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Abstract

 We consider the two-stage game proposed by Kreps & Scheinkman [83] in the address

model of horizontal differentiation developed by Hotelling. Firms choose capacities in the first

stage and then compete in price. We show that price competition is drastically soften since in

almost all subgame perfect equilibrium, firms behave as if they were an integrated monopoly i.e.,

choose capacities which exactly cover the market, so that there is no room for price competition. If

furthermore the installation cost for capacity is one fourth of the transportation cost, then this result

stands for all SPE. Like Kreps & Scheinkman, we show that the Cournot allocations (quantity

competition) coincide with the SPE allocations of our game form. Finally our analysis provides an

interesting treatment of mixed strategies equilibria which is quite new in this literature.
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1) Introduction

The intuition according to which price competition yields lower equilibrium mark-ups than

quantity competition has been definitely illustrated by the Bertrand [1883] critique of Cournot

[1838] analysis. The comparison of these two models conveys a very simple message : equilibrium

outcomes in oligopolistic industries crucially depend on the nature of the strategic variable. It is

however fair to say that both models suffer from important limitations. The main drawback of

quantity setting models is that no explicit price mechanism is stipulated. On the other hand, allowing

firms to set prices leads to the Bertrand result, if and only if firms face constant marginal costs. As

shown by Edgeworth [25], no pure strategy equilibrium exists in the Bertrand model with increasing

marginal costs. An important by-product of Edgeworth's analysis is that firms' payoffs in a mixed

strategy equilibrium are positive, so that firms could find it profitable to voluntarily limit their

production capacities, in order to depart from the Bertrand outcomes. This provides the intuition

underlying the result established by Kreps & Scheinkman [83]. They showed that in a two-stage

game where firms precommit to capacities and then compete in prices, Cournot outcomes could

prevail as the unique SPE outcome. In addition to reconciling Bertrand and Cournot competition

into a single framework, this result essentially suggests that quantity precommitment is a natural

way out of a too fierce price competition.

In order to depart from the Bertrand outcome, Hotelling [29] followed a completely different

route. Sticking to a price competition framework, he showed that firms could secure positive profits

in equilibrium by differentiating their products. Interestingly enough, he thought that product

differentiation would solve both the Bertrand and the Edgeworth problem. To quote Hotelling [29],

p 471 : "The assumption, implicit in Cournot, Amoroso and Edgeworth's work that all buyers deal

with the cheapest seller leads to a type of instability which disappears when the quantity sold is

considered as a continuous function of the differences in prices". Although he was clearly right in

arguing that continuous demand would solve the Bertrand paradox, he was wrong on the

Edgeworth's front. As shown by Shapley & Shubik [69] or McLeod [85], product differentiation is

not sufficient to restore the existence of a pure strategy equilibrium in a pricing game with

increasing marginal costs. Indeed, the presence of quantitative restrictions in the pricing game

typically yields non quasi-concave payoffs and these migth preclude the existence of a pure strategy

equilibrium. Existence conditions  have then been investigated by Friedman [88], Benassy [89] and

Canoy [96] for price setting models of product differentiation.

However, the incentives to voluntarily limit production capacities have been completely

neglected in a context of product differentiation. This is remarkable because it is clear that firms'

incentives to relax price competition through some form of quantitative restrictions do not disappear

due to product differentiation. For instance, at the equilibrium prices in the Hotelling model, all

consumers enjoy a strictly positive surplus. Therefore, firms could sell exactly the same amount at

higher prices, thereby enjoying higher profits. In this sense, prices are too low in the Hotelling

equilibrium and there is room for relaxing price competition further through capacity limitations.
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Addressing this question is the aim of the present paper. To this end, we apply the Kreps &

Scheinkman framework to the Hotelling model i.e., firms precommit to capacities and then compete

in prices in an horizontally differentiated market.

Our main results are the following. In a subgame perfect equilibrium (SPE), capacity

precommitment softens price competition, as in Kreps & Scheinkman but more drastically : the

capacity choices exactly cover the market, so that there is no room for price competition at all, the

only degree of freedom being the sharing of the market. The intuition behind this result is that if

capacity choices overlap, at least one firm will reduce its capacity to the complement of its

competitor, the reason being that its second stage payoff does not depend on its first stage strategy

(capacity). The foundation of this result is that capacity precommitment enables firms to take

advantage of the local monopoly structure inherent to the Hotelling model. Note that our result is

not driven by the existence of costs for capacity installation ; this cost must be positive but can be

arbitrarily small relative to the other parameters of the game. We must mention however the

existence of other SPE's for a small set of values of the reservation price involving excess capacities

and mixed strategies in the pricing game ; however, they appear only only for low installation cost.

Finally, we show that the SPE's involving exact market coverage are the outcomes of Cournot

competition, thus we provide an analog of Kreps & Scheinkman's statement to horizontally

differentiated market.

The paper is organized as follows. In section 2 we present the basic model and the

equilibrium when firms do not face limited capacities. Section 3 presents the main intuitions

underlying the analysis of price competition with capacity constraints in the Hotelling model. In

section 4, we study the various kind of price subgames. The capacity game is then solved in section

5. Section 6 concludes.

2) The Hotelling model without capacity
constraints

We introduce the address model of Hotelling with fixed locations (this point shall never

change) and capacities and analyse the resulting price competition.

An indivisible homogeneous good is sold by two shops located at the boundaries1 of the [0;1]

segment along which consumers are uniformly distributed. Each consumer is identified by its

address x in the street. An agent buy at most one unit of the good, the common reservation price is

S. When buying one of the products, the consumer goes to a shop and bears a transportation cost

linear in the distance to the shop. Since we can normalise prices, we set the transportation cost

between the two shops at 1$. The utility derived by a consumer located at x in the interval [0,1] is

1 We choose maximum differentiation to relax as much as possible price competition . If firms find it profitable to
further relax  price competition through capacity precommitment, it is likely that they would face even greater incentives
if they were less horizontally differentiated.
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S x p bought

S x p bought

− −
− − −

⎧
⎨
⎩

1

21

if product  at firm 1

if product  at firm 2( )

 Refraining from consuming any of the two products yields a nil level of utility2. Although

being a fairly standard result, we first characterise the Hotelling equilibrium in full length. Indeed,

this will provide a useful benchmark for the analysis to follow.

Proposition 1 (Hotelling)

If S > 3/2 and firms face no capacity constraints, the only Nash equilibrium of the

pricing game is (1,1) and the market is covered.

 Proof  As one can see with the plain lines of

figure 1, if prices are not too large, all agents

buy the good at one of the shops. Those living in
the segment 0 1 2; ˜ ( , )x p p[ ] will buy at firm 1

whose demand is thus ˜ ( , )x p p1 2  as consumers

are uniformly distributed on [0;1]. Likewise, the

demand addressed to firm 2 is 1 1 2− ˜ ( , )x p p .

x

S − x − p1

0 1x̃(p1, p2 )

S − (1 − x) − p2

Utility

Figure 1

The address of the indifferent consumer is ˜ ( , )x p p
p p

1 2
1 21

2
≡

− +
 i.e., the solution of

S x p S x p− − = − − −1 21( ) . It is also clear from the dashed lines of figure 1 that the market is not

covered if prices are too large. In that case, firm3 i is a local monopoly and her demand is
min ,1 S pi−{ }, this happens if S x p p pi j i− − <˜ ( , ) 0 ⇔ > − −p S pi j2 1 .

The demand function of firm i  is D p p

p p
p S p

S p p S p
i i j

i j
i j

i i j

( , )
min ,

=
− +

≤ − −

−{ } > − −

⎧
⎨
⎪

⎩⎪

1

2
2 1

1 2 1

if 

if 
. The

respective maximisers are H p
p

j
j( ) ≡

+1

2
 and the monopoly price p in S 1,

S

2
m ≡ −⎧

⎨
⎩

⎫
⎬
⎭

m .

Since Di(pi,pj) is piecewise linear and decreasing in pj, the profit function is concave in pj so

that the best reply to a mixed strategy is the best reply to its expectation which is a pure strategy.

Therefore, the unique Nash equilibrium of this pricing game is pure.

2 In Hotelling's original model, this possibility is not considered, formally, this correspond to an infinite S.
3 In the remainder of the text, i stands for either of the firm and j for her competitor.
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The best reply of the domestic firm,

BRd, is displayed in bold and dashed on

figure 2 while that of the foreign firm is

displayed in bold and plain. BRd follows the

classical best reply H(pf) for low pf's until it

leads to an uncovered market. From that point

on, BRd decreases along the frontier until it

reaches the monopoly price pm. The best

reply lines intersect at the unit price for both

firms as soon as S > 3/2. Otherwise, there is a

continüm of equilibria on the frontier which

entail no "real" price competition.♦

p1

p2

1 2 12S−1

market
not covered

2S

3
pm

Figure 2

Observe that the equilibrium prices do not depend on S and are "too low" in the sense that all

consumers enjoy a strictly positive surplus. Clearly, firms could benefit from using capacity pre-

commitment in order to relax the price competition.

3) Capacity pre-commitment

We add a preliminary step to the game of the previous section : firms choose simultaneously

sales capacity k1 and k2 and then simultaneously choose prices p1 and p2 knowing the chosen

capacity of their competitor. We are considering a two stage game G that is analysed using subgame

perfect Nash equilibrium. The subgame after the choices of k1 and k2 is denoted G(k1,k2) and called

the pricing game.

Definition : A strategy of firm i in G is a capacity ki and a function σi assigning to any couple of

capacities (ki,kj) a pricing strategy σi(ki,kj) which is a probability measure over the positive prices.

A subgame perfect equilibrium is a quadruple m m1 2 1 2, , (.,.), (.,.)σ σ( )  such that in every subgame

G(ki,kj), including the equilibrium path G(mi,mj), the pricing strategy σi(ki,kj) of firm i is a best

reply to σj(ki,kj). Secondly, mi is a best reply to mj, knowing that σi and σj are used in any pricing

game.

The introduction of capacities constraints k1 and k2 complicates the analysis. Indeed, the

presence of limited capacities considerably affects firms' incentives in the pricing game. First, a

limited capacity may decrease the incentive of a firm to reply to the other's price with a low price.

Consider for instance that firm 1 has chosen a capacity k1. When firm 1 is aggressive and sets a price

p1 low relative to p2, she receives a large demand but she is not able to serve all of it as soon as her

capacity k1 is reached ; thus her incentives to price competition are lowered.
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A second observation induced by limited capacities is that some consumers might be

rationed at the prevailing prices. This possibility is the cornerstone of the price competition analysis

as it may reverse firms' incentives in the price game. More precisely, one firm could find it

profitable to quote a high price, anticipating the fact that some consumers will be rationed by the

other firm and could be willing to report their purchase to her. This was the original intuition of

Edgeworth. The incentives for that behaviour basically depend on the willingness of consumers to

switch to the high price firm in case of rationing. The extent to which rationed consumers will be

recovered by this firm directly depends on who the rationed consumers are. Therefore, the

organisation of rationing in the market is of central importance.

We will assume that the efficient rationing rule is at work in the market, as in Kreps &

Scheinkman [83]. Under this rule, rationed consumers are those exhibiting the lowest reservation

price for the good. Consider the example depicted on figure 3.

Some consumers willing to buy

at firm 1 are rationed. Under efficient

rationing, they are located in the interval
k x p p1 1 2; ˜ ( , )[ ] and thus are precisely the

most inclined to switch to firm 2.

Despite firm 2 has a potentially low

demand (p2 is high relative to p1), the

fact that firm 1 is constrained by her

capacity k1 , could give firm 2 an

effective demand of 1 − k1.

0 k1 x(p1,p2) 1

Potential demand
       for firm1

Potential demand
       for firm2

Sales of firm 1 Sales of firm 2

    Rationed consumers who
switch from  firm 1 to firm 2

Figure 3

More precisely, as long as p2 is less than S −1+ k1, the net reservation price of the consumer

located in k1, the effective demand of firm 2 is 1 − k1. This feature of the market allocation rule also

lowers firm 2's incentives to enter a price competition "à la Bertrand" since her demand is locally

independent of her own price p2. Note thus that within our framework, efficient rationing defines the

largest residual demand for firm 2, so that, contrarily to Kreps & Scheinkman, the incentives to use

rationing strategically are maximised. This phenomenon will have a strong feedback on the choices

of capacities.

Nevertheless, our study will be meaningful if firms are always lead to choose capacities

whose total exceeds the market size. This way, they will enter into a price competition at the second

stage. Recalling that the total transportation cost from one shop to the other is unity, Proposition 2

clarifies this point.
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Proposition 2

If the unit cost of capacity installation ε is larger than S − 1, the unique SPE entails

monopoly pricing by both firms.

Proof  If firm i has a monopoly over the market and has installed a capacity ki, the demand
addressed to her is f k S pi i i≡ −{ }min , . The second period profit p S pi i( )−  is maximum for pi =

m iin S k ,
S

2
−⎧

⎨
⎩

⎫
⎬
⎭

. We denote by ε the unit cost of capacity installation so that the first period profit is

Πi i
i i i

S
i i

k
k S k if k S

k if k S
( ) =

− −[ ] <
− ≥

⎧
⎨
⎪

⎩⎪

ε
ε

2

2
2

4

. As the second part is decreasing, only the first matters for

the optimal capacity choice which is km ≡ min ,1 2
S−{ }ε . Now, it clear that ε > S − 1 implies km < 1/2

; thus both firms are able to achieve their full monopoly profit without interacting which means that

km is a dominant strategy and thus characterise a unique SPE allocation. ♦

Corollary

If ε < S − 1, then a SPE involves total capacity exceeding the market size.

It is clear that when ε < S − 1, capacity choices "interior" to the market i.e., such that k1 + k2

< 1, are not stable since one of the firm (may be both) has an incentive to choose at least a capacity

completary to her competitor. However, exact market coverage pairs (k1,k2) subject to the constraint

max ,k k km
1 2{ } ≤ , are candidates to be subgame perfect equilibrium of the overall game. The next

section studies the pricing game when the choice of capacities exceed the market size.

4) The price subgame

4.1) The Demand functions

We now proceed to the derivation of demands in the pricing game G(k1,k2) when k1 + k2 > 1

and, without loss of generality, k1 > k2. The intuition underlying the analysis is the following one :

demands are piecewise linear, thus continuous in prices (contrarily to the case of homogenous

goods) but exhibit outward kinks i.e., non concavity. Therefore, the best reply functions are

discontinuous which can preclude the existence of pure strategy equilibria. Nevertheless, payoff

functions are "piecewise" concave, thus firms have only a finite number of best replies and

equilibria are atomic. By this term, we mean that firms use a mixed strategy with a finite support ;

contrarily to the case studied by Kreps & Scheinkman [1983] and Osborne & Pitchik [1986], there is

no density of prices in any equilibrium of the second stage game. This is a property of product

differentiation. The following paragraph which is devoted to the derivation of demand functions is

quite heavy but things become clear on the figure that summarises our findings.
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The rationing rule that we use is the efficient one which means that if the demand addressed

to firm i exceeds ki, she serves the segment [0;ki]. Thus, if we let Di be the sales of firm i, the

demand addressed to firm j is bounded by 1 − Di. Since Di is bounded by the capacity ki and by the

monopoly sales S pi− , we have Di = min , ,S p k Di i j− −{ }1  = min ,f Di j1 −{ } where fi =

min ,k S pi i−{ }.

Observe now that  
˜ ( , ) ( )

˜ ( , ) ( )

˜ ( , )

˜ ( , )

x p p f E

x p p f E

D x p p

D x p p
1 2 1

1 2 2

1 1 2

2 1 2

1

1 2 1

<
− <

⎫
⎬
⎭

⇒
=
= −

⎧
⎨
⎩

 because the demands

addressed to the firms can be served by both. The reverse implication is also true as one can see

from the definition of Di . We now investigate the prices that enables the conditions (E1) and (E2) to

hold.

- p S k     k

- p S k     

- p

1 1 1

1 1

2

≤ − ⇒ = = ≤ ⇔ ≥ ≡ + −

> − ⇒ = − = ≤ − ⇔ ≤ ≡ − −

− +

− +

f k and E is x p a k p p k

f S p and E is x S p p c p S p

p p

p p

1 1
1

2 1 1 2 2 1

1 1
1

2 1 1 2 2

1 1 2

1 2 1

1 2

1 2

( ) ˜ ( , )

( ) ˜ ( )

≤≤ − ⇒ = − = ≤ ⇔ ≤ ≡ − +

> − ⇒ = − − = ≤ − ⇔ ≤

− +

− +

S k  and (E2) is k

- p S k  and (E2) is 

2 2

2 2

f k x p b k p p k

f S p x S p p c p

p p

p p

2 2
1

2 1 2 2 2 2

2 2
1

2 2 1 2

1 1 2

1

2 1

2 1

˜ ( , )

˜ ( )

The

conditions (E1) and (E2) are satisfied for prices such that a k p p( , )1 2 1≤ ≤  min ( , ), ( )b k p c p2 2 2{ } .

The benchmark δ( )k S ki i≡ −  is the maximum price compatible with sales of ki while

ρ( )k S kj j≡ − +1  is called the default option as it ensures firm i, a demand of at least 1 −  kj

whatever his opponent's price.

As shown on figure 4 below, k1 + k2 > 1 implies a(k1,.) < b(k2,.) and δ(kj) < ρ(ki). Lastly,

a(k1,.) = c(.) = δ(k1) for p2 = ρ(k1) and b(k2,.) = c(.) = ρ(k2) for p2 = δ(k2). The area delimited by

the functions a, b and c will be called “the band“.

a

c

b

p2

p1

δ(k2)

ρ(k2)

ρ(k1)

δ(k1)

D1 = 1− k2

D2 = k2

D1 = S − p1

D2 = k2

D1 = k1

D2 = 1− x̃(p1, p2 )

D1 = x̃(p1 , p2)
D1 = k1

D2 = 1− k1

D1 = S − p1

D2 = S − p2

D2 = S − p2

Figure 4

Thanks to figure 4, the demands addressed to the firms are easy to understand. When prices

are similar, they give rise to a point in the band where we have the classical Hotelling demands.

Now, if p1 increases, firm 1 looses sales until firm 2 is constrained by her capacity i.e., we reach the
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upper triangle. From that point on, if p1 increases further, D1 remains constant at 1 − k2. This

conduct last until p1 is so large that the market is not covered anymore and firm 1 obtains a

monopoly demand.

4.2) The best reply functions

We now perform the derivation of the best reply of firm 1 to a price charged by firm 2. We

already assumed S > 1+ ε and we go a step further4 by assuming S > 2 to create a fierce price

competition between the duopolists. Indeed, it basically implies that a lonely monopolist with full

capacity would choose to cover the market (his unconstrained choice would be S/2). Since there are

two firms and only one market, it cannot be the case that the market is left partially uncovered at

equilibrium prices. Whatever their capacity choices, firms will always engage into a price

competition. Technically, it implies S/2 < δ(ki) for all i and all capacities ki and thus S/2 < ρ(ki)

because k1 + k2 > 1.

Lemma 1

Firm i never charge prices above ρ( )k S kj j≡ − +1 , thus strategy spaces are bounded.

Proof Let F1 be the cumulative function of the mixed strategy used by firm 1 in equilibrium. Recall

that ∀ ∀ ≥ = −p p k D p p S p2 1 2 1 1 2 1, ( ), ( , )ρ . Now, since the monopoly price S/2 is less than ρ(k2),

Π1(p2,.) must be decreasing over [ρ(k2);+∞[ and the same is true for the average Π1 2( ,.)F

≡ ∫ Π1 2 2 2( ,.) ( )p dF p . Therefore F1 as a best reply to F2, has no mass above ρ(k2) and symmetrically

the support of F2 is included in 0 1; ( )ρ k[ ]. ♦

We now study the best reply of firm 1 to a price p2 lesser than ρ(k1) knowing that p1 is itself

lesser than ρ(k2). There are two radically different patterns of behaviour. Either, firm 1 act in a

classical fashion (à la Hotelling) with an agressive price in order to gain market shares or she hides

behind the quota. We mean that she contents herself to serve the part of market that is out of reach

for her opponent i.e., the [0;1 − k2] interval. On this residual demand, firm 1 acts as a monopolist

(this is the key feature of the Hotelling framework) and the optimal price is ρ(k2) ; we call it the

security strategy.

4 Note that the standard analysis of the Hotelling model generally assumes S large enough to ensure market-covering in
equilibrium. A close look at the proofs shows that it is unnecessary but simplifies the exposition of the price equilibrium.
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On the domain of monopoly demand, S/2

< δ(k1) implies that profit is decreasing with p1

over the domain, thus the best choice is first

ρ(k2) and then c(p2). However this latter value is

itself dominated by the argmax of the band. In

the triangle above b and in the triangle under a,

demand is constant so that profit is increasing

and the best choices are respectively ρ(k2) and

a(k1,p2). Again, this latter value is itself

dominated by the argmax of the band.

a

cb

p2

p1

δ(k2)

ρ(k2)

ρ(k1)α(k1)

1− k2

k1

δ(k1) x̃(p1, p2 )

1 2

S 2

S − p1

Figure 5

In the band where D1 = ˜ ( , )x p p1 2 , profit is quadratic, hence the best choice is either H(.),

a(k1,.) or b(k2,.). As seen on figure 5, H(.) is in the band if b(k2,p2) > H(p2) > a(k1,p2). The first

inequality leads to  p2 > β(k2) ≡ 3 − 4k2 (it is always satisfied if k2 > 3/4 as on figure 5). The second

inequality leads to p2 < α(k1) ≡ 4k1 − 1 (it is never satisfied if k1 < 1/4). Since b(k2,p2) is dominated

by ρ(k2), we can, without loss of generality, take Max H a k(.), ( ,.)1{ } to  be the best choice in the

band because we will then choose between this candidate and the security strategy ρ(k2). The profit

function associated with this "Hotelling" pattern is ˆ ( )
( )

( )

( )
Π1 2

2
2

2 1

1 2 1 2 1

1

8
1 2

p
p

if p k

k p k if p k
≡

+
<

+ −[ ] ≥

⎧
⎨
⎪

⎩⎪
α

α
.

The meaning of the modified Hotelling best reply is that firm 1 responds in an aggressive

manner to any increase of p2 in order to gain market shares. This conduct lasts until her sales reach

her capacity ; above that threshold, she can only sell her full capacity at a maximum price.

The security strategy ρ(k2) generates the profit Πd k S k k( ) ( )2 2 21 1≡ − +[ ] −  which might

dominate ˆ ( )Π1 2p  against a low price p2 ; more specifically, lemma 3 in the appendix5 shows that

BR p
k if p k k

Max H p a k p if p k k
( )

( ) ( , )

( ), ( , ) ( , )
2

2 2 1 2

2 1 2 2 1 2

≡
≤

{ } >

⎧
⎨
⎪

⎩⎪

ρ γ

γ
.

Firm 1's best reply function is plotted in

bold on figure 6 (the other lines are used in the

proof of lemma 2 below) ; its particular shape is

intuitive : when the price p2 is low, firm 1 tends

to reply with a high price, thereby benefiting

from the resulting rationing at firm 2. Against a

high price p2, firm 1 fights for market shares.

An intuitve consequence of the previous

calculations is the following lemma.

p2

p1

γ (k1,k2)1 2

3 4

Figure 6

5 The cut-off function γ(k1,k2) having no economic meaning, it is not reproduced in the text.
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Lemma 2

In any equilibrium of the pricing game, firms name prices larger than the unit price

characterising the Hotelling equilibrium.

Proof  Observe on figure 6 above, that the best reply of firm 1 is always larger than 1/2 because both

H(.) and ρ(k2) are larger than 1/2. This is due to the fact that Π1(p2,.) is increasing over [0;1/2] for

any price p2. This in turn implies that the average Π1(F2,.) is also increasing over [0;1/2]. Therefore

F1, which is a best reply to F2, puts no mass under 1/2 and by symmetry, this result is also true for

F2.

Now, when looking again at Π1(p2,.), we can restrict ourselves to prices p2 ≥ 1/2 so that

Π1(p2,.)  is increasing over [0;3/4] (cf. figure 6) and so is the average Π1(F2,.). The same optimality

argument now implies that F1 puts no mass under 3/4. Repetition implies that neither F1 nor F2 put

mass under the unit. This argument is also used in lemma 4 of the appendix where it is more

completely developed. ♦

Combining lemmas 1 and 2, we obtain :

Proposition 3

In equilibrium, the support of the mixed strategy Fi is included in [1;ρ(kj)].

4.3) Equilibria of the pricing game

In this sub-section, we characterise the equilibria of the price subgame ; however, analytical

developments are relegated to the appendix.

Proposition 4

The price equilibrium can take either of the following forms :

- A) both firms use the pure strategy at the Hotelling unit price

- B) one firm plays a pure strategy and the other mixes over two atoms

- C) both firms use a mixed strategy involving the same number of "atoms"

Proof  A) Equilibria involving only pure strategies

Assuming that both capacities are arbitrarily close to 1, one could expect that the standard

Hotelling equilibrium of proposition 1 is preserved.
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We show in lemma 3 of the

appendix, the existence of an area A1 of

the (k1,k2) plane (cf. figure 7) where

γ(k1,k2) < 1 ; it consist of large values of

k2 while the symmetrical area A2 where

γ(k2,k1) < 1 consists of large values for

k1. In A1∩A2 which is a square, best

replies curves do indeed cross at (1,1)

which is an equilibrium. We cannot

claim that it is the only one because

profit functions are not concave.
k1

k2

1

1

0

A1

A2

Figure 7

B) Equilibria involving a pure strategy and a mixed one

 In the area A1\A2 (large k2 and not so large k1) of figure 7 above, the pure strategy

equilibrium ceases to exists because γ(k1,k2) > 1. To understand the characterisation of type B

equilibrium, it is useful to give the intuition of this result by presenting the Edgeworth cycle in a

market for differentiated products.

If p1 = 1, firm 2 uses the fact

that k1 is not very large to enjoy the

market share 1 − k1 at the maximum

price ρ(k1) rather than fighting

against p1 = 1 with its "Hotelling"

best reply H(1) = 1. Since there is

actually no competition, the best

reaction of firm 1 is to increase its

price to δ(k1) which is the maximum

price compatible with sales of k1. α(k1)

p1

p2

ρ(k1)

δ(k1)

γ(k1,k2)

ρ(k2)

q2

q1

γ(k2,k1)

1 2

1 2

Figure 8

Now, both prices are at their peak and the only way to increase profit is to capture new

market shares by undercutting one's opponent price. The next best move of firm 2 is p2 = H(p1),

followed by a low value p1 = H(p2) ; at this moment we are back to the beginning of the story : it is

better for firm 2 to  retreat over its protected share 1 − k1.

According to the Nash definition in this context, the equilibrium sees firm 1 playing the pure

strategy γ(k2,k1) while firm 2 mixes between ρ(k1) and a lower price q
k k

2
2 11

2
≡

+ γ ( , )
 (cf. figure

8). The symmetric vector of strategies is not an equilibrium because to make firm 1 indifferent

between ρ(k2) and q1, firm 2 would have to play the pure strategy γ(k1,k2) which is strictly less than
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1 by definition of the area A1\A2, but this contradicts the fact that equilibrium prices are larger than

1. As k2 is "large", the default option is never relevant for firm 1 because it involves nearly zero

profits. Area A2\A1 is entirely symmetric.

Comments

The preceding story should not be criticised for its dynamic presentation of the static concept

of Nash equilibrium. Beyond showing why there is no equilibrium in pure strategies, it helps to

understand the nature of the new equilibrium. When firm 1 plays the pure strategy γ(k2,k1), if firm 2

perceives a slightly larger price, she replies aggressively for sure while if she perceives a slightly

lower price, she plays her default option for sure. Clearly, firm 2 is not throwing a coin to decide on

her pricing strategy, she plays a pure strategy that depends (crucially) on her perception of firm 1's

price.

This interpretation of mixed strategy equilibria is the purification argument of Harsanyi [73] ;

our setting is an example where it fully makes sense. Moreover, the experimental study of Brown-

Kruse & al. [94] suggest that disequilibrium adjustment process (called Edgeworth cycle in their

paper) or mixed strategy equilibria are the most robust theoretical explanation of the observed

pricing pattern in a Bertrand-Edgeworth oligopoly game.

C) Equilibria involving completely mixed strategies

In our economic model, there exists "Edgeworth" cycles but they need not involve a pure

strategy for one of the firms. Therefore, we should expect the existence of other equilibria where

both firms use mixed strategies ; they are fully characterised in lemmas 4 and 5 of the appendix.

Note that their existence is not related to areas A1 and A2.

The most important technical characteristic of our model is that, because of the piecewise

linearity of the demand functions, firms do not use densities and furthermore the support of their

mixed strategies contain the same number of atoms. Therefore an n atom equilibrium is a quadruple

p pm m m m
1 2 1 2, , ,μ μ( ) ≤m n

 where μi
m  is the weight put by firm i on her mth atom pi

m  (prices are ranked

by increasing order). To derive an n atom equilibrium of the pricing game G(k1,k2), we first solve

numerically6 a system of 2n −  2 polynomial equations in 2n − 2 variables and then check two

conditions on the vector of prices derived from the system in relation to k1, k2 and S i.e., we

eliminate some capacity points whose associated candidate equilibria violate one of those

conditions.

The symmetry of the problem enables us to limit ourselves to the case where k1 > k2. The

first necessary condition (cf. lemma 5 in appendix) states that 2k1 − 1 > p pm m
1 2−  > 2k2 − 1 for

every atom m ; it disqualifies capacity points (k1,k2) exhibiting a too large differential. The reduced

form of the condition reads  k2 > gn(k1) where each gn is an increasing and convex function. Figure

6 The skeptical reader will be convinced of the necessity to rely on numerical computations by noting that for a 5 atoms
equilibrium, a system of 8 equations involving polynomials of degree 7 with more than 1500 monomials has to be
solved.
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9 displays those functions for n = 2,  3, 4 and 5,  k1 varying between 0.5 and 0.95 (the limit at k1 = 1

is studied below). As n increases, more inequalities have to be satisfied, more capacity points are

eliminated and the area where atomic equilibrium  exist shrinks ; hence those functions satisfy g2 <

g3 < g4 < g5.

Figure 9

The second necessary condition is related to the upper bound on prices ; it links the upper

prices of the distributions to the reservation price by p pn n
1 2+  < 2S − 1. Since the equilibrium prices

do not critically depend on the capacity differential but on the total capacity, we study this condition

on the diagonal. For a given symmetric capacity choice (k,k), we compute the symmetric candidate

equilibrium p km m n
( )( ) ≤

 and the minimal reservation price for which the condition is satisfied i.e.,

S k
p kn

n

min ( )
( )

≡
+2 1

2
. The inverse of this function gives us the maximal capacity K Sn

max( ) such that

points (k1,k2) with k1+k2 ≤ 2. K Sn
max( ) have an n atoms price equilibrium at the given S. Those

functions will be useful in the subsequent section.

As one can expect, the larger the capacities, the larger the prices in a candidate equilibrium.

In fact, our computations shows that the upper prices of a candidate equilibrium tend to infinity as
capacities tend to (1,1). Now, since lemma 1 showed that prices are bounded by ρ( )k S kj j≡ − +1 ,

capacity choices around the corner (1,1) have no atomic price equilibria ; for that reason the plot of

figure 9 can safely stop at k1 = 0.95. ♦
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5) The capacity game

Going backward is difficult in the game G because G(k1,k2) has often several price equilibria

as shown in proposition 4. The focal subgame perfect equilibrium of this model involves symmetric

choices by the firms which happen to be identical to that of a monopoly owner of both firms : the

market is shared evenly, there is no excess of capacity, global surplus is maximised and consumer

surplus is minimised.

Theorem 1

For almost nil capacity cost, two kinds of SPE coexists

i) The total capacity exactly covers the market and each firm enjoys a minimum share;

furthermore, the price equilibrium is in pure strategies.

ii) The total capacity exceed the market size,  the difference in the capacity choices is limited

and the price equilibrium is in completely mixed strategies.

Proof  i) Equilibria with exact market coverage

The following characterisation is valid for any capacity cost ε. Using the symmetry of the

game, we take attention to SPE where the choices of capacities are (m,1−m) with m ≥ 1/2. The profit

function of firm 1 and 2 is (S − ε − k)k  which apply on the intervals 0;m[ ] and 0 1; −[ ]m

respectively. We have shown in proposition 2, that this function is increasing up to 
S − ε

2
 which is

therefore an upper limit to m in order to deter downward deviations. Note that for large S, this limit

is in fact not binding.

An upwards deviation k1 > m by firm 1 can only lead to a price equilibrium of type B or C.

There is no possibility for a type A equilibrium because it requires both capacities to be large and

since m ≥ 1/2, the capacity choice of firm 2 is smaller than the required limit Φ( , / )S 1 2  (cf. figure 7

for a graphical explanation and lemma 3 in appendix for the computation of this limit). To deter this

upward deviation of firm 1, we define the continuation price equilibrium of G(k1,1 − m) to be of

type B in order for the net profit of firm 1 to be (S −m)m − εk1 ; this is a non profitable deviation

because of the supplementary cost of capacity. As mixed strategies enable large prices, type C

equilibria provide too large payoffs and cannot be used to sustain our candidate SPE.

If m < Φ( , / )S 1 2 , an upwards deviation k2 > 1 − m by firm 2 can only be followed by a type

B or C equilibrium and we apply the same trick as for firm 1 to deter this upward deviation. A

problem appears for very large m's because firm 2's payoff is almost nil, hence she has an incentive

to deviate to the large capacity Φ( , / )S 1 2  in order to play the Hotelling price equilibrium and earn a

net profit of 1/2 − ε Φ( , / )S 1 2 . Whenever ε is less than half (the relevant condition for the original

Hotelling model), the solution of the equation 1 2 1 2 1 1/ ( , / ) ( )− = − − +[ ] −ε εΦ S S m m  give us a

bound on m which is obviously less than one. We may conclude that any sharing of the market is a

SPE allocation as long as each firm obtains its "Hotelling profit".
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ii) Equilibria involving overlapping capacities when capacity cost is almost nil

Consider a candidate SPE outcome (m1,m2). To prove that it is not a SPE, we must consider

deviation to (m1,k2) or (k1,m2) and look at the worst price equilibrium for the deviant ; if the

deviation is still profitable then (m1,m2) is not a SPE.

Claim If (m1,m2) is such that no type C equilibria exists in G(m1,m2), then this choice is not part of

a SPE.

Proof If the price equilibrium in G(m1,m2) is of type A, firms earn a profit independant of their

capacity choices. Therefore, each has an incentive to reduce capacity since the cost ε is positive

(almost nil is exactly what is needed). If the price equilibrium is of type B, the payoff of one firm,

say i, in the pricing game is Πd
jm( )  ; by choosing ki = 1 − mj, firm i sets herself in a non

overlapping situation and achieves (S −1+ mj)(1 − mj) = Πd
jm( )  with a lower cost of capacity

installation, thus she will deviate.

This artifice is our main instrument to rule out "unwanted" equilibria ; we also obtain a first

result : there are no SPE of type ii) where the capacity point (k1,k2) fall outside of the lens displayed

on figure 9 above.

We now build an SPE with capacity choices (m1,m2) such that the equilibrium of G(m1,m2)

is an n atom one. This couple must satisfy m2 > gn(m1) (by symmetry of G, we can always assume

m1 < m2) and m1 + m2 < 2 K Sn
max( ) ; those conditions give an upper bound on capacities. We now

define the strategies out of the equilibrium path : at (ki,mj), we define pricing strategies to be the

pure strategy γ(ki,mj) for firm j while firm i mixes between ρ(mj) and the lower price 
1

2

+ γ ( , )k mi j

(type B equilibrium). Firm i obtains Πd(mj) and to deter the deviation ki, it must be less than

Πn(m1,m2), the profit accruing to firm i at the n atom equilibrium.

Since this latter function mostly depends on the total capacity, we may study this condition

on the diagonal. We thus solve Πn k k k S k k( , ) ( ) ( )− ≥ − − −[ ] −ε ε1 1  in the variable S to get

S S k
k k k

k
kn

n

≤ ≡
−

−
+ − +max( , )

( , )
ε

ε
ε

Π
1

1 . The numerical computation is performed for ε = 0 as we

are studying the case of almost nil capacity cost. Then, we can invert S kn
max( , )0  to obtain a lower

bound K Sn
min ( ) on capacities which is compatible with the upper bound K Sn

max( ) derived in

proposition 4 (the above simplification is therefore valid up to small numerical errors).

Contrarily to type i) SPE, the capacity combinations that appear as SPE of type ii) depend on

S. Figure 10 summarises our result : the various K Sn
min ( ) and K Sn

max( ) functions are plotted for n =

2, 3, 4 and 5. Consider for example S = 4. There exists a symmetrical7 SPE with a 2 atoms price

equilibrium if the capacity is between .81 and .85 and an SPE with a 3 atoms price equilibrium if the

7 Whenever a symmetrical  n-atom equilibrium exists, there also exists asymmetrical  ones for all capcity choices with
the same mean and satisfying mi > gn(mj) i.e., the capacity point must lie in the lens of figure 9.
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common capacity is between .6 and .61. For S = 6, there exists SPE with 2, 3,  4 or 5 atoms price

continuation equilibria. ♦

S

k

Figure 10

Theorem 2

If the cost for capacity is larger than 1/4 of the transportation cost, then in all SPE, the

market is exactly covered by the capacity choices of the firms.

Proof  We have shown that a type i i ) SPE exists for the symmetric capacity k  only if

S k S S kn n
min max( ) ( , )≤ ≤ ε . As the latter function is decreasing in ε , S k S kn n

min max( ) ( , )= ε  has a

solution εn(k) and for any ε > ε n(k), the candidate SPE is removed. The equation to solve is :

S k
k k k

k
kn

n

min ( )
( , )

=
−

−
+ − +

Π ε
ε

1
1  ⇒ εn

n n

k
k k S k k k

k
( )

( , ) ( ) ( ) ( )min≡
− − −[ ] −

−

Π 1 1

2 1
.

The εn functions satisfy ε2 > ε3 > ε4 > ε5 and are plotted with reversed axes on figure 11

below. It is clear that for every ε > 1/4, no type ii) equilibria remains. ♦
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k

ε

Figure 11

Note that in the SPE's involving exact market coverage, both firms are on their monopolist's

profit curve. This perfectly illustrates how firms may benefit from capacity precommitment. Indeed,

the basic feature of the Hotelling model lies in the fact that firms enjoy local monopolies around

their locations. However, in the absence of capacity constraints, they cannot prevent price

competition to take place. Although positive mark-ups are preserved in equilibrium, price

competition is damaging to the firms. This is clearly seen by observing that in the Hotelling

equilibrium, prices do not depend on S. In other words, firms fail to capture a large part of the

consumers' surplus.

The main virtue of capacity precommitment is precisely to avoid this failure. Indeed, through

capacity precommitment, firms are now able to capture the greatest part of the consumers' surplus.

In the most "natural" equilibrium in which both firms commit to a capacity of 1/2, they sell exactly

the same quantity than in the original Hotelling equilibrium, but at much higher prices. In particular,

their payoffs now depend positively on S. This is so because they move along their local monopoly

profit curve which is increasing in the reservation price S.

The existence of equilibria involving excess capacities is mainly due to the existence of

multiple equilibria in the price subgame where firms fight for market shares. However, it remains

true that in these equilibria, prices are always above the Hotelling prices and increase with S. The

corresponding payoffs are also positively linked to the reservation price. Finally, theorem 2 shows

that excess capacity is profitable only if installation costs are low.

Thus, whatever the equilibrium considered, we are led to conclude that capacity

precommitment enables firms to take advantage of the most profitable feature of the industry which

is its local monopoly structure.
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6) Cournot Competition

Kreps & Scheinkman [83] established that firms tend to avoid destructive price competition

through capacity precommitment, in the market for an homogenous product.  In theorem 1 and 2, we

have extended their result to the case of horizontal differentiation. Although product differentiation

by itself relaxes price competition, we have shown that firms still have an incentive to relax it

further through capacity precommitment. The nicest feature of the Kreps & Scheinkman [83] result

is that it provides a theoretical foundation for Cournot competition which allows for an explicit price

mechanism. We now show that the same is true for horizontally differentiated products.

Theorem 3

The equilibrium allocations of the Cournot competition in the Hotelling model are those

of the capacity precommitment game for ε > 1/4.

Proof In the Cournot game, firm supply quantities q1 and q2 to an otherwise competitive market. If

the proposed quantities q1 and q2 do no cover the market, there is excess demand and the prices

increase until supply equal demand on each side of the market i.e., q1 = S − p1 and q2 = S − p2. As

already studied in proposition 2, this situation is unstable since at least one firm has an incentive to

increase its quantity above the complement of the other. If now the proposed quantities q1 and q2

exceed the market size, there is excess supply and at least one of the price, say p1, must be nil on

this competitive market. Therefore firm 1 has a profitable deviation by offering a quantity slightly

less than 1 − q2 to be on its monopoly profit curve.

The remaining candidates for a Cournot equilibrium are (q, 1 − q) with q ≤  1/2. The

competitive8 prices are S − q and S − 1 + q. Without loss of generality, firm 1 offers q, thus sells

less than 1/2 in equilibrium. Hence, p1 cannot be nil because it would attract at least one half of the

consumers, thereby implying an excess demand. Firm 2 cannot profitably deviate to a larger quantity

than 1 − q because she would face a zero price (one price is nil and by the preceding argument, it

must be her's).

Firm 1 may however profitably deviate to some Q larger than q but still less than 1/2. Since

there is excess supply, p2 is nil, thus firm 1 sells all of Q and the consumer located at x = Q must

indifferent in equilibrium which means that p1 = 1 − 2Q. The profit Q(1 −  2Q − ε) reaches a

maximum of ( )1
8

2−ε  at 1
4
−ε  to be compared with q(S − q − ε). Since q ≤ 1/2, the only relevant root is

q* ≡ 2 2 2 1
4

2 2S S− − − − −ε ε ε( ) ( )  > 0. Finally, the Cournot equilibria feature exact market coverage (q, 1 −

q) with q larger than this lower bound9 q*.

8 For exact market coverage, there exists a continüm of prices which clear the market and they need not be the highest
possible ones (cf. the forthcoming Grilo & Mertens [97] for a foundation of our price selection).
9 This lower bound is different from that derived in theorem 1 but both are small so that our equivalence applies for the
most likely sharings of the market.
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When there exists a demand operator 
D p p x p p

D p p x p p
1 1 2 1 2

2 1 2 1 21

( , ) ˜ ( , )

( , ) ˜ ( , )

=
= −

⎧
⎨
⎩

, d'Aspremont & Motta [94]

define a Cournot equilibrium as a price and a quantity vectors (pc,qc) such that for each firm i,

( , ) argmax( )p q p qc c
i i∈ − ε  over p q D p q D pi i j j≥ ≤ ≤ ={ }0 0, ( ), ( ) . In our setting, the constraint

q D pj j= ( )  means that firm i optimises over the complement to firm j's capacity. Again, according

to this alternative definition, all SPE's involving exact market coverage are Cournot equilibria. ♦

7) Final comments

Let us discuss now the main assumptions we have made.

i) It is well known that the nature of the rationing rule plays a central role in pricing models with

capacity constraints. For instance, Davidson & Deneckere [86] show that the result of Kreps &

Scheinkman entirely rests on their assumption of efficient rationing. It is however intuitive that this

is not the case in the present analysis. Indeed, any alternative to the efficient rule would result in a

lower residual demand addressed to the "high" price firm. However, the local monopoly structure of

the model does not depend on the rationing rule. Therefore, it is intuitive that other rationing rules

would yield more stability into price competition and would make exact market coverage equilibria

more likely. Moreover, in our setting, the efficient rationing rule may be considered as a rather

natural one if one views the Hotelling model as a spatial model. In this case, it basically amounts to

organise rationing on a "first arrived-first served" basis.

ii) We consider a market in which the location of firms are fixed at the extremities of the market. As

mentioned previously, this assumption was motivated by its implications for price competition.

Since product differentiation is maximised, one could think that this is the case where the firms have

the lowest incentives to further relax price competition. The robustness of our result to alternative

location patterns is not easy to trace. In particular because no pure strategy equilibrium exists in the

Hotelling model without capacity constraints when firms are located inside the first and third

quartiles. (see Osborne & Pitchick [87] for a characterisation of mixed strategies equilibria). Two

remarks are in order here.

First, it should be noted that the presence of capacity constraints may help to restore the

Hotelling equilibrium for locations inside the first and third quartiles (see Wauthy [96]). At the same

time, inside locations will tend to make upward deviations less profitable, because it could imply

less favourable residual demands. We may therefore suspect that with inside locations, there is less

scope for excess capacity choices whereas exact market coverage remains most attractive.

Second, under quadratic transportation costs,  maximal differentiation has been shown to be

optimal for the firms. Although our results has been derived using linear transportation costs, it is

clear their qualitative features do not depend on this particular assumption.
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Appendices

Lemma 3

The cut-off between aggressive pricing and monopoly behaviour.

Proof The profit associated with the modified Hotelling best reply Max H a k(.), ( ,.)1{ }, is

Π

Π

1 2
2

2

2 1

1 2 1 2 1 2 1

1

8
1 2

( )
( )

( )

( ) ( )

p
p

if p k

p k p k if p k

≡
+

<

≡ + −[ ] ≥

⎧
⎨
⎪

⎩⎪

α

α
 while that associated with the security strategy ρ(k2) is

Πd k S k k( ) ( )2 2 21 1≡ − +[ ] − .

Since this latter function is decreasing,

we have k2 > k'2 on figure 11 below.

The best reply of firm 1 to a low price

p2 is the default option ρ(k2) and above the

threshold x, the optimal play becomes H(.).

For the smaller capacity k'2, the cut-off value

is y and the optimal play above y is a(k1,.).

p2

α(k1)x

π 1
d(k2)

π1

π 1

π 1
d(k'2)

π1

y

Figure 11

 The solution of Π Πd k p( ) ( )2 1 2=  is x S k k≡ − +[ ] − −8 1 1 12 2( ) , while that of

Π Πd k p( ' ) ( )2 1 2=  is y
S k k

k
k≡

− +[ ] −
− +

1 1
1 22 2

1
1

' ( ' )
.

Observe first that if S is too small then x is negative and the security strategy  is never used ;

second the bound x is useful for large values of k2 as Πd is decreasing. Thus we have to solve in k2

the equat ion x k≤ ⇔α( )1  8 1 1 1 4 12 2 1S k k k− +[ ] − − ≤ −( )  which  leads  to

k S k
S S k

2 1

2
1
22 8

2
≥ ≡

− + −
Λ( , )  having eliminated the negative solution. Letting

γ ( )
( , )

max{ , }
,k k

y if k S k

x otherwise1 2
2 1

0
≡

<⎧
⎨
⎩

Λ
, we obtain the best reply function of firm 1 as

BR p
k if p k k

Max H p a k p if p k k
( )

( ) ( , )

( ), ( , ) ( , )
2

2 2 1 2

2 1 2 2 1 2

≡
≤

{ } >

⎧
⎨
⎪

⎩⎪

ρ γ

γ
.
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For the complete characterisation of

the pricing game, we need to solve
γ ( , )k k1 2 1<  i.e., k S k and y2 1 1< <{ }Λ( , )  

or k S k and x2 1 1≥ <{ }Λ( , )  .

When γ ( , )k k1 2  = y, we solve 1 >

2k1 − 1 +  
S k k

k

− +[ ] −1 12 2

1

( )
  and we get

k 2  > Φ( , )S k1 ≡
2 8 1

2

2
1 1− + − −S S k k( )

.

Note that Φ(S,k1) < k2 < Λ(S,k1) make

sense for k1 < 1/2.

k1

k2

1

1

0

Φ(S,1/ 2)Φ(S,k1)

Λ(S,k1)

A1

1

2

Figure 12

When γ = x, we solve 8 1 1 1 12 2S k k− +[ ] − − <( )  and we obtain k2  > Φ( , / )S 1 2 . The

combination of the two sets of solutions leads to the shaded area of figure 12. Note also that

S S S S S S> ⇒ − ≥ −( ) ⇒ − + − ≥ ⇒ ≥
3

2
2 1 2 2 1 1 2

1

2
2 2 2 Φ( , / )  which is used in theorem 1 part i).

♦

Lemma 4

In a mixed equilibrium firms use the same number of atoms and the diagonal points lie

in the band.

Proof Let Fi be the cumulative function of the mixed strategy used by firm i in equilibrium. Its

support is included in [1;ρ(kj)] . The choice of α  on figure 13 is made in order that D2(p1,.) is

decreasing and concave over [0;α] for any price p1 (we want to avoid the lower triangle where D2 is

again constant which precludes the concavity of Π2). Over [0;α], every profit function Π2(p1,.) is

concave, so is their average Π2(F1,.) and thus the best reply of firm 2 to F1 in the interval [0;α] is

unique which means that F2 possesses at most one atom p
2
 in [0;α].
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Now, ω  is chosen so that

D1(p2,.) is non-increasing over [0;ω]

for any price p2 larger than α (this

time, we want to avoid the upper

triangle). Thus the average of the

profit function Π1 conditional on
p p2 2

≠  is concave.

Π1( p
2
,.) may be non-

concave over [0;ω] since the shape

of the demand function changes at

p1 = υ, however it is concave over

[0;υ] and over [υ;ω].
p2

p2

p1

D1 = k1

D2 = k2

α β

ω

θ

υ

γ

Figure 13

Thus, Π1(F2,.) as the average of the two previous profit functions, is concave over [0;υ] and

over [υ;ω] and has a unique maximum on each interval. We conclude that the best reply of firm 1

over [0;ω] possesses at most two atoms p p
1 1 and .

We will now repeat this argument. Observe that β is such that D2(p1,.) is non-increasing over

[0;β] for any price p1 larger than ω, thus the average of the profit function Π2 conditional on

p p p1 1 1≠  and  is concave. The existence of those two atoms means that Π2(F1,.) has at most 3

maximisers on [0;β] so that F2 possesses at most 3 atoms over [0;β]. Proceeding in the same way,

we see that F1 has at most 4 atoms over [0;θ], that F2 has at most 5 atoms over [0;γ]. This process

eventually10 reaches the limits ρ(k1) and ρ(k2). Hence, we have proven that a mixed strategy

equilibrium involves a finite number of atoms for each firm.

To prove the second part of the lemma, we use the table of points formed by the distributions

pm
1( ) ≥m 1

 and pn
2( ) ≥n 1

 (cf. figure 14) ; we speak of lines when p1 is fixed, of columns when p2 is

fixed and of the "diagonal" for the pairs p pm m

m1 2 1
,( ) ≥

.

We claim that the pair p p
1 2
,( )  of minimal atoms lie in the band (cf. point α on figure 14).

Indeed, if p p k
1 2 11 2≤ − + , the whole line p pm

m1 2 1
,( ) ≥

 lies under the band and we get D1(F2,.) = k1,

thus Π1(F2,.) is locally increasing which means that p
1
 cannot be part of an equilibrium. Likewise,

if p p k
1 2 21 2≥ + − , the column p pm

m1 2 1
,( ) ≥

 would lie in the area where D2 = k2 and Π2(F1,.)

would be locally increasing at p
2
.

10 Indeed, we are in the domain where k1 + k2 > 1 which means that the band is non void.
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α

β χ

ω

δ ε

p2

p2

p1

D1 = k1

D2 = k2

p2

p1

p1

q2

Figure 14

The same reasoning enables to show that any line and any column has a point in the band.

Whatever the position of the atoms above α in the α−β column, Π2(F1,.) is concave up to

q p k2 1 11 2≡ + − . Knowing that this function has a unique maximiser over [0;q2] and that it is

precisely p
2
, the second atom of F2, p2, must be larger than q2 so that ω = p p

1 2,( )  is under the

band. Likewise β = p p1 2
,( )  is above the band, however, p p1 2,( )  could be either χ, δ or ε. If it were

χ, then the ω−χ column would have no point in the band and Π2(F1,.) would be locally increasing at

p2. Likewise, if it were ε, the β−ε line would have no point in the band. Repetition of this argument

shows that for every integer m, p pm m
1 2,( )  lies in the band. As a corollary, there must be the same

number of atoms in each distribution. ♦

Lemma 5

The nature of the equilibria with n atoms in the pricing game.

Proof  Consider the distributions pm m
1 1,μ( ) ≤m n

 and pm m
2 2,μ( ) ≤m n

 of an equilibrium with n atoms on

each side. By the preceding lemma,  Π1 2 1 1 2 2 2
1 2

1 21
1

2
( , ) ( )F p p k

p p
kj j m

m j

j
j j

m

m j

= − +
− +

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥< >

∑ ∑μ μ μ  and

the FOC of local optimality is
∂

∂
μ μ μ

Π1 2 1

1
2 2 2 1 2 1 20 2 1 1 2 2 0

( , )
( ) ( )

F p

p
k p p k

j

j
m

m j

j j j m

m j

= ⇔ − + − + + =
< >

∑ ∑ . Remark that at the

optimum, Π1 2 1( , )F pj =  
μ2 1

2

2

i ip( )
. The same first order condition for firm 2 at her jth atom leads to

the following system with the constants M1 and M2 adequately defined :
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μ μ μ

μ μ μ

μ
μ

2 2 1 2 2 1

1 1 2 1 1 2

1

2

2 0

2 0

2
j j j j j

j j j j j

j

j

p p M

p p M

− + + =

− + + =

⎧
⎨
⎪

⎩⎪

multiply by

multiply by  

⇔
2 4 2 2 0

2 0

1 2 1 2 1 1 2 2 1 1

2 1 1 2 2 2 1 1 2 2

μ μ μ μ μ μ μ

μ μ μ μ μ μ μ

j j j j j j j j j

j j j j j j j j j

p p M

p p M

− + + =

− + + =

⎧
⎨
⎪

⎩⎪

⇒ 3 2 31 2 1 1 2 2 1 2 1μ μ μ μ μ μj j j j j j jM M p+ + =

 ⇒ p
M Mj

j j1
1

2

2

1

1
2

3 3
= + +

μ μ

⇒ p

k k k k
j

m

m j

m

m j
j

m

m j

m

m j
j1

2 2 1 2

2

1 1 2 1

1

1
4

3

1
2

3

1

= +
− +

+
− +

< > < >
∑ ∑ ∑ ∑( ) ( )μ μ

μ

μ μ

μ

We also have the n corresponding equations for the prices charged by firm 2. Having

eliminated the prices, the number of unknowns is reduced from 4n to 2n. Since μ μ1 11n i

i n

= −
<
∑  and

μ μ2 21n i

i n

= −
<
∑ , we can use the vectors of 2n − 2 unknowns u

i

j
i n
j n

≡
⎛

⎝⎜
⎞

⎠⎟ <
<

μ
μ

1

2

 and the 2n − 2 equations

system is obtained by equating profit for each firm at each of the atoms she plays in equilibrium i.e.

0 = X u
p p

p p

n n i i

n n j j
i n
j n

( )
( ) ( )

( ) ( )
≡

−
−

⎛

⎝⎜
⎞

⎠⎟ <
<

μ μ
μ μ

2 1
2

2 1
2

1 2
2

1 2
2 .  The equality between the number of unknowns and the

number of equations tells us that there is a finite number of solutions. Except for the 2-atoms case

(cf. lemma 4), we have not been able to check unicity, thus the following algorithm is only an

equilibrium selection, not the equilibrium correspondence.

It must be noted that all equations are fractional and can thus be reduced to polynomial

equations with a maximum exponent of 7 (independently of n). Furthermore, if we count k1 and k2

as variables, each equation contains 60 monomials for n = 2, 247 for n = 3, 686 for n = 4 and 1533

for n = 5. It must be noted that even for n = 2, the Mathematica software is not able to solve this

polynomial system. We have therefore programmed an algorithm for this purpose. Since pn
1  is

proportional to 
1

2μn , profit μ2 1
2n np( )  decreases with μ2

n , thus by choosing μ1
n  and μ2

n  nearby 1 i.e. u

near 0, we obtain X(u) << 0. The first order Taylor expansion of the differentiable function X is

X(u+du) = X(u) + dX.du where dX is the jacobian of X evaluated at u. We approach a solution by

following the path of optimal growth i.e., we choose du = - δ.(dX)-1.X(u) where δ is chosen to

enable a rapid but certain convergence of the numerical computation. ♦
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Lemma 6

A more thorough analysis of the two atoms price equilibrium

Proof  For a two atoms equilibrium with prices p p
i i,( ) and probability distribution ( , )μ μi i1 − , the

system of the previous lemma is 3 3 4
1

2
1

p k k
i

j

j
j

i

i
i= +

−
+

−μ
μ

μ
μ

 (E3)

and 3 3 4
1

1
2

1

1
p

k k
i

j i

j

i j

i
= +

−
−

+
−

−
μ

μ
μ

μ
( ) ( )

(E4)

Letting β
μ

μi
i

i
≡

−1
, (E3) reads 3 3 4 2p k k

i j j i i= + +β β  and defines a function

G k ki j i j( , , , )β β  and while (E4) becomes 3
1 1

1 1p G k ki
i j

j i= − −
⎛

⎝⎜
⎞

⎠⎟β β
, , , . The necessary equality of

the profits Πi j i

j iF p
p

( , )
( )

=
μ 2

2
 and Πi j i

j iF p
p

( , )
( )( )

=
−1

2

2μ
 simplifies to

p p
i i j= β

⇔ 3 4 2 3 4
1

2
1

+ + = +
−

+
−⎛

⎝⎜
⎞

⎠⎟
β β β

β βj j i i j
i

j

j

i
k k

k k

⇔ 2 3 4 3 4
1

2 1 02k k
k

ki i j j j
i

j
i j jβ β β

β
β β[ ] + + − −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − =( )

⇔ A B Ci iβ β[ ] + [ ] + =2 0

⇒ β βi j i j
B B AC

A
f k k=

− + −
≡

2 4

2
( , , ) , C < 0 ⇒ only one positive solution

By symmetry for firm j, we get β j = f(βi,kj,ki). It is now clear that an equilibrium of the

pricing game is a fixed point of f f k k k ki j j i(., , ), ,( ) . Since p p
i i <   and profits are equal, it must be

true that μi > 1/2, thus βj < 1 and symmetrically βi < 1. Those supplementary conditions are helpful

to analyse the large capacity case. Observe that, independently of the capacities, if βj tends to 0, the

second degree equation tends to 2 4
1

02k
k

i i
i

j
iβ

β
β[ ] −

− [ ] = . Its positive solution diverges and by

symmetry, we obtain f k ki j i
i

( , , )β
β →

⎯ →⎯⎯ +∞
0

.  Now, since βj is bounded,

C k j j k j
= − − ⎯ →⎯⎯

→
4 1 0

1
( ) β  ⇒ =β βi j i jf k k( , , ) =

− + −
⎯ →⎯⎯

→

B B AC

A k j

2

1

4

2
0. Plugging this

in the preceding result, we see that βj = f(βi,kj,ki) diverges, a contradiction with the constraint βj < 1.

We can therefore undertake numerical computations without worrying about the behaviour at

the corner (1,1). As f is analytically known, we have been able to compute the roots of

f f k k k ki j j i(., , ), ,( )  for a lattice of capacities such that ki + kj > 1 ; it appears that this function is
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always decreasing, thus there is at most one equilibrium. Moreover, the conditions provided by

lemma 4 enable us to eliminate couples with high capacity differential ; figure 15 plots the lower

contour curve  of the capacities area where the equilibrium exists.

Figure 15

Our computations show that the upper prices p and pi j   increase with capacities so that the

condition p k S ki j j≤ = − +ρ( ) 1  is violated for large capacities i.e., the point p pi j,( )  leaves the

"band" as described in lemma 2. Consequently, atomic equilibrium will never exist for capacities

around 1. ♦
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