rule to
break ties is needed. Our rule is the same for every pragmatic variation,
coincides with the length of the block and is independent of both the
noise and the expected payoffs.

We are now ready to define subsets Yl of the partition. Each subset is
determined by vicinity bounds on the number of permitted block hamming
distances (errors)18 between a standard prototype σ̂S

l and the realized output
sequence y.

Yl = {y ∈ Y n| hl(σ̂
S
l , y) + hk(σ̂

S
l , y) ≤ Clk, for all k ∈ Ω̃l

hl(σ̂
S
l , y) + hk′ (σ̂

S
l , y) ≤ Clk′ , for all k

′
ε /∈ Ω̃l , k

′
< l

hl(σ̂
S
l , y) + hk′ (σ̂

S
l , y) < Clk′ , for all k

′
/∈ Ω̃l , k

′
> l}

Finally, for each realized y, the Receiver’s pure equilibrium strategy is

σ̂R
y = âl ⇔ y ∈ Yl

It is worth remarking:
1. Given the above description of Yl, and that either Clk + Ckl = 2m − 1

whenever qlMl &= qkMk or Clk + Ckl = 2m whenever qlMl = qkMk, sets Yl,
l = {1, . . . , |Ω|}, are a true partition of Y n (see the Appendix). Therefore, the
Receiver’s best reply to any pure Sender’s strategy induces a categorization of
the output message space Y n = {0, 1}n around the standard protoypes.

2. The necessary condition to have a non-empty Yl is that the sign of all
the Clk’s is non-negative. As the expression ln( ε0

1−ε0
ε1

1−ε1
) is negative, whenever

17Set Ω̃l could be empty when, for instance, Γ had the same payoffs at each state and the
priors were uniformly distributed.

18Recall that we are considering informative channels with low levels of aggregate noise,
ε0 + ε1 < 1. Here, the matching between the output and the input signal yields a more
accurate posterior odds.
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both qkMk > qlMl and the communication length n is very short, i.e., m = n
|Ω|

is not big enough, then the associated Clk may be negative. This will give
rise to not playing at all the corresponding action âl and an efficiency loss. In
section 5, we will show how to cope with this case and improve efficiency by
designing an auxiliary truncated game.

3. Finally, let us specify the size of the standard prototype block, m, in
parameters {Clk}l "=k by denoting each of them by Cm

lk . If the communication

length increases up to n+ |Ω|, then the new block length will be m
′
= n+|Ω|

|Ω| =

m+1, Cm
′

lk =
ln

Mkqk
Mlql

ln
ε0

1−ε0

ε1
1−ε1

+m+1, and thus Cm
′

lk = Cm
lk+1. Therefore, parameters,

Cm
lk grows by a unit whenever the block length m = n

|Ω| increases by one.
This means that as n increases, the vicinity bounds and hence the number of
sequences belonging to each Yl, l = {1, . . . , |Ω|}, increase as well. This fact
is useful to characterize the time needed to span the pragmatic variations in
order to approach any targeted expected payoffs.

The assignment process of the specific sequences belonging to each Yl is
a little cumbersome but the following examples nicely illustrate the whole
construction.

4 Examples

Example 1. Consider the following Sender-Receiver game Γ with three states
of nature where nature chooses ωj, j = 1, 2, 3 according to law q = (q1, q2, q3) =
(0.5, 0.25, 0.25). The set of actions for player R is A = {a1, a2, a3}, and payoffs
for the three states of nature are M1 = 1, M2 = 7 and M3 = 43, or in matrix
form:

a1 a2 a3
ω1

ω2

ω3




(1, 1) (0, 0) (0, 0)
(0, 0) (7, 7) (0, 0)
(0, 0) (0, 0) (43, 43)





Suppose that the players communicate n = 6 times through the noisy
channel υ(ε0, ε1) with associated transition probabilities p(1 | 0) = ε0 = 0.1
and p(0 | 1) = ε1 = 0.6. Thus, the communication channel is υ = {0.1, 0.6}
and Γ6

υ is the associated extended communication game.
For each state ωj, j = 1, 2, 3, the Sender divides the standard prototype

sequences (x1
j , . . . , x

6
j) ∈ X6, in 3 blocks of length m = 6

3 = 2, where the j-th
block, consists of two consecutive 0’s and the other blocks of two consecutive

18



1’s. Thus, the corpus consists of the Sender’s 3-tuple of standard prototypes:
σ̂S
1 = 001111, σ̂S

2 = 110011 and σ̂S
3 = 111100.

To begin with the partition of output message space Y = {0, 1}6, the

Receiver considers the matrix of elements Clk =
ln

Mkqk
Mlql

ln
ε0

1−ε0

ε1
1−ε1

+m,

C1k C2k C3k

k = 1
k = 2
k = 3




∗ 2 3
1 ∗ 3
0 0 ∗





Next, given that for all j = 1, 2, 3, qjMj &= qiMi, i &= j, output set Y = {0, 1}6
is partitioned by the Receiver in subsets Yl = {y|hl(σ̂S

l , y)) + hk(σ̂S
l , y)) ≤

Clk, ∀k, l = 1, 2, 3, k &= l}, where {Y1, Y2, Y3} are defined by the above matrix
as follows:

Y1 = {y ∈ {0, 1}6 |h1(001111, y) + h2(001111, y) ≤ 1 = C12

|h1(001111, y) + h3(001111, y) = 0 = C13 }

Y2 = {y ∈ {0, 1}6 |h2(110011, y) + h1(110011, y) ≤ 2 = C21

|h2(110011, y) + h3(110011, y) = 0 = C23 }

Y3 = {y ∈ {0, 1}6 |h3(111100, y) + h1(111100, y) ≤ 3 = C31

|h3(111100, y) + h2(111100, y) ≤ 3 = C32 }
Note that the worse expected payoffs in states 1 and 2 as compared to those

in state 3, make it both C13 = C23 = 0, i.e., no Hamming distance (mistake)
will be permitted between the observed y and the standard prototype σ̂S

1 , if
the Receiver has to assess that y comes from σ̂S

1 instead of coming from σ̂S
3 ,

and similarly for the standard prototype σ̂S
2 .

How to construct the pragmatic variations around the standard prototypes?
Take the minimum of the Clk’s. In our example consider, for instance, Y1,
where this minimum is given by the Hamming distance of any output sequence
y to blocks 1 and 3, i.e. h1(001111, y) + h3(001111, y) = 0. Parameter C13 = 0
implies that no error is permitted in blocks 1 and 3 together and hence these
blocks in all sequences belonging to Y1 have to be equal to the first and third
blocks, respectively, of σ̂S

1 = 001111, i.e. sequences of the form {00∗∗11}. Now,
let us consider the elements of block 2 of Y1, where C12 = 1. This implies that at
most one error is permitted in blocks 1 and 2 together, but since C13 = 0, this
error can only be in block 2. Hence block 2 in all sequences in Y1 is composed
of the sequences {(1, 1), (0, 1), (1, 0)}. Thus, block 2 permits all the variations
around σ̂S

1 . The distance asymmetries among blocks reflects the expected
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payoffs asymmetries of Γ. Similar reasoning will give us the set of sequences
in Y = {0, 1}6 belonging to Y2. Finally, notice that by lemma 2 and by the
integer approximation C32+C23 = 2m−1 ≤ 2m and C31+C13 = 2m−1 ≤ 2m,
and the sequences belonging to Y3 can be easily characterized.

Thus, set Y = {0, 1}6 is partitioned in three sets of sequences19 Y1, Y2 and
Y3. where

Y1 =






{(0, 0) (1, 1) (1, 1)}
{(0, 0) (0, 1) (1, 1)}
{(0, 0) (1, 0) (1, 1)}




 Y2 =






{(1, 1) (0, 0) (1, 1)}
{(1, 0) (0, 0) (1, 1)}
{(0, 1) (0, 0) (1, 1)}
{(0, 0) (0, 0) (1, 1)}






and Y3 = {0, 1}6 − Y1 − Y2.
Then, for each y the Receiver’s pure equilibrium strategy is:

σ̂R
y = âj ⇐⇒ y ∈ Yj, j = 1, 2, 3

and equilibrium expected payoffs for n = 6 are:

ΠS({σ̂S
j }j, {σ̂R

y }y) = ΠR({σ̂S
j }j, {σ̂R

y }y) = Πυ =
3∑

j=1

∑

y∈Y n

qjp(y|σ̂S
j )u(σ̂

R
y ,ωj)

=
3∑

j=1

qjMj

∑

y∈Y n

qjp(y|σ̂S
j ) =

3∑

j=1

qjp(Yj|σ̂S
j )Mj = 10.96

where p(Yj|σ̂S
j ) =

∑
y∈Yj

p(y|σ̂S
j ) with p(Y1|σ̂S

1 ) = 0.083; p(Y2|σ̂S
2 ) = 0.130 and

p(Y3|σ̂S
3 ) = 0.994. The ex-ante expected payoffs of noiseless communication

are
∑3

j=1 qjMj = 13 and the maximum expected payoffs of the silent game are
q3M3 = 10.75.

Example 2. Consider the particular case |Ω| = 2, with n = 4, and the
alternative corpus σ̂S

1 = 0000 and σ̂S
2 = 1111 instead of ours (i.e, σ̂S

1 = 0011
and σ̂S

2 = 1100). Further assume that ε0 = ε1 = ε.
Applying our best-reply reasoning to the above corpus, the Receiver’s prag-

matic variations for any received sequence y, when q1M1 &= q2M2 are:

Y1 = {y ∈ {0, 1}4 |h1(0000, y) + h2(0000, y) ≤ C12 }
Y2 = {y ∈ {0, 1}4 |h2(1111, y) + h1(1111, y) ≤ C21 }

19Notice that sets Y1,Y2 and Y3 are a partition of Y . In order for a sequence of Y3 to be
also in Y1, a Hamming distance of 2m would be required. But the maximum distance is
2m− 1.
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and the Receiver’s pure strategy is as before: σ̂R
y = âj ⇐⇒ y ∈ Yj, j = 1, 2.

Notice that if Γ has symmetric expected payoffs, i.e., q1M1 = q2M2, then
C12 = C21 = m = n

2 , and the Receiver’s best response when she hears a y
will be the well-known majority rule: playing â1 whenever the number of 0’s
is strictly greater than the number of 1’s and â2 whenever the number of 1’s is
greater than or equal to the number of 0’s. Nevertheless, when q1M1 &= q2M2,
the majority rule will not be a best-response.

5 Efficiency Analysis

This section analyzes the power of pragmatic Languages as coordination de-
vices under noisy communication. This analysis entails to first assessing its
performance as a meaning inference model, i.e., to bound the size of the poten-
tial wrong inferences of meaning as a function of parameters ε and n. Then,
efficiency is analyzed by comparing, for each communication length n, how
close ex-ante expected payoffs are to those of reliable communication, thus
providing, for a given expected payoff-approximation parameter, the commu-
nication threshold length.

Let Γυ0 be the game where the Sender communicates the realized state
of nature with no mistake, i.e., ε0 = ε1 = 0, and let Πυ0 be the associated
ex-ante Nash equilibrium expected payoffs where agents play the action pair
with positive payoffs, at each state of nature, Πυ0 =

∑|Ω|
j=1 qjMj.

Alternatively, the common ex-ante equilibrium expected payoffs of our ex-
tended communication game Γn

υ were denoted by Πυ. To stress the dependence
of such payoffs on the communication length n, let us denote them as Πn

υ . Also,
recall that (see remark 3 before the section of examples) the vicinity bounds
depend on n and so do the pragmatic variations classes, denoted now as Y n

j ,
l = {1, . . . , |Ω|}. Then,

Πn
υ = Πn

υ({σ̂S
j }j, {σ̂R

y }y) =
|Ω|∑

j=1

qjMjp(Y
n
j |σ̂S

j )

where p(Y n
j |σ̂S

j ) =
∑

y∈Y n
j
p(y|σ̂S

j ). Therefore,

Πυ0 − Πn
υ =

|Ω|∑

j=1

qjMj(1− p(Y n
j |σ̂S

j ))

The difference between the above expected payoffs depends on probabili-
ties p(Y n

j |σ̂S
j ). Each of this quantities measures the probability mass of the
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pragmatic variation of each standard prototype σ̂S
j : the Receiver’s probability

of playing âj when the Sender utters σ̂S
j in a communication episode of length

n.
The first finding is that our pragmatic Language performs probabilisti-

cally quite well, when n is long enogh, as an inference meaning device, un-
der noisy communication. To show this, we construct an upper bound on
1− p(Y n

j |σ̂S
j ) = p(Y n − Y n

j |σ̂S
j ), i.e. the probability of not inferring the action

âj by the Receiver when the Sender utters sequence σ̂S
j . By definition of each

Y n
j , this wrong inference takes place whenever some vicinity bounds are not

fulfilled, i.e., whenever hj(σ̂S
j , y) + hk(σ̂S

k , y) > Cjk for k ∈ K, where K is any
non-empty subset in {1, 2, . . . , j − 1, j + 1, . . . , |Ω|}. The following result is
proven in the Appendix.

Proposition 2 Given a noisy communication channel υ(ε0, ε1) with ε0 < ε1
and game Γn

υ, for any n ≥ |Ω|, then

p(Y n − Y n
j |σ̂S

j ) = 1− p(Y n
j |σ̂S

j ) ≤ ε
cj+1
1 φj(ε0, ε1)

where cj = min{Cjl|l = 1, . . . , |Ω|; j &= l} and φ(ε0, ε1) is a function on ε0 and
ε1, for each j.

Notice that for n fixed, (1− p(Y n
j |σ̂S

j )) = o(ε
cj+2
1 ) since

lim
ε1→0

(1− p(Y n
j |σ̂S

j ))

ε
cj+2
1

=
ε
cj+1
1 φj(ε0, ε1)

ε
cj+2
1

→ 0

Therefore the bound of the above Proposition is small whenever cj ≥ 0. A
sufficient condition for cj ≥ 0 is that all vicinity bounds Clk are non-negative,
i.e., whenever,

n ≥ −|Ω|
ln

qlMl|
qjMj

ln ε0ε1
(1−ε0)(1−ε1)

, for all l = 1, . . . , |Ω|; j &= l. (4)

We turn next to the efficiency issue. For a fixed communication length n,
a pair of equilibrium strategies ({σ̂S

j }j, {σ̂R
y }y) is η-efficient if: Πυ0 − Πn

υ ≤ η.
For any 1 > η > 0, we offer a threshold length n̂ such that both the asso-

ciated corpus and set of pragmatic variations support η-efficient equilibrium
strategies.

By Proposition 2 and for n big enough, the difference between reliable and
noisy communication expected payoffs is given by

Πυ0 −Πn
υ =

|Ω|∑

j=1

qjMj(1− p(Y n
j |σ̂S

j )) =
|Ω|∑

j=1

qjMjε
cj+1
1 φj(ε0, ε1) ≤

|Ω|∑

j=1

qjMjε
cj+1
1
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where cj = min{Cjl|l = 1, . . . , |Ω|; j &= l}. Denote c̃ = min{cj|j = 1, . . . , |Ω|},
and assume, without loss of generality, that q1M1 ≤ . . . ≤ q|Ω|M|Ω|, then the
smallest vicinity bound c̃ is

c̃ =
ln

q|Ω|M|Ω|
q1M1

ln ε0ε1
(1−ε0)(1−ε1)

+
n

|Ω| (5)

Therefore, to get an η-approximation, it suffices that

Πυ0 − Πn
υ ≤ εc̃+1

1

|Ω|∑

j=1

qjMj ≤ η

Or, in other words,

εc̃+1
1 ≤ η

∑|Ω|
j=1 qjMj

Since ln ε1 < 0, a sufficient condition is that

c̃ ≥ 1

ln ε1
ln

η
∑|Ω|

j=1 qjMj

>
1

ln ε1
ln

η
∑|Ω|

j=1 qjMj

− 1. (6)

Inserting (5) in (6) and rearranging we find that n̂ is bounded by the
expression,

n̂ ≥ |Ω|
(

1

ln ε1
ln

η
∑|Ω|

j=1 qjMj

−
ln

q|Ω|M|Ω|
q1M1

ln ε0ε1
(1−ε0)(1−ε1)

)
. (7)

The minimum length of the communication episode that allows η-efficiency
depends on the relative η-approximation, the biggest amount of noise and the
maximum relative expected payoffs loss. Notice that by (4) if the first term of
the right hand side of (7) were negligible, then the length n̂ would coincide with
the minimal length guaranteeing a positive matrix of the Clk’s. Therefore, the
second term of the right hand side is the communication length to generate
non-empty pragmatic variations for all the prototypes. The first term adds
then the time needed to span such pragmatic variations in order to reduce the
chances of misunderstandings and increase expected payoffs according to the
η-efficiency.

The intuition is clear, as n increases the vicinity bounds increase as well,
spanning the pragmatic variation classes Yl, l = {1, . . . , |Ω|}. Therefore, the
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communication length n has to be long enough to guarantee that, on one hand,
there are not efficiency losses due to empty pragmatic variation classes, and
on the other, the probability masses of the pragmatic variation classes are
sufficiently high to achieve ex-ante expected payoffs η-close to those of reliable
communication. This result is stated below.

Theorem 2 Let η > 0, for any communication length n ∈ [n̂, ∞),

Πυ0 − Πn
υ ≤ η

We would like to remark that although the corpus works quite efficiently in
most of the cases, there may exist situations where communication is so short
that some prototypes may be unable to generate a meaning. This creates
inefficiencies that could be easily avoided by a reassignment of the signals.
More precisely, in the corpus construction, n

|Ω| out of the available n signals,
those equal to 0, are used to distinguish each standard prototype from any
other else. If there exists a state ωj such that Cjk < 0 for any k = 1, . . . , |Ω|,
k &= j, then Yj = ∅ and p(Yj| σ̂S

j ) = 0. In this case, the Receiver’s action âj will
never be chosen and the n

|Ω| signals devoted to distinguish σ̂S
j from the other

prototypes will be wasted. To avoid this inefficiency, the corpus is modified
such that the 0’s signals used in those prototypes sequences such that p(Yj|
σ̂S
j ) = 0 are reassigned to the other prototypes.
Example 4. Consider the incomplete information Sender-Receiver game

with Ω = {ω1,ω2,ω3}, where nature chooses ωj according to law q = (q1, q2, q3) =
(0.1, 0.3, 0.6). Payoffs for the three states of nature are M1 = 3, M2 = 20 and
M3 = 100.

Consider the matrix of parameters Clk −m,




∗ 1 2
−2 ∗ 1
−3 −2 ∗





For n = 3, then m = n
|Ω| = 1, and the sets of pragmatic variations Y1

and Y2 are empty, the corresponding actions â1 , â2 will never be chosen and
the communication game will be equivalent to the silent game, where no-
communication takes place. On the other hand, for n ≥ 9, and then m ≥ 3, all
the pragmatic variations are non-empty and the Receiver’s three actions will
be played with ex-ante positive probability.
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For the intermediate value of n = 6 (m = 2), the matrix of vicinity bounds,
Clk, after integer approximations, is:

C1k C2k C3k

k = 1
k = 2
k = 3




∗ 3 4
0 ∗ 3
−1 0 ∗





In this case the prototype σ̂S
1 = 001111 is unable to generate a meaning (the

corresponding Receiver’s action â1 ) and the two 0-signals of the sequence
devoted to distinguish it from the others are wasted. To avoid this inefficiency,
players could act as if they were playing another (truncated) game, with only
two states of nature ω2 and ω3, each of them taking place with probabilities
q̃2 = q2 + q1

q2
q2+q3

and q̃3 = q3 + q1
q3

q2+q3
, respectively. In this case the new

corpus consists of the two standard prototypes σ̃S
2 = 000111, σ̃S

3 = 111000 and
no signal is wasted now.

To formalize this idea, consider game Γ, with Ω = {ω1, . . . ,ω|Ω|} , where
ωj is chosen by nature with probability qj, and its communication extension
by adding n uses of the noisy channel υ, denoted by Γn

υ . Let as assume,
without loss of generality, that p(Y1|σ̂S

1 ) ≥ p(Y2|σ̂S
2 ) ≥ . . . ≥ p(Y|Ω|| σ̂S

|Ω|) and

let j0 = min{j = 1, . . . , |Ω||p(Yj|σ̂S
j ) > 0}.

Given Γ and Γn
υ , define the auxiliary truncated game Γ = {Γ1, . . . ,Γj0}

where nature chooses state ωj (and the the game Γj) with probability

q̃j = qj +
qj∑j0
l=0 ql

|Ω|∑

k=j0+1

qk ≥ qj

for j = 1, . . . , j0.
Let Γ̃n

υ the corresponding extended game and σ̃S
j , j = 1, . . . , j0, the standard

prototypes of the new corpus. Since p(Yj|σ̃S
j ) ≥ p(Yj|σ̂S

j ) for j = 1, . . . , j0 and
p(Yj|σ̂S

j ) = 0 for j = j0 + 1, . . . , |Ω|, we have that

Π̃n
υ =

j0∑

j=1

q̃jMjp(Y
n
j |σ̃S

j ) ≥
j0∑

j=1

qjMjp(Y
n
j |σ̂S

j ) =
|Ω|∑

j=1

qjMjp(Y
n
j |σ̂S

j ) = Πn
υ

and no message is wasted trying to distinguish among actions that will never
be chosen.
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6 Concluding Remarks

We have shown that pragmatic Languages with a universal grammar are a
powerful coordination device when there may exist communication misunder-
standings. Reduced dictionaries20, simple grammars and standard prototypes
help individuals to coordinate in spite of initial misunderstandings. This is
accomplished by facilitating the inference of meaning and thus generating the
pragmatic variations around each standard prototype. Our approach sheds
light to the formation not only of target-oriented languages, but also to spe-
cific ”organization” languages, professional languages, etc.

When considering real life time-constraints, a language with structure based
on different orderings of the enumerations turns out to be more useful for learn-
ing purposes rather than for meaning inference. Nevertheless, languages with
universal grammars appear to have emerged because they ensure the successful
transmission of languages themselves. The Chinese Language is an example of
how the successful transmission of information shapes some language charac-
teristics. Spoken Chinese is distinguished by its high level of internal diversity
(it is pragmatic and very local) though all spoken varieties of Chinese21 are
tonal and analytic; dictionaries are small with 6 vowels and 15 consonants
and the grammar is compositional. On the contrary, written Chinese is highly
complex: it comprises the written symbols used to represent spoken Chinese.
Chinese characters do not constitute an alphabet or a compact syllabary; they
are instead built up from simple parts representing objects or abstracts no-
tions. There are around 47.035 ideograms or hanzy, but Chinese people do not
manage more than 8000 of them.

One of the frequently asked questions in studies on language origins and
evolution is how universal grammar structures in human languages could have
emerged. One line of research assumes that such structures emerged from ex-
ploiting regularities found in protolanguages. Universal structures in language
could have emerged when the learning examples do not cover the entire lan-
guage (i.e., there was a bottleneck on the transmission of language). Other re-
searchers have assumed that the ability to use syntax has evolved as a biological

20Nowak, Krakauer and Dress (1999) argue that, because of the noise, the fitness of a
language cannot be increased arbitrarily by just adding more signals. On the contrary, the
fitness can be increased by combining a small number of signal into words. This is called
”phonemes” by linguists. Modern human languages have a limited number of phonemes: as
reported by Nowak, Krakauer and Dress, all of 317 languages in the University of California
Los Angeles Segment Inventory Database (UPSID) have between 11 and 141 phonemes, but
70% of these languages have between 20 and 37 phonemes.

21The standardized form of spoken Chinese is the Standard Mandarin.
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adaptation. In their seminal article which re-ignited much of recent burgeon-
ing interest in language evolution, Pinker and Bloom (1990) argue persuasively
that ”a specialization for grammar evolved by a conventional neo-Darwinian
process” (page 707), suggesting that humans have evolved an innate, genet-
ically specified module in the brain, which specifies a formal coding of the
principles of Universal Grammar. These authors are firmly of the opinion that
the selective advantage of the communicative function of language can explain
the evolution of the language faculty itself. But, Chomsky (1988), perhaps
somewhat surprisingly, given his introduction of the very idea of Universal
Grammar, argues that the role of natural selection in language evolution is
very limited. Much more effort in computer simulations of language evolution
has to be done to give more precise answers.

To conclude, we would like to call the attention about the way of precisely
defining the notions of a language and a ”common language” from an economic
viewpoint. As it is obvious, different models may need different notions of both
languages and common languages. Therefore, much work is needed to define
some unifying rules which are still lacking.
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8 Appendix

Proof of Lemma 1: If ε0 + ε1 < 1, then p(1|0) = ε0 < 1 − ε1 = p(1|1)
and p(0|1) = ε1 < 1 − ε0 = p(0|0). Clearly, the conditional probability of
receiving a 0, when a 0 was sent is higher than the one of receiving a 0 when a
1 was sent, therefore, p(0|0)

p(0|1) &= 1. And similarly for the conditional probability

of receiving a 1, i.e., p(1|1)
p(1|0) &= 1. Thus, information transmission is informative

since p(r|s) &= p(r|ŝ) for any r ∈ {0, 1} and s, ŝ ∈ {0, 1} and thus,

p(s|r)
p(ŝ|r) =

p(r|s)p(s)
p(r|ŝ)p(ŝ) &= p(s)

p(ŝ)

Now, let r = 0 and r̂ = 1, s = 0 and ŝ = 1, then p(r|s) = p(0|0) = 1− ε0,
p(r̂|ŝ) = p(1|1) = 1 − ε1, p(r|ŝ) = p(0|1) = ε1 and p(r̂|s) = p(1|0) = ε0. Let
us check that output signal 0 is more favorable than output signal 1, for input
signal 0:

p(r|s)
p(r|ŝ) =

p(0|0)
p(0|1) =

(1− ε0)

ε1
>

ε0
(1− ε1)

=
p(1|0)
p(1|1) =

p(r̂|s)
p(r̂|ŝ)

Similarly, letting now r = 1 and r̂ = 0, s = 1 and ŝ = 0, then p(r|s) =
p(1|1) = 1 − ε1, p(r̂|ŝ) = p(0|0) = 1 − ε0, p(r|ŝ) = p(1|0) = ε0 and p(r̂|s) =
p(0|1) = ε1. As above, since (1 − ε0)(1 − ε1) > ε1ε0, then p(r|s)p(r̂|ŝ) >
p(r|ŝ)p(r̂|s) and output signal 1 is more favorable than output signal 0, for
input signal 1.
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If ε0+ε1 > 1, then p(1|0) = ε0 > 1−ε1 = p(1|1) and p(0|1) = ε1 > 1−ε0 =
p(0|0). In words, the conditional probability of receiving a 0, when a 0 was
sent is lower than the one of receiving a 0 when a 1 was sent. As above, it
can be easily proven again that information transmission is informative: i.e.,
p(s|r)
p(ŝ|r) = p(r|s)p(s)

p(r|ŝ)p(ŝ) &= p(s)
p(ŝ) , and that output signal 0 is now more favorable than

output signal 1, for input signal 1.
Finally notice that when ε0 + ε1 = 1, then p(1|0) = ε0 = 1 − ε1 = p(1|1)

and p(0|1) = ε1 = 1 − ε0 = p(0|0). Now input signals are not informative
at all, since the conditional probability of receiving a 0, when a 0 was sent is
equal to the one of receiving a 0 when a 1 was sent.

Proof of Lemma 2: 1) Recall that σ̂S
k = {xj

k}j∈{1,...,n} and σ̂S
k′ = {xj

k′}j∈{1,...,n}
where xj

k = xj
k′ = 1 but the blocks k and k′ (i.e. j such that (i − 1)m − 1 ≤

j ≤ im for i ∈ {k, k′}). Therefore, the Hamming distance in the block l is:

hl(σ̂
S
k , y) =

m∑

j=1

Iy(l−1)m+j "=(σ̂S
k )(l−1)m+j

=
m∑

j=1

Iy(l−1)m+j "=1

=
m∑

j=1

Iy(l−1)m+j "=(σ̂S
k′ )(l−1)m+j

= hl(σ̂
S
k′ , y)

2) Let us compute hk(σ̂S
k , y) + hk(σ̂S

k′ , y) if k &= k′. Notice that:
{xj

k}j∈{(k−1)m+1,...,km} = 0 and {xj
k′}j∈{(k−1)m+1,...,km} = 1, then

hk(σ̂
S
k , y) + hk(σ̂

S
k′ , y) = h((0, . . . , 0), (y(k−1)m+1, . . . , ykm))

+ h((1, . . . , 1), (y(k−1)m+1, . . . , ykm))

= h((0, . . . , 0), (y(k−1)m+1, . . . , ykm))

+ m− h((0, . . . , 0), (y(k−1)m+1, . . . , ykm))

= m

Proof that sets Yl, l = {1, . . . , |Ω|}, are a true partition of Y n: Given
the description of Yl in the main text, without loss of generality, suppose on
the contrary that Y1 ∩ Y2 &= ∅.

a. Let 1 ∈ Ω̃2 and y ∈ Y1 ∩ Y2. Then,

h1(σ̂
S
1 , y) + h2(σ̂

S
1 , y) ≤ C12, and h2(σ̂

S
2 , y) + h1(σ̂

S
2 , y) ≤ C21

and adding h1(σ̂S
1 , y) + h1(σ̂S

2 , y) + h2(σ̂S
1 , y) + h2(σ̂S

2 , y) ≤ C12 + C21, that by
Lemma 1(2) is m+m ≤ 2m− 1, a contradiction.

b. Let 1 /∈ Ω̃2 and y ∈ Y1 ∩ Y2.

h1(σ̂
S
1 , y) + h2(σ̂

S
1 , y) ≤ C12, and h2(σ̂

S
2 , y) + h1(σ̂

S
2 , y) < C21
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and adding h1(σ̂S
1 , y) + h1(σ̂S

2 , y) + h2(σ̂S
1 , y) + h2(σ̂S

2 , y) < C12 + C21, that by
Lemma 1(2) is 2m < 2m, a contradiction again.

Proof of Proposition 1: By Bayes’s Theorem,
p(σ̂S

l |y)
p(σ̂S

k |y)
=

p(y|σ̂S
l )c(σ̂S

l )

p(y)

p(y|σ̂S
k
)p(σ̂S

k
)

p(y)

=

ql
qk

p(y|σ̂S
l )

p(y|σ̂S
k )
.

The conditional probability of the channel to generate output y if message
σ̂S
l is sent can be written as:

p(y|σ̂S
l ) =

n∏

t=1

p(yt|(σ̂S
l )t) =

lm∏

t=1

p(yt|1)
(l+1)m∏

t=lm+1

p(yt|0)
n∏

t=(l+1)m+1

p(yt|1)

= ε
hl(σ̂S

l ,y)
0 (1− ε0)

m−hl(σ̂S
l ,y))

|Ω|∏

α=1
α "=l

[
ε
hα(σ̂S

l ,y)
1 (1− ε1)

m−hα(σ̂S
l ,y)
]

and the conditional probability to generate the same y if message σ̂S
k is sent

instead is:

p(y|σ̂S
k ) = ε

hk(σ̂S
k ,y)

0 (1− ε0)
m−hk(σ̂S

k ,y)

|Ω|∏

α=1
α "=k

[
ε
hα(σ̂S

k ,y)
1 (1− ε1)

m−hα(σ̂S
k ,y)
]

Consider the likelihood ratio of messages σ̂S
l and σ̂S

k , when y is realized,
p(σ̂S

l |y)
p(σ̂S

k |y)
. It is not difficult to show by some cumbersome algebra that this ratio

can be splitted in three separated terms.

p(σ̂S
l |y)

p(σ̂S
k |y)

=
ql
qk

×Ratio1 ×Ratio2 ×Ratio3, where

Ratio1: Measures the probability of transformation of the 0’s bits in block
l with respect to the corresponding probability in block k. By lemma 2 part
2,

Ratio1 =
ε
hl(σ̂S

l ,y)
0 (1− ε0)m−hl(σ̂S

l ,y)

ε
hk(σ̂S

k ,y)
0 (1− ε0)m−hk(σ̂S

k ,y)
=

ε
hl(σ̂S

l ,y)
0 (1− ε0)m−hl(σ̂S

l ,y)

ε
m−hk(σ̂S

l ,y)
0 (1− ε0)hk(σ̂S

l ,y)

=

(
ε0

1− ε0

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m
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Ratio2: Refers to the probability of transformation of the 1’s bits in block
k with respect to the corresponding probability in block l. Then, by lemma
lemma2 part 2:

Ratio2 =
ε
hk(σ̂S

l ,y)
1 (1− ε1)m−hk(σ̂S

l ,y)

ε
hl(σ̂S

k ,y)
1 (1− ε1)m−hl(σ̂S

k ,y)
=

ε
m−hl(σ̂S

l ,y)
1 (1− ε1)hk(σ̂S

l ,y)

ε
hl(σ̂S

k ,y)
1 (1− ε1)m−hl(σ̂S

k ,y)

=

(
ε1

1− ε1

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m

Ratio3: Refers to the probability of transformation of the 1’s bits in the
remaining blocks (all the blocks but l and k), then, using lemma lemma2, part
1

Ratio3 =
|Ω|∏

α=1
α "=l,k

ε
hα(σ̂S

l ,y)
1 (1− ε1)m−hα(σ̂S

l ,y)

ε
hα(σ̂S

k ,y)
1 (1− ε1)m−hα(σ̂S

k ,y)
= 1

Putting these three ratios together, we have that

p(σ̂S
l |y)

p(σ̂S
k |y)

=
ql
qk

(
ε0

1− ε0

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m( ε1
1− ε1

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m

=
ql
qk

(
ε0

1− ε0

ε1
1− ε1

)hl(σ̂S
l ,y)+hk(σ̂S

l ,y)−m

,

and the proposition holds.
Proof of the Theorem 1:
The Receiver’s condition: Given the Sender equilibrium strategy {σ̂S

j }j,
and the Receiver’s information set Y n, consider the realization y ∈ Y n. The
Receiver’s strategy is defined by: σ̂R

y = âl ⇔ y ∈ Yl , where for each l ∈
{1, . . . , |Ω|} , and Ω̃l = {k ∈ {1, . . . , |Ω|} such that qlMl &= qkMk},

Yl = {y ∈ Y n| hl(σ̂
S
l , y)) + hk(σ̂

S
l , y)) ≤ Clk, for all k ∈ Ω̃l

hl(σ̂
S
l , y)) + hk′ (σ̂

S
l , y)) ≤ Clk′ , for all k

′
ε /∈ Ω̃l , k

′
< l

hl(σ̂
S
l , y)) + hk′ (σ̂

S
l , y)) < Clk′ , for all k

′
/∈ Ω̃l , k

′
> l}

Parameters {Clk}l "=k are given by:

Clk =
LnMkqk

Mlql

Ln ε0
1−ε0

ε1
1−ε1

+m
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with associated payoff πR
y ({σ̂S

j }j, âl) =
∑|Ω|

j=1 p(σ̂
S
j |y)u(âl,ωj) = p(σ̂S

l )|y)Ml.
Consider any other strategy aα &= âl and suppose that its associated payoff

is higher than under âl. Then, πR
y ({σ̂S

j }j, aα) > πR
y ({σ̂S

j }j, âl), or

|Ω|∑

j=1

p(σ̂S
j |y)u(âα,ωj) >

|Ω|∑

j=1

p(σ̂S
j |y)u(âl,ωj),

which by the linearity of πR
y in probabilities p(σ̂S

j |y), is equal to,

p(σ̂S
α |y)Mα > p(σ̂S

l |y)Ml, or
Mα

Ml
>

p(σ̂S
l |y)

p(σ̂S
α |y)

By Proposition 1, these inequalities can be written as

qαMα

qlMl
>

(
ε0

1− ε0

ε1
1− ε1

)hl(σ̂S
l ,y)+hα(σ̂S

l ,y)−m

We write this condition with the Logarithm operator:

Ln
qαMα

qlMl
> (hl(σ̂

S
l , y) + hα(σ̂

S
l , y)−m)Ln

ε0
1− ε0

ε1
1− ε1

Since ε0 + ε1 < 1, then ε0
1−ε0

ε1
1−ε1

< 1 and ln
(

ε0
1−ε0

ε1
1−ε1

)
< 0. Then, the

above inequality is equivalent to:

hl(σ̂
S
l , y) + hα(σ̂

S
l , y) >

Ln qαMα

qlMl

Ln ε0
1−ε0

ε1
1−ε1

+m = Clα

by the definition of Clα. But this contradicts that y ∈ Yl, since by definition
Yl = {y ∈ Y n| hl(σS

l , y)) + hk(σS
l , y)) ≤ Clk, for all k &= l}, in particular for

k = α. Therefore for each y ∈ Y n there is no profitable deviation from σ̂R
y ,

and σ̂R
y is a best response to {σ̂S

j }j.
The Sender’s condition. Truth-telling: The Sender’s strategy at state ωj

consists of sending a message and thus it suffices to show that there is no
profitable deviation by sending another message different from σ̂S

j , when R
plays {σ̂R

y }y. The associated payoff of σ̂S
j at state ωj when the Receiver plays

his equilibrium strategy {σ̂R
y }y is

πS
j (σ̂

S
j , {σ̂R

y }y) =
∑

y∈Y n

p(y|σ̂S
j )u(σ̂

R
y ,ωj) = Mj

∑

y∈Yj

p(y|σ̂S
j )
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since u(at,ωj) = 0 for all at &= âj.
Consider the associated payoff of sending any other message x ∈ Xn,

∑

y∈Y n

p(y|x)u(σ̂R
y ,ωj) = Mj

∑

y∈Yj

p(y|x)

Let f = h(σ̂S
j , x) be the Hamming distance between messages σ̂S

j and x. We
can construct a sequence of messages {θ0, θ1, . . . , θf} such that θi ∈ Xn, θ0 =
σ̂S
j , θf = x satisfying that, for all d = 0, . . . , f − 1,

h(σ̂S
j , θd+1) = h(σ̂S

j , θd) + 1 and h(θd, θd+1) = 1

This sequence transforms message σ̂S
j into message x by only changing one

element at each step. Let us show that, for all d = 0, . . . , f − 1,

∑

y∈Yj

p(y|θd)
p(y|θd+1)

≥ 1

Let id be the location of the (unique) mismatch between θd and θd+1. Then,

∑

y∈Y j

p(y|θd)
p(y|θd+1)

=
∑

y∈Yj

∏
i=1,...,n p(y

i|θid)∏
i=1,...,n p(y

i|θid+1)
=
∑

y∈Yj

p(yid |θidd )
p(yid|θidd+1)

=
∑

y∈Yj |yid=0

p(0|θidd )
p(0|θidd+1)

+
∑

y∈Yj |yid=1

p(1|θidd )
p(1|θidd+1)

Let us consider two different cases:
Case 1: (j − 1)m− 1 ≤ id ≤ jm. The mismatch occurs at block j and as

y ∈ Yj, then the element θidd coincides with the element yid = 0 and θidd+1 = 1.
The above expression is now given by:

∑

y∈Yj

p(y|θd)
p(y|θd+1)

=
∑

y∈Yj |yid=0

p(0|0)
p(0|1) +

∑

y∈Yj |yid=1

p(1|0)
p(1|1)

=
∑

y∈Yj |yid=0

1− ε0
ε1

+
∑

y∈Yj |yid=1

ε0
1− ε1

≥ 1

Notice that there exists at least an element y ∈ Yj with yid = 0 and the
ratio 1−ε0

ε1
≥ 1 because ε0 + ε1 < 1. Therefore

∑
y∈Yj |yid=0

1−ε0
ε1

≥ 1.

34



Case 2: id < (j − 1)m− 1 or id > jm. The mismatch occurs in a different
block of j and as above y ∈ Yj, then the element θidd coincides with the element
yid = 1 and θidd+1 = 0. The above expression is now given by:

∑

y∈Yj

p(y|θd)
p(y|θd+1)

=
∑

y∈Yj |yid=0

p(0|1)
p(0|0) +

∑

y∈Yd|yid=1

p(1|1)
p(1|0)

=
∑

y∈Yj |yid=0

ε1
1− ε0

+
∑

y∈Yj |yid=1

1− ε1
ε0

≥ 1

The set of elements in Yj such that yid = 1 has cardinality greater than
or equal to 1. Therefore

∑
y∈Yj |yid=1

1−ε1
ε0

≥ 1. From the above reasoning, the

probability p(y|θd) decreases at each step of the deviation chain {σ̂S
j , θ1, . . . , x}.

We conclude that
∑

y∈Yj
p(y|σ̂S

j ) ≥
∑

y∈Yj
p(y|x) and the associated payoffs for

both messages σ̂S
j and x verify the conditionMj

∑
y∈Yj

p(y|σ̂S
j ) ≥ Mj

∑
y∈Yj

p(y|x)
that closes the proof. Hence, for each σ̂S

j is a best response to {σ̂R
y }y.

Since at each state ωj, the Sender pure strategy σ̂S
j is a best response to

{σ̂R
y }y and for each y ∈ Y n, the Receiver pure strategy σ̂R

y is a best response
to {σ̂S

j }j, then the pair of tuples ({σ̂S
j }j, {σ̂R

y }y) is a pure strategy Nash equi-
librium of Γn

υ .
Proof of proposition 2: Without loss of generality, let us assume that

j = 1 and C12 ≤ C13 ≤, . . . ,≤ C1|Ω|. Under these assumptions the theorem is
satisfied whenever:

p(Y1|σ̂S
1 ) ≥ 1− εc12+1

0 φ(ε0, ε1)

where φ(ε0, ε1) is a polynomial on ε0 and ε1.
Notice that y ∈ Y1 if and only if h1(σ̂S

1 , y) + hl(σ̂S
1 , y) ≤ C1l, for all l =

2, . . . , |Ω|. In particular h1(σ̂S
1 , y) ≤ C12. Then, at least m − C12 of the first

bits on σ̂S
1 are properly transmitted and the number of 1′s in the first m bits

of y is equal to or lower than C12. As a consequence, the maximum number
of mismatches between y and σ̂S

1 in blocks 1 and l (l = 2, . . . , |Ω|), say C1l,
are distributed in such a way that at most C12 of them are placed in block 1,
meanwhile at least m−C12 of such mismatches are placed in block l. Since the
probability of a mismatch in block one is given by ε0 and that of a mismatch
in any other block by ε1, we have that

p(Y1|σ̂S
1 ) = p(y ∈ Y1|σ̂S

1 ) =

=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0

|Ω|∏

lα=2

Clα−α∑

βlα=0

(
m

βlα

)
(1− ε1)

m−βlαε
βlα
1
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Since 1 = ((1 − ε1) + ε1)m =
∑m

βlα=0

(
m
βlα

)
(1 − ε1)m−βlαε

βlα
1 , we can write the

above expression as

p(Y1|σ̂S
1 ) = p(y ∈ Y1|σ̂S

1 ) =

=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0

|Ω|∏

lα=2



1−
m∑

βlα=C1lα−α+1

(
m

βlα

)
(1− ε1)

m−βlαε
βlα
1





=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0

|Ω|∏

lα=2



1−
m∑

βl=C12+1−α+(C1l−C12)

(
m

βlα

)
(1− ε1)

m−βlαε
βlα
1





=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0

|Ω|∏

lα=2



1− εC12+1−α
1

m∑

βl=C12+1−α+(C1lα−C12)

(
m

βl

)
(1− ε1)

m−βlαε
βlα−[C12+1−α]
1





=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0

|Ω|∏

lα=2

[
1− εC12+1−α

1 ϕlα(ε1)
]

where ϕlα(ε1) denotes a polynomial on ε1. On the other hand, given α, we
have that

|Ω|∏

lα=2

[
1− εC12+1−α

1 ϕlα(ε1)
]
= 1− εC12+1−α

1 ϕα(ε1)

where ϕα(ε1) is again a polynomial in ε1. Hence

p(Y1|σ̂S
1 ) = p(y ∈ Y1|σ̂S

1 ) =

=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0
[
1− εC12+1−α

1 ϕα(ε1)
]

=
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0−
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
1 ϕα(ε1)

36



By the fact that 1 = ((1−ε0)+ε0)m, the above expression can alternatively
be written as

p(Y1|σ̂S
1 ) = p(y ∈ Y1|σ̂S

1 ) =

= 1−
m∑

α=C12+1

(
m

α

)
(1− ε0)

m−αεα0 −

C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
1 ϕα(ε1)

= 1− εC12+1
0

m∑

α=C12+1

(
m

α

)
(1− ε0)

m−αεα−C12−1
0 −

C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
1 ϕα(ε1)

= 1− εC12+1
0 ψ(ε0)−

C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
1 ϕα(ε1)

where ψ(ε0) represents a polynomial in ε0. Recall that ε0 < ε1. Hence

C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
1 ϕα(ε1)

≤
C12∑

α=0

(
m

α

)
(1− ε0)

m−αεα0 ε
C12+1−α
0 ϕα(ε1)

= εC12+1
0

C12∑

α=0

(
m

α

)
(1− ε0)

m−αϕα(ε1)

= εC12+1
0 ϕ(ε0, ε1)

and the probability p(Y1|σ̂S
1 ) is given by

p(Y1|σ̂S
1 ) = p(y ∈ Y1|σ̂S

1 )

≥ 1− εC12+1
0 ψ(ε0)− εC12+1

0 ϕ(ε0, ε1)

= 1− εC12+1
0 [ψ(ε0) + ϕ(ε0, ε1)]

Finally, defining the polynomial φ as follows

φ(ε0, ε1) = ψ(ε0) + ϕ(ε0, ε1)

the proof is completed.
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