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On the coincidence between the Shimomura’s bargaining sets and the core

Abstract

A necessary condition for the coincidence of the bargaining sets defined by Shimomura

(1997) and the core of a cooperative game with transferable utility is provided. To this

aim, a set of payoff vectors, called max-payoff vectors, are introduced. This necessary

condition simply checks whether these vectors are core elements of the game.

Resum

En l’article es dona una condició necessària per a que els conjunts de negociacio

definits per Shimomura (1997) i el nucli d’un joc cooperatiu amb utilitat transferible

coincideixin. A tal efecte, s’introdueix el concepte de vectors de màxim pagament. La

condició necessària consiteix a verificar que aquests vectors pertanyen al nucli del joc.

Keywords: Cooperative games ˙ Core ˙ Bargaining set ˙ Max-payoff vectors
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1 Introduction

An important issue in cooperative games with transferable utility is the problem of dis-

tributing the joint profit obtained by a set of agents. The core of the game consists of

those distributions where each subgroup of agents is at least rewarded according its own

capability to generate profit (that is, according its worth). Allocations outside the core

of the game involve at least a subgroup of players that complain and would like to give

up cooperation. From another perspective, the concept of bargaining set of a cooperative

game refers to distributions where the complaint (or objection) of a subgroup of players

is countered by the complaint (or counterobjection) of another coalition.

In the literature, several definitions of bargaining set have been introduced: the sem-

inal one by Davis and Maschler (1967), the Mas-Colell bargaining set (1989), the Zhou

bargaining set (1994), the reactive bargaining set (Granot, 2010) and the semireactive

bargaining set (Sudhölter and Potters, 2001) are among the most relevant. For some

classes of games with a non-empty core, some results on the coincidence between the core

and the bargaining sets have been proved, mainly due to the rich structure of these games.

This is the case of convex games (Shapley, 1971) with respect to the Davis-Maschler bar-

gaining set (see Maschler et al., 1971) and with respect to the Mas-Colell bargaining set

(see Dutta et al., 1989). It is also the case of average monotonic games (Izquierdo and

Rafels, 2001) and of the assignment games (Shapley and Shubik, 1972) with respect to

the Davis-Maschler and the Mas-Colell bargaining sets (see Solymosi, 1999 and 2008,

respectively). Nevertheless, it is rather cumbersome to check whether, for an arbitrary

game, these types of bargaining sets do or do not coincide with the core. Following this,

Solymosi (1999) and Holzman (2001) give a necessary and sufficient condition so that the

core of a game equals its Davis-Maschler bargaining set or its Mas-Colell bargaining set,

respectively. The aim of this paper is to shed light on whether the Zhou bargaining set

(the most unknown in terms of equivalences) coincides with the core, for an arbitrary

game.

Besides the particular requirements on the counterobjecting coalitions, the Zhou bar-

gaining set was originally defined not assuming that all players would finally join the
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grand coalition but allowing players to form subgroups (technically speaking, considering

coalition structures). After Zhou’s definition, Shimomura (1997) has introduced slightly

modifications on the Zhou bargaining set that essentially imply three differences: firstly,

that the grand coalition of all players forms; secondly, that players only will collaborate in

objections and counterobjections if strictly higher payoffs are implemented; and, finally,

that the final payoff should be individually rational. The first and third requirements

make easier the comparison with other bargaining sets; the second one points out that

individual incentives are important. The present paper analyzes this modification of the

Zhou bargaining set and a similar one for the Mas-Colell bargaining set, also introduced

by Shimomura, where the above three requirements are imposed.

We provide a necessary condition to check the coincidence between the core and the

Shimomura’s bargaining sets. This condition is based on the so-called max-payoff vec-

tors. These vectors assign, following an a priori ordering, a minimum payoff to players

preserving some core constraints. The coincidence between the Shimomura’s bargaining

sets and the core of a game implies that all max-payoff vectors are core elements of the

game, that is, all core constraints must be satisfied.

In Section 2 some preliminary definitions and notations are given. In Section 3 we

introduce and illustrate the computation of the max-payoff vectors and we state the main

result of the paper. Section 4 concludes by analyzing the case of assignment games.

2 Notations and definitions

Let N = {1, 2, . . . , n} be a set of players. For all coalition S ⊆ N , |S| denotes the number

of players in S. A cooperative game with player set N is a function v : 2N → R assigning

to each coalition S ⊆ N a real number v(S) such that v(∅) := 0. The function v is called

the characteristic function of the game and v(S) is the worth of the coalition S. Let GN

be the class of cooperative games with transferable utility and player set N .

A game v ∈ GN is monotonic if for all S ⊆ T ⊆ N , v(S) ≤ v(T ). The monotonic cover

of a game v ∈ GN is the game v̂ ∈ GN defined as v̂(S) := maxR⊆S{v(R)}. By definition,
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the monotonic cover is a monotonic game.

Let RN stand for the real space of vectors x = (xi)i∈N where xi is interpreted as the

payoff to player i ∈ N , xS is the restriction of x to the members of S and x(S) denotes∑
i∈S xi, with the convention x(∅) = 0. The set of preimputations of a game v ∈ GN is

defined by I∗(v) := {x ∈ RN | x(N) = v(N)}. The set of imputations of v is defined by

I(v) := {x ∈ RN | x(N) = v(N) and xi ≥ v({i}), for all i ∈ N} and its core is defined

by C(v) := {x ∈ RN | x(N) = v(N) and x(S) ≥ v(S), for all S ⊆ N}. A game with

a non-empty core is called a balanced game. Let BN ⊆ GN be the subclass of balanced

games with player set N . Given a game v, a preimputation x ∈ I∗(v) and a pair of players

i and j, the maximum surplus of i against j at x is defined as

svij(x) = max{v(S)− x(S)|S ⊆ N, i ∈ S, j 6∈ S}.

We say that player i outweighs player j at x if svij(x) > svji(x). The prekernel of a

game v (Davis and Maschler, 1965), PK(v), is always non-empty and consists of those

preimputations x such that no player outweighs any other player at x. This is

PK(v) = {x ∈ I∗(v) | for all i, j ∈ N, svij(x) = svji(x)}.

As usual, the bargaining set is defined by means of an interaction of objections and

counterobjections. Shimomura (1997) considers modifications of both the Mas-Colell

bargaining set (1989) and Zhou bargaining set (1994). To define them, let v ∈ GN and

x ∈ I(v). Following Shimomura (1997), an objection to x is a pair (S, y), ∅ 6= S ⊆ N

and y ∈ RS with y(S) = v(S) such that yi > xi, for all i ∈ S. Shimomura also qualifies

the original definitions of counterobjection: a counterobjection to an objection(S, y) à la

Mas-Colell is now a pair (T, z), ∅ 6= T ⊆ N , z ∈ RT with z(T ) = v(T ) such that zi > yi,

for all i ∈ T ∩ S, and zi > xi, for all i ∈ T \ S; on the other hand, a counterobjection to

(S, y) à la Zhou is a pair (T, z), where T \ S 6= ∅, S \ T 6= ∅, T ∩ S 6= ∅, and z ∈ RT

with z(T ) = v(T ) such that zi > yi, for all i ∈ T ∩ S, and zi > xi, for all i ∈ T \ S.

Note that the bargaining process starts with an imputation x and involves strictly higher

payoffs not only for all players involved in objections but also in counterobjections, and

these are the main changes with respect to the original definitions.
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Definition 1 The Mas-Colell bargaining set (à la Shimomura) is defined as

MBSh(v) = {x ∈ I(v) | each objection to x can be countered à la Mas-Colell}.

Definition 2 The Zhou bargaining set (à la Shimomura) is defined as

ZSh(v) = {x ∈ I(v) | each objection to x can be countered à la Zhou}.

If no confusion arises, we will refer to them simply as the Mas-Colell bargaining set

and the Zhou bargaining set. By definition, these sets only consist of imputations (indi-

vidually rational payoff vectors) and they always include the core. If the core is nonempty,

obviously these bargaining sets are non-empty. Moreover, the following chain of inclusions

holds: C(v) ⊆ ZSh(v) ⊆MBSh(v).

Shimomura also defines a subset of the Zhou bargaining set (the steady bargaining set,

SB(v)) by means of a domination binary relation between coalitions. He shows that the

steady bargaining set can be rewritten as

SB(v) :=

x ∈ I(v)

∣∣∣∣∣∣∣∣∣
for all S ⊆ N with v(S)− x(S) > 0,

there exists T ⊆ N : S ∩ T 6= ∅, S \ T 6= ∅,

T \ S 6= ∅ and v(T )− x(T ) ≥ v(S)− x(S)

 (1)

and he also proves that SB(v) ⊆ ZSh(v). This subsolution of the Zhou bargaining set

will be useful to prove our results, since some imputations will be known to belong to the

bargaining set by checking their inclusion in the steady bargaining set.

3 A necessary condition for the coincidence

We start by analyzing a game with four players. The characteristic function is defined by

v({i}) = 0, for all i ∈ {1, 2, 3, 4}, and v(S) = |S|, for all S ⊆ N , |S| ≥ 2. It is easy to

check that the core of the game consists of a unique point: C(v) = {(1, 1, 1, 1)}. Now, let

us suppose players are ordered exogenously – for instance, take the ordering θ = (2, 3, 1, 4)

– and let us assign a payoff to each player as follows. Give the first player, player 2, her

individual worth:
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xθ2 = v({2}) = 0.

Then, the second player in the ordering, player 3, takes the maximum payoff of either

staying alone or joining player 2, forming the coalition {2, 3}, and obtaining the worth of

the coalition minus the payoff xθ2 assigned to player 2 previously; hence,

xθ3 = max{v({3}), v({2, 3})− xθ2)} = 2.

Player 1 comes in third place and also chooses among staying alone or joining a subset

S (not necessarily all) of his predecessors and obtaining what is left from the worth of

this coalition S after paying xθi to each predecessor i in S. This is,

xθ1 = max{v({1}), v({1, 2})− xθ2, v({1, 3})− xθ3, v({1, 2, 3})− xθ2 − xθ3} = 2.

Finally, the last player is just given what is left to reach efficiency, this is

xθ4 = v(N)− xθ1 − xθ2 − xθ3 = 0.

Thus, the payoff vector obtained is xθ(v) = (2, 0, 2, 0). Notice xθ(v) is not in the core

of the game since xθ2 + xθ4 = 0 < v({2, 4}). The claim we prove in the paper is that the

Shimomura’s bargaining sets of a game do not coincide with its core since at least one

max-payoff vector relative to some ordering does not belong to the core. To this end we

define several notions.

Let v ∈ GN and let θ be an ordering of players in N , that is a bijection θ : {1, . . . , n} →

N where θ(k) = ik ∈ N ; we denote it by θ = (i1, . . . , in) and by ΘN the set of all such

orderings. Furthermore, given θ = (i1, . . . , in) ∈ ΘN , let us define the set of predecessors

of a player ik by P θ
ik

:= {i1, . . . , ik−1}, for all k ∈ {2, . . . , n}, while P θ
i1

:= ∅. The set of

followers of a player ik is defined by F θ
ik

:= {ik, . . . , in}, for all k ∈ {1, . . . , n}.

We say that x ∈ RN lexicographically precedes y ∈ RN with respect to θ, x ≺θ` y,

if either xi1 < yi1 or there exists k ∈ {2, . . . , n} such that xik < yik and xir = yir , for

all r ∈ {1, . . . , k − 1}. The lexmin solution over the core of a balanced game v relative
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to θ ∈ ΘN is defined as the (unique) payoff vector `θ(v) ∈ C(v) that lexicographically

precedes any other vector in the core of the game v, i.e. `θ(v) ≺θ` x for all x ∈ C(v),

x 6= `θ(v).

A formula to compute the lexmin solution of an arbitrary game is not available for

the general case. Nevertheless, we can define a recursive formula to obtain a payoff vector

(we call it the max-payoff vector) such that, whenever it is in the core, it coincides with

the lexmin solution.

The max-payoff vector xθ(v) ∈ RN of v relative to θ is defined by

xθik := maxQ⊆P θik
{v({ik} ∪Q)− xθ(Q)}, for all k ∈ {1, . . . , n− 1}, and

xθin := v(N)− xθ(N \ {in}).

The relationship between the lexmin and the max-payoff vectors is summarized in the

next proposition.

Proposition 1 Let v ∈ BN and θ ∈ ΘN . Then

xθ(v) ∈ C(v)⇔ `θ(v) = xθ(v).

Proof We only need to prove the only if part. Suppose the vectors xθ(v) and `θ(v) are not

equal, where θ = (i1, . . . , in). Comparing xθ(v) and `θ(v), and following the ordering θ,

let player ik be the first player with different payoffs. That is, xθi1 = `θi1 , . . . , x
θ
ik−1

= `θik−1

and xθik 6= `θik ; notice k 6= n. If xθik < `θik then xθ(v) ≺θ` `θ(v) but this contradicts

the definition of the lexmin solution. If xθik > `θik , by definition of max-payoff vector

`θik < xθik = maxQ⊆P θik
{v({ik}∪Q)−xθ(Q)} = v({ik}∪Q∗)−xθ(Q∗) = v({ik}∪Q∗)−`θ(Q∗)

for some Q∗ ⊆ P θ
ik

. Hence, `θ({ik} ∪ Q∗) < v({ik} ∪ Q∗) which contradicts `θ(v) to be a

core element. 2

The coincidence between the lexmin and the max-payoff vector is in fact a necessary

condition for the coincidence of the bargaining sets and the core.
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Theorem 1 For any arbitrary balanced game v ∈ BN we have:

1. If C(v) = ZSh(v), then xθ(v) ∈ C(v), for all θ ∈ ΘN

2. If C(v) =MBSh(v), then xθ(v) ∈ C(v), for all θ ∈ ΘN .

Proof Let us first prove item 1. For |N | ≤ 2 the result is trivial. For |N | ≥ 3, let us

suppose we have C(v) = ZSh(v) and there exists an ordering θ = (i1, i2, . . . , in) ∈ ΘN

such that xθ(v) 6∈ C(v) or equivalently, by Proposition 1, `θ(v) 6= xθ(v). Therefore, there

exists k ∈ {1, 2, . . . , n − 1} such that `θik 6= xθik and, for all ir ∈ P θ
ik

, `θir(v) = xθir(v). In

fact, `θik 6= xθik implies `θik > xθik , since `θ(v) belongs to C(v).

We first claim that k 6= n − 1. To check this, let us suppose k = n − 1 and so

`θin−1
6= xθin−1

and `θir = xθir , for all r ∈ {1, 2, . . . , n − 2}. In fact, we have `θin−1
> xθin−1

.

Hence, define x ∈ RN as xir := `θir , for all r ∈ {1, . . . , n − 2}, xin−1 := `θin−1
− ε and

xin := `θin + ε, where 0 < ε < `θin−1
− xθin−1

. It is easy to check that x ∈ C(v) and

x ≺θ` `θ(v) which is a contradiction. Therefore, k ≤ n− 2.

Now, take ε ∈ R such that

0 < ε < min


`θik − x

θ
ik
, min

S⊆N :ik∈S

`θ(S)−v(S)>0

{`θ(S)− v(S)}


and define the payoff vector α ∈ RN as αik := `θik − ε and αi := `θi , if i ∈ N \ {ik}. Let

us remark that α(N) = v(N) − ε < v(N). Furthermore, let us define the excess game

(F θ
ik+1

, eα) as follows,

eα(∅) := 0,

eα(R) := max
Q⊆P θik+1

{0, v(R ∪Q)− α(R ∪Q)}, for all ∅ 6= R ⊆ F θ
ik+1

,

and consider its monotonic cover (F θ
ik+1

, êα). Notice

êα(R) ∈ {0, ε}, for all R ⊆ F θ
ik+1

. (2)
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To see this, recall that êα(R) = v(R′ ∪Q)− α(R′ ∪Q), for some R′ ⊆ R and Q ⊆ P θ
ik+1

.

If ik 6∈ Q then v(R′ ∪ Q) − α(R′ ∪ Q) = v(R′ ∪ Q) − `θ(R′ ∪ Q) ≤ 0. If ik ∈ Q and

v(R′ ∪Q)− `θ(R′ ∪Q) < 0 then, by definition of ε, v(R′ ∪Q)− α(R′ ∪Q) < 0. Finally,

if ik ∈ Q and v(R′ ∪ Q) − `θ(R′ ∪ Q) = 0 then v(R′ ∪ Q) − α(R′ ∪ Q) = ε. Moreover, it

holds that êα(F θ
ik+1

) = v(N) − α(N) = ε, just taking Q = P θ
ik+1

in its definition. Hence,

let us define

W := {R ⊆ F θ
ik+1
| êα(R) = ε and êα(R′) = 0 for all R′  R}.

Notice, since (F θ
ik+1

, êα) is a monotonic game, êα(R∪{i})− êα(R) ≥ 0, for all i ∈ F θ
ik+1

and R ⊆ F θ
ik+1
\ {i}. Now, choose an element of the prekernel of this game, let us

say δ ∈ PK(êα). By Theorem 5.6.1. in Peleg and Südholter (2007) we know that,

for all player i ∈ F θ
ik+1

and for all element in the prekernel of (F θ
ik+1

, êα), his payoff is

bounded below by mi(êα) = min
S⊆F θik+1

\{i}
{êα(S ∪ {i}) − êα(S)} and bounded above by

Mi(êα) = max
S⊆F θik+1

\{i}
{êα(S ∪ {i})− êα(S)}. Therefore, for all δ ∈ PK(êα),

0 ≤ mi(êα) ≤ δi ≤Mi(êα) ≤ ε, for all i ∈ F θ
ik+1

.

It is easy to check that êα(M ∪ {i}) − êα(M) = 0, for all i ∈ F θ
ik+1
\
⋃
R∈W R and all

M ⊆ F θ
ik+1
\{i}. To prove it, if êα(M) = ε, by monotonicity of the game (F θ

ik+1
, êα), we get

êα(M ∪ {i}) = ε. If êα(M) = 0, then R 6⊆M , for all R ∈ W . But then êα(M ∪ {i}) = 0,

since otherwise M ′∪{i} ∈ W , for some M ′ ⊆M , and this contradicts i ∈ F θ
ik+1
\
⋃
R∈W R.

As a consequence,

δi = 0, for all i ∈ F θ
ik+1
\
⋃
R∈W

R. (3)

Now, define the payoff-vector x ∈ RN as xir = αir = `θir , for all r ∈ {1, . . . , k − 1},

xik = αik = `θik−ε and xir = αir +δir = `θir +δir , r ∈ {k+1, . . . , n}. It holds x(N) = v(N)

and xi ≥ v({i}), for all i ∈ N . However, x 6∈ C(v) since otherwise x ≺θ` `θ(v) as xir = `θir

for all r ∈ {1, . . . , k − 1} and xik < `θik . We want to prove that x ∈ ZSh(v), and in the

first place we prove some basic properties of x:
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(a) If S ⊆ N is such that v(S) − x(S) > 0, then ik ∈ S. Otherwise, v(S) − x(S) =

v(S) − `θ(S) − δ(S ∩ F θ
ik+1

) ≤ v(S) − `θ(S) ≤ 0, where the last inequality follows

from, `θ(v) ∈ C(v).

(b) If S ⊆ N and v(S) − x(S) > 0, then S ∩ F θ
ik+1
6= ∅. Otherwise, by (a), x(S) =

`θik − ε+x(S \ {ik}) > xθik +xθ(S \ {ik}) = xθ(S) ≥ v(S), where the strict inequality

follows from the definition of ε and the last inequality by the definition of xθ(v).

(c) If S ⊆ N and v(S) − x(S) > 0, then êα(S ∩ F θ
ik+1

) = ε. Otherwise, by (2),

êα(S ∩F θ
ik+1

) = 0 and so 0 < v(S)−x(S) ≤ v(S)−α(S) ≤ êα(S ∩F θ
ik+1

) = 0, where

the second inequality holds since x ≥ α and the third one just by definition of the

monotonic cover of eα.

Let S ⊆ N be an arbitrary coalition with positive excess, i.e. v(S) − x(S) > 0. By

property (b), S ∩ F θ
ik+1
6= ∅. Let us take now RS ∈ W such that

δ(RS \ (S ∩ F θ
ik+1

)) 6= 0. (4)

Such a coalition RS exists, since otherwise δr = 0 for all r ∈ R\(S∩F θ
ik+1

) and all R ∈ W ,

and so δ(
⋃
R∈W(R \ (S ∩ F θ

ik+1
))) = δ(

⋃
R∈W R \ (S ∩ F θ

ik+1
)) = 0. But then

ε = δ(
⋃
R∈W R) = δ((

⋃
R∈W R) \ (S ∩ F θ

ik+1
)) + δ((

⋃
R∈W R) ∩ (S ∩ F θ

ik+1
))

= δ((
⋃
R∈W R) ∩ (S ∩ F θ

ik+1
)) ≤ δ(S ∩ F θ

ik+1
) ≤ ε,

where the first equality follows from (3) and the last inequality follows from δi ≥ 0,

for all i ∈ F θ
ik+1

, and δ(F θ
ik+1

) = ε. Therefore, we conclude δ(S ∩ F θ
ik+1

) = ε, but then

v(S) − x(S) = v(S) − α(S) − δ(S ∩ F θ
ik+1

) = v(S) − `θ(S) + ε − ε = v(S) − `θ(S) ≤ 0,

contradicting S to be a coalition with strictly positive excess with respect to v at x.

Now, let us choose a coalition S ′ ∈ W , S ′ ⊆ S ∩ F θ
ik+1

, with the largest excess at δ ,

i.e.

êα(S ′)− δ(S ′) ≥ êα(S ′′)− δ(S ′′), (5)
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for all S ′′ ∈ W with S ′′ ⊆ S ∩ F θ
ik+1

. Notice that the existence of S ′ is guaranteed by

property (c).

Since S ′ and RS are in W , S ′ \ RS 6= ∅ and RS \ S ′ 6= ∅. Taking into account

δ(RS \ (S ∩ F θ
ik+1

)) 6= 0, let us now select

i ∈ S ′ \RS and j ∈ RS \ (S ∩ F θ
ik+1

) such that δj > 0. (6)

Then, since êα(S ∩ F θ
ik+1

) = êα(S ′) = ε and δ(S ′) ≤ δ(S ∩ F θ
ik+1

), we have

0 < v(S)− x(S) = v(S)− α(S)− δ(S ∩ F θ
ik+1

)

≤ êα(S ∩ F θ
ik+1

)− δ(S ∩ F θ
ik+1

)

≤ êα(S ′)− δ(S ′) ≤ sêαij (δ) = sêαji (δ)

= êα(R′)− δ(R′),

(7)

where R′ ⊆ F θ
ik+1

, j ∈ R′ but i 6∈ R′. As a consequence of (7) and δi ≥ 0, for all i ∈ F θ
ik+1

we obtain êα(R′) > 0 which implies

êα(R′) = eα(R′′) = ε > 0, for some R′′ ⊆ R′. (8)

Notice that i 6∈ R′′, since i 6∈ R′ and R′′ ⊆ R′. Moreover, by (8),

êα(R′)− δ(R′) = eα(R′′)− δ(R′)

= v(R′′ ∪Q′′)− α(R′′ ∪Q′′)− δ(R′),

(9)

for some Q′′ ⊆ P θ
ik+1

.

If we set T = R′′ ∪Q′′ we obtain, by (7) and (9),

0 < v(S)− x(S) ≤ v(T )− α(T )− δ(R′) ≤ v(T )− α(T )− δ(R′′)

= v(T )− x(T ),
(10)
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where the last inequality follows from R′′ ⊆ R′ and δi ≥ 0, for all i ∈ F θ
ik+1

. Moreover,

notice that i ∈ S \ T 6= ∅ since, by (6), i ∈ S ′ ⊆ S ∩ F θ
ik+1

and i 6∈ R′′.

On the other hand, we claim T \ S 6= ∅. To check this, we first prove that R′′ \ (S ∩

F θ
ik+1

) 6= ∅. If j ∈ R′′, then the statement is proved since, by (6), j 6∈ S ∩ F θ
ik+1

. Let us

suppose j 6∈ R′′ and R′′ \ (S ∩F θ
ik+1

) = ∅ and so R′′ ⊆ S ∩F θ
ik+1

. By (7) and (9), we have

0 < êα(S ′)− δ(S ′) ≤ v(R′′ ∪Q′′)− α(R′′ ∪Q′′)− δ(R′)

< v(R′′ ∪Q′′)− α(R′′ ∪Q′′)− δ(R′′)

≤ êα(R′′)− δ(R′′),

where the second strict inequality follows from the fact that j ∈ R′, δj > 0 and we are

supposing j 6∈ R′′. But this contradicts (5). Hence, ∅ 6= R′′ \ (S ∩ F θ
ik+1

) ⊆ T \ S.

Finally, by property (a), S ∩ T 6= ∅ since v(S) − x(S) > 0 and v(T ) − x(T ) > 0.

Therefore, since S \ T 6= ∅, T \ S 6= ∅, S ∩ T 6= ∅ and (10) we have proved that x is in

the steady bargaining set and so in the Zhou bargaining set, x ∈ SB(v) ⊆ ZSh(v).

To sum up, x ∈ ZSh(v)\C(v) which involves a contradiction with the initial hypothesis.

The proof of item 2. is straightforward since C(v) ⊆ ZSh(v) ⊆MBSh(v). 2

The condition stated in the theorem is necessary for the coincidence of the core and

the bargaining sets, but not sufficient as we will see in the next final section.

4 An application to assignment games

We end the paper with an application of Theorem 1 to the case of assignment games

(Shapley and Shubik, 1972). Two-sided assignment games represent two-sided markets

(buyers and sellers) where each buyer-seller pair obtains a non-negative gain of trading.

Assuming that each agent of one side can only trade with one agent of the opposite side,

the problem at issue is firstly to find an optimal matching between buyers and sellers

such that the joint profit is maximized; and secondly to allocate this profit among agents

taking into account the joint optimal profit every submarket can obtain.
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For example, consider the following market of 3 buyers (players 1, 2 and 3) and 3

sellers (players 4, 5 and 6). Matrix A summarizes the gain of each pair of agents:

4 5 6

1

2

3

3 1 4

1 6 1

1 1 3

Notice the only optimal matching is located along the main diagonal: player 1 trades

with player 4, 2 trades with 5 and 3 trades with 6, with a total gain of a14 +a25 +a36 = 12.

A cooperative game (N,wA) can be associated by defining wA(N) = 12 and computing,

for every subcoalition of agents S ⊆ N , the profit of an optimal matching of the submarket

restricted to agents in S. Notice that wA(S) = 0, if S consists either only of buyers or

only of sellers, since no trade is possible in these cases. The reader may easily check, for

instance, that wA({2, 6}) = a26 = 1 and wA({1, 3, 6}) = a16 = 4.

Any efficient allocation (x1, x2, x3, x4, x5, x6) of the total profit wA(N) = 12, assigns

x1 + x4 = 3, x2 + x5 = 6 and x3 + x6 = 3. However, notice that if we want x to be in

the core of the assignment game wA, x6 ≤ 3, since x3 ≥ 0 and x3 + x6 = 3. But then,

if x6 ≤ 3, x1 ≥ 1 since players 1 and 6 can obtain a16 = 4. This remark is crucial since

any max-payoff vector associated to an ordering starting with player 1 will not be in the

core of the game. To check this, take θ = (i1, . . . , i6) ∈ ΘN such that i1 = 1 and notice

xθi1 = wA({1}) = 0 which is smaller than the minimum core payoff to player 1. Hence,

xθ(v) 6∈ C(v) and, by Theorem 1, C(v)  ZSh(v) ⊆MBSh(v).

Note that buyer 1 is optimally matched with seller 4, but the element a14 is not the

maximum of row 1; it is said this matrix is not dominant diagonal. On the contrary, a

matrix is dominant diagonal (see Solymosi and Raghavan, 2001) if, provided the optimal

matching is placed on the main diagonal, each of its elements is the maximum of the

corresponding row and column. They prove that all players achieve a zero payoff in the

core of the assignment game if and only if the corresponding matrix is dominant diagonal.

Hence, following the same reasoning as in the previous example, we can state a general

14



result for the case of markets with the same number of buyers and sellers1:

if A ∈M+
n is not dominant diagonal, then C(wA)  ZSh(wA).

On the other hand, if A is dominant diagonal the max-payoff vectors might be or not

core elements. But even in the case that all the max-payoffs vectors are in the core of

the game, this is not sufficient to guarantee the coincidence between the core and the

bargaining sets. To check this, consider the assignment game corresponding to the matrix

B:

3 4

1

2

1 1

1 1

.

The associated cooperative game corresponds to the 2×2 glove market game. It can be

checked that xθ(wB) ∈ C(wB), for all θ ∈ ΘN . However the core and the Zhou bargaining

set à la Shimomura do not coincide. The core is C(wB) = {(α, α, 1−α, 1−α) | 0 ≤ α ≤ 1}

while the Mas-Colell and Zhou bargaining sets à la Shimomura are(α, β, 1− α+β
2
, 1− α+β

2
)

∣∣∣∣∣∣ 0 ≤ α ≤ 1

0 ≤ β ≤ 1

 ∪
(1− γ+δ

2
, 1− γ+δ

2
, γ, δ)

∣∣∣∣∣∣ 0 ≤ γ ≤ 1

0 ≤ δ ≤ 1

 .

This example proves that the condition stated in Theorem 1 is just necessary but not

sufficient for the coincidence of the core and the Shimomura’s bargaining sets. Further-

more, let us remark that the Davis-Maschler bargaining set of an assignment game always

coincides with its core (see Solymosi, 1999), as this is the case of the above examples.

To end the paper, let us mention that Shapley and Shubik (1972) already point out in

their seminal paper some weaknesses of the concept of the core applied to an assignment

game and the necessity to explore the behavior of other solution concepts. This work is a

contribution to this task, but it remains open a complete description and interpretation

of the bargaining sets of Shimomura for this class of games.

1We denote by M+
n the set of non-negative square matrices.
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