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Abstract
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1. Introduction

In the field of Operations Research (OR) we often encounter red problems in which
the Decison Maker (DM) wishes to optimize severa objectives a the same time and,
moreover does not know the vaues of some parameters a the moment he or she has to make
the decison. When these unknown parameters can be consdered as random variables, the

resulting problem is denominated in OR Stochastic Multiobjective Programming Problem.

The achievement of efficient solutions in multiobjective programmnig problemsin which
some parameters are random variables has hitherto been andysed from different points of
view. This question is not easy to approach, because the fact that the objectives of the
problem depend on random variables makes these objectives random variables aso. Given
that, in generd, arandom variable does not admit an order relaion, a solution may be efficient
in the Pareto sense of a multiobjective sochastic problem for obtaining a specific vaue for the

random variables which intervene in the problem and not for others.

Therefore, in order to obtain the efficient solutions for these problems we need to
define previoudy the specific concepts of efficient solution that will be used. In generd, the
studies gpproach the resolution of such problems with techniques from stochastic programming
and multiobjective programming. Thus, Stancu-Minasian (1984) points out that the resolution
of such problems dways involves a double transformation: transforming the multiobjective
problem into a problem with only one objective function and the stochastic problem into its
equivaent deterministic problem. The same seps are dso consdered by Ben Abddaziz
(1992) who aso classifies the exiging techniques available for the resolution of these problems
according to the order in which the transformations are carried out. In this classfication, Ben
Abddaziz uses the term multiobj ective approach to refer to the set of techniques that solve
the problem by conddering firg the transformation of the stochastic multiobjective problem
into its equivaent multiobjective deterministic problem; and the term stochastic approach to
refer to those techniques that transform the stochastic multiobjective problem into a stochastic
problem with only one objective function to be solved later with any of the existing techniques



in the literature. The transformations which are carried out in both gpproaches gppear in

figures 1 and 2.
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FIGURE 1. STEPS FOR OBTAINING EFFICIENT SOLUTIONSIN THE MULTIOBJECTIVE

APPROACH.
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FIGURE 2. STEPS FOR OBTAINING EFFICIENT SOLUTIONSIN THE STOCHASTIC
APPROACH.

Ben Abdeaziz dso points out that both approaches present shortcomings because
they emphasse ather the multiobjective or the stochastic nature of the problem to the
detriment of the other, and so the stochastic and multiobjective nature of the problem are not

smultaneoudy congdered.

In this paper, we focus on obtaining efficient solutions for problems with continuous
random variables influencing only the objective functions. Thet is, we consder that the feasible
st of the problem is deterministic or that it has been trandformed into its equivaent
determinigtic, requiring that the condraints hold with, at lest, a given probability (this question is
largely andysed in different works such us Kall and Wallace (1994), Prékopa (1997) or Lin
and lwamura (1997)). Moreover, we focus on problems in which the random variables
gopearing in the problem are continuous. The andyss of the efficdency in multiobjective
stochastic programming when the random variables are discrete has been sudied in different
papers among which we can highlight Ben Abddaziz (1992) and Ben Abddaziz, Lang and
Nadeau (1997, 1999).

For these problems we have to point out thet, so far, different concept of efficient
solution has been defined. These definitions fit within what Ben Abddaziz (1992) cdls the
multiobjective approach and are determined by sdecting a criterion that will be used to
trandform each stochadtic objective into its equivalent deterministic. Then, an equivaent
determinigtic multiobjective problem is formulated, which has a corresponding set of efficient
solutions, which, in turn, is congdered the efficient set of the initid problem. In this way, we
find in the literature the concepts of expected vadue efficent solution, minimum variance
efficient solution, or expected value standard deviation efficient solution (see, for example,
White (1982)). Other concepts defined in this way are those of minimum risk efficiency with

agpirdtion levels u,, ...,u, defined by Stancu-Minasan and Tigan (1984) or those of

q

efficiency in probability of Goicoechea, Hansen and Duckstein (1982).

Taking these concepts into account, and the criticism regarding these approaches, we
may ask: if, in the stochastic approach, we use any of the available multiobjective programming



techniques to obtain efficient solutions for the stochastic multiobjective problem and the
resulting stochadtic problem is later solved by some of the following criteria— expected vaue,
minimum variance, minimum risk, or Kataokas criterion — would the optima solution for the
resulting problem be in any way related to the concepts of efficiency outlined by the
multiobjective approach?

In this work, we ded with this issue. In the stochastic approach we consder the
aoplication of the weighting method to the initid problem, because this is one of the more
widdy used generating techniques in deterministic multiobjective programming. We have
organised our study according to the kind of stochaegtic criterion gpplied to obtain the
equivaent deterministic problem. For each criterion, we compare the optima solutions for the
weighted problem, corresponding to the stochagtic approach, to the efficient solutions
obtained with the multiobjective gpproach. First, we will look into some of the results of

multiobjective programming that will be dedt with in our work.

2. Formulation of the Problem and Efficient Solution Concepts

Let us consder the following stochastic multiobjective problem:

"Min" Z(x,€) = (Z.(x,©),Z,(%,€),, Z, (X, C)) (SMP)

In this problem the objective functions of the problem depend on a vector of
continuous random parameters, ¢, defined over aset E1 R . Let us assume a family of
events F, i.e,, subsets of E, and the probability distribution P defined on F, o that for any
subsetof E, AT E, AT F, the probability of A, P(A), is known. Also, we maintain the
hypothess that the probability distribution, P, is independent from the decision varigbles of the

problem, X,...,x. . We aso assume that the feasible set of the problem, D1 R, is convex

and, moreover, is determinigtic or has been transformed into its equivdent deterministic using

the chance congtrained method.

As has been previoudy pointed out, obtaining efficient solutions for this problem has
been hitherto considered from two gpproaches. the multiobjective gpproach and the stochastic
approach, that we subsequently andyse.



2.1. Multiobjective Approach

In this gpproach, the stochagtic objectives are trandformed into their equivadents
determinigtic in accordance with any of the criteria of stochastic programming, obtaining an
equivaent deterministic multiobjective problem which has a sat of efficient solutions which are
consdered efficient for the origind problem. We can define, from this ideg, the following
concept of efficient solution for problem (SMIP):

Definition 1. Expected value efficient solution (White (1982))
xI D is an expected vaue efficient solution to the problem (SMP) if it is Pareto efficient to the

problem:
Min (Z,(x), Z, (). Z,(x)) B
where Z, (x) isthe expected value of the random variable Z (x,¢), k1 {1,2, ..., q}.

That is, given the problem (SMP), we apply the expected vaue criterion to each one
of the stochagtic objective functions of the problem and we obtain the equivaent deterministic
multiobjective problem (E).

Therefore, with this criterion each stochagtic objective is substituted by the expected
vaue of each stochastic objective which is ameasure of centrd trend.

Let us now condder the gpplication of the minimum variance criterion to transform the
stochagtic multiobjective problem into its equivaent deterministic problem. As the variance of
a random variable is defined as the expected vaue of the square of the deviation of the
random variable around its expected value, the choice of this criterion implies the choice of the
vector x for which the random varidble Z(x,€) is most concentrated around its expected
vadue. Therefore, the equivdent determinigic minimum variance can be interpreted as a

measure of quadratic error.

In the multiobjective approach, the application of this criterion gives the following

concept:



Definition 2: Minimum variance efficient solution (White (1982))

xT D is a minimum variance efficient solution to the stochastic multiobjective programming
problem (SMP) if it is a Pareto efficient solution to the problem:

Min (52(x,52(%), ..-,S§(X)) V)
where s 2(x) isthe variance of the k-th objective function, k T {1,2, ..., q}.
Let e, bethe st of efficient solutions to problem (V).

Definition 3: Expected value standard deviation efficient solution

x T D isan expected value standard deviation efficient solution to the stochastic multiobjective
programming problem (SMP) if it is a Pareto efficient solution to the problem:

Min (2.3, . Z,(x), 5,00, -..8, () (Es)

which includes the expected vaue and the standard deviation of the problem’s stochastic

objective functions.

Let e ., bethesat of expected value standard deviation efficient solutions to problem

(SMP).

Let us observe that through this concept of efficiency a measure of centra trend and a
measure of disperson of each stochagtic objective are registered. This criterion of solution of
problems of stochastic programming has been largely used in portfolio models in Finance
Economics in order to solve stochastic programming problems corresponding to economic
models.

We will now ded with the gpplication of maximum probability — the minimum risk

and Kataoka's criteria— to stochastic multiobjective programming problems.

Given the problem (SMP), we can apply the minimum risk criterion to each stochastic
objective separately. In this case, the decison maker (DM) must fix a priori an aspiration
leve, uy, for each stochastic objective function and find the vector X, in which the probability



of the k-th objective function not being greater than the aspiration levd fixed is maximum:
P(Z (x,C) £u,). The separate application of this criterion to each stochatic objective

function in the problem (SMP) lead us to the following definition of efficiency:

Definition 4: Minimum risk efficient solution for levels u,,...,u, (Stanc-Minasian and

Tigan (1984))
x 1 D is a vectorid minimum risk solution for levels U, U,,...,U, if it is a Pareto efficient

solution to the problem:
Max (P(Z.(x,2) £ u),...P(Z,(x,€) £ u,)) (MR(U))
E yg (U) denotes the set of efficient solutions to problem (MR(u)).

The second criterion of maximum probability is the Kataoka's criterion. In this case,

we fix a probability for the stochastic objective function, b, , and look for the smaler vaue u,

for which we can assart that, given the fixed probability, the stochastic objective function does
not exceed the level. From the application of this criterion to each stochastic objective function
in the problem (SMP), we can define the following concept of efficiency:

Definition 5: Efficient solution with probabilities b, b,,..., b, or b-Efficient solution
Letx T D; x isan efficient solution with probabilitiesb ,, b, ..., b, if thereexistsany uT R
such that (X', u") ' is an efficient solution to problem

I\éliun (ul,...,uq)

st P(Z(x,C)£u, )3 b, k=12 ...,q (K(b))
xT D
The set of efficient solutions with probabilities b, , b,,..., b, for the problem (SMP)

isdenotedby e, (b) 1 R".

This concept is no more than a generdisation of the concept introduced by
Goicoechea, Hansen and Duckstein (1982), who set the same probability for al the stochastic
objective functions; that is, these authors condider b, = b, forevery k1 {1, 2, ..., g}.



The two efficiency concepts of maximum probability we have just defined enable usto
obtain an efficient set for each vector of aspiration levels or probabilities. Further, the
digribution functions of the stochadtic objective functions are involved in both concepts.
Cabdlero, Cerd4, Mufioz, and Rey (2000) relate both of these concepts as we will show in
the following theorem.

Theorem 2 (Caballero, Cerda, Mufioz, and Rey (2000))

Let us assume that the distribution function of the random variable Z (X, C) is continuous and
grictly incressing. Then, X is an efficient solution to problem (MR(u)) if and only if (', u")' is
an efficient solution to problem (K (b)), with u and b such that:

P(Z(x8)£u)=h, " ki {12,...

Corallary 1 (Caballero, Cerdd, Mufioz, and Rey (2000))

Jeur@ =z ®

uRA

withB={b T R/b1 (01),k=1,2,.., q}.

From the results obtained, we can see that the union of the sets of efficient points of
both problems coincide. Moreover, if for some fixed probabilities b =(b,, b, ..., b,)", x T D
is an efficient solution to problem K(b ), we know from Theorem 2 that it is dso a minimum
risk efficient solution of levels uy, u,,...,u, and vice versa. Further, the aspiration levels and the
probabilities will have the relation established in Theorem 2. This result dlows us to perform

the andlysis of these efficient solutions by ether of the two concepts and, from Theorem 2, to
obtain the leve or the probability for which it is efficient in accordance with the other.

On the other hand, in Cabalero, Cerdd, Mufioz, Rey, and Stancu-Minasian (2001),
other relations among the five concepts of efficient solution defined in the multiobjective
approach are established. The relations stated in the two papers referred to permit these
efficient sets to be characterized and establish which efficient criterion is the most appropriate
in a specific problem, using as a sarting point the preferences of the DM. As each one of
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these criteria registers some datistical characteristics of the objectives, at firdt, the sets of the
defined efficient solutions are different and apparently not related.

2.2. Stochastic Approach

Let us condder again the problem (SMP). In order to obtain efficient solutions to this
problem it is ds0 possble to apply first any of the techniques for obtaining efficient solutions
used in multiobjective programming which leads, in generd, to solve a sochagtic programming
problem with one objective function which has to be solved next, applying any of the criteria of
solution to the stochagtic programming. As has been previoudy pointed out, this order in the
transformations has been called in the literature stochastic approach.

Among the exiding methods in deterministic multiobjective programming, one of the
most important in order to obtain efficient solutions is the weighting method. In this method, a
non-negeative weight is assgned to each one of the objective functions of the problem. Theam
is to minimise the sum of the objective functions of problem (SMP), which is weighted by the
weight assgned to it. Let m= (n},...,m])t be the weight vector, my T R *. The problem
associaed with problem (SMIP) by the weighting method is the following stochastic
programming problem:

“Mirt T(x©) = :a: mZ (%) S

In order to solveit, we can goply one of the exigting criteriain stochastic programming,
eg., expected vaue, minimum variance, minimum risk, or Kataoka s criterion. The application
of these criteria to the problem (S) would lead us to obtain four different equivaent
determinigtic problems whose optima solutions are efficient solutions to problem (SMP).
From the previous comments, it can be asked if these  efficent solutions maintain some
relationship with the efficient solutions previoudy defined in the multiobjective approach. That
is, can asolution which is efficient according to any of these gpproaches be efficient according
to other approach? And, in that case, which one of the two approachesis most appropriatein
order to obtain efficient solutions? As we will see in the next section, the answers to these

questions are complex athough under certain hypothesisit is possible to answer them.

1



Before sudying these questions, we consder it convenient to point out which
relationships exist between the efficient solutions of a deterministic multiobjective problem and
the optima solutions to the corresponding weighted problem.

Let us congder the following deterministic multiobjective problem:
Min (2,(%),r 2, (%)) (P)

and the problem associated with problem (P) by the weighting method:
. g
Min & Mz, (%) (P(m)
X2 ka

wherem=(m,...,m)" istheweight vector, m T R *.

The following theorem establishes the reaionship between the problem's solution
(P(m)) and the efficient solutions to problem (P).

Theorem 1. Sawaragi, Nakayamaand Tanino (1985).

a) Let usassumethat functions z,, ..., z, are convex, and D isa convex set. If x* isa

properly  efficient solution for the problem (P), there exids
m,...,m,m >0 for every kT {1,2...,q}, such that x* is the solution to problem

b) If x* is the solution to problem (P(m)), with m> 0, then, x* is a properly efficient

solution to problem (P).

c) If x* isthe only solution to problem (P(m)), with m3 0, then x* is an efficent
solution to problem (P). If this is not the only one, the solutions obtained for (P) are

weekly efficient.

From this theorem, if the convexity of the feasble set and the objective functions is
verified, the set of properly efficient solutions to problem (P) can be obtained by smply solving
problem (P(m)) for dl possible values of the vector m with grictly postive components. On



the other hand, if the convexity condition is not verified, some efficient solutions to the problem
(P) might not be obtained by this method. Furthermore, from point (c) of this theorem, if we
take weight vectors with some null components — which means that the objective function
associated with this component will not be taken into account when solving problem (P(m)))
— we can assart that the solution obtained is efficient only if it isthe only solution to (P(m)). In
any other case, we can only assert that the solutions obtained are weakly efficient.

3. Stochastic Approach versus M ultiobjective Approach

In order to answer the stated questions about the relationships between the efficient
solutions of a stochastic multiobjective problem we solve the weighted problem (S) by means
of the following criteria expected vaue, minimum variance, minimum risk and Kataoka. In
each case, we will compare the efficient solutions obtained using the stochastic approach with
some of the efficient solution concepts defined in section 2.1, corresponding to the
multiobjective approach.

3.1. Expected Value Criterion

Let the problem be (S) and let us consder the expected vaue criterion in order to
solveit. Then we obtain the following equivaent deterministic problem:

vin 70 = 4 mz,(x) ()

k=1

where f (x) denotes the expected value of the random variable F(x) :éq mz, (x).
k=1

Thus, if we apply the expected vaue criterion to problem (S), the resulting problem
minimises a linear combination of the expected vaue of the origind problem’s stochastic
objective functions, and the coefficients of such a linear combination are no more than the
weights assgned to the stochastic objectives in the first stage of the problem resolution. In
other words, the problem obtained is the same as solving the origind stochastic multiobjective
programming problem, transforming the problem into its equivalent deterministic problem by
aoplying the expected vaue criterion to each one of the stochastic objective functions of

13



(SMP) and then gpplying the weighting method in order to obtain the expected vaue efficient
solutions.

Therefore, based on the concept of expected value efficient solution and the results of
the deterministic multiobjective programming, given that the weights, my, k1 {1, 2, ..., q},
are not negative, for each vector, mi R, the relationship between problem (E) and problem

(SE) is the same as the relaionship between any multiobjective problem and its associated
weighted problem, which is expressed in Theorem 1.

3.2. Minimum Variance Criterion

Let us now condder the gpplication of the minimum variance criterion to the weighted
~ g
problem. Given that the random variable f (x,€) =g mZ, (x, ) isalinear function of the
k=1

random varigbles Z, (x, C), Z, (X, C),..., Z,(x, C), its variance depends on the variances of

these random variables and their covariances (see, for example, Hogg and Craig (1989), p.

177.). Thus, we have:

q q
s2() =8 Mis2(x)+2d mms (x)
k=1 k,s=1
k<s

where s, (x) denotes the covariance of the random variables Z, (x,¢) and Z.(X,C):
Sis(X) = E{(Ek (X,€)- Z.(X) )(Es (%, C) - Z,(x) )} -

~ q
Therefore, the variance of the function f (x,€) =& M Z(x,¢) depends not only

k=1

on the variances of functions Z, (x, C), Z,(X, C),..., Z,(x,C), but aso on their covariances.

Thus, if we gpply the minimum variance criterion to resolve the problem (S), we obtain the

problem:

g ., g
Min s*(x) =g nfs;(x)+2g mmns(x) (V)
k=1 k,s=1
k<s

14



We can see that the reationships between a weighted problem and the multiobjective
equivaent deterministic problem are not so direct asin the previous case. In order to establish
these relationships we differentiate between the case of the covariances of the stochastic

objective functions al being zero and the case of some of them not being zero.
If the covariances of the objective functions are zero, that is, if it fulfils the following:

s.(X) =0forevery k, sT {1,2, ..., q},withk® sandforevery x T D

then, the problem (SV), resulting from gpplying the minimum variance criterion to the weighted
problem (S), is:

Min () :élnﬁsi(x)
that is, the problem obtained is the same as the one we would have obtained by solving the
dochagtic multiobjective programming problem using the multiobjective gpproach, i.e,
goplying the minimum variance criterion to each stochadtic objective function and then, the
weighted method to the equivaent deterministic multiobjective problem. Both problems are
related as shown by Theorem 1.

The second sStuation to ded with is the case of the covariances of some stochadtic

objective functions are non-null. In this case, for each vector m1  R™, the optimal solution to

the problem (SV) does not have to be necessarily minimum variance efficient, as shown in
section 4, where a linear stochadtic bi-objective problem is formulated with stochastic
objective functions whose covariance is not zero. In this example, we see that if we apply the
minimum variance criterion to the weighted problem (S), the solution obtained is not
necessarily minimum variance efficient. The only way to ensure efficiency is if the covariances
of the objective functions are zero. As we know, the covariance of two random variables
measures the dependence between them. In this sense, we know that if two random variables
are independent, their covariance is zero. However, and generdly speaking, the opposte is
not necessarily true. In other words, the fact that the covariance is zero does not necessary

means that the random variables are independent. Therefore, the application of the minimum

15



variance criterion to the weighted problem reflects to some extent the dependency between
the stochastic objective functions.

3.3. Maximum Probability Criteria
Let us now consder gpplying the criteria of maximum probability (minimum risk and
Kataoka s) to the weighted problem:

"M T(x,8) =& mZ (x©) &)

k=1

In order to goply the minimum risk criterion to this problem, we mugt fix a vaue u

(espiration level of the problem’s objective function) and maximise the probability of the
~ g

random variable f(x,€) =& MZ(x,€) not exceeding such a vaue The equivaent
k=1

determinigtic problem generated is.

|
Max Pj
D

x|

mz, (x,E)Eug

Qoo

A

=~
1

1
~ g

Giventhat f(x,€) =& mZ,(x,€) isafunction of the q objective functions for the
k=1

problem, the choice made for vaue u in the previous problem is not a trivia issue. Note that

~ q
this levd must be fixed for the random variable f (x,¢C) =é m Z,(x,C), where this

k=1
vaiable is not an objective of the initid stochastic multiobjective programming problem, but
has been constructed from it in order to resolve it. Therefore, value u, which in stochagtic
programming is the aspiration level fixed by the DM for the stochastic objective, no longer has
this meaning. This could lead to think that the minimum risk criterion is not gpplicable to the
weighted problem. However, we can decide to determine the value u from an aspiration level
for each objective. In such a case, the DM has to determine an aspiration leve, u,, for each
objective function, and level u is cdculated as the addition of the leves fixed by the DM,

weighting each level with the weight assgned to the corresponding objective. That is
d

u=a mu, =mu. Inthisway, levd uis s to be afunction of the aspiration levels fixed
k=1

by the DM for each objective function, but weighted according to the significance given to

16



each of them by the weight assigned to each objective. The equivaent deterministic problem is

asfollows

J

Max Pga mZz(x,c) £ a mu,

k=1

(SMR(W))

Ql-I-O:

On the other hand, if we gpply Kataoka's criterion to the weighted problem (S), the
equivaent determinigtic problem generated is as follows:

Min u

X,u

st Pga mZz,(x,C) £ u;z (SK(b))

x1 D
where b is the probability fixed for the problem. The resolution of this problem determines the
lowest u leve the objective function of the weighted problem with probability b can reach.
Once again, the question arises whether it is advisable or not to gpply this criterion to solve the
initid stochastic multiobjective programming problem, because applying this criterion on the
weighted problem (S) involves the need to fix a probability for the random variable

-~ 4]
f(x,€) =& mMZ(x,€), and this function is constructed from the stochastic objectives of
k=1

the initid problem, which, in generd, have different characterisics This fact could cdl into
question the suitability of goplying this criterion. Asin the minimum risk criterion, in order to fix
the probability b T (0,1) for the problem (SK (b)), we can consider the possibility of asking
the DM to fix a probability for each one of the stochastic objectives, b, T (0,1), and,
assuming thet the weight vector m has a norm equd to one (in any other case, the weights
would have to be normalised), we fix the probability b for problem (SK(b)) as.
b=4 mb,
k=1

Now that we have established a possble way to fix the aspiration levels and the
probabilities in the two criteria of the maximum probability, in order to dtate the possble
relationships between the efficient sets which are obtained in the two approaches, we consider

17



it convenient to indicate that the obtained equivdent deterministic problems (SMR(u)) and
(SK(b)) are, under certain conditions, reciprocal. Note that from Theorem 2, by smply
meaking k = 1 and taking optima solutions instead of efficient solutions, we can affirm that if the

-~ ¢}
distribution function for the random varisble f (x,€) =g mZ(x,€) is continuous and
k=1
grictly increasing, it is verified that:

If x* isthe solution to problem (SMR(u)) for an aspiration leve u, then (x*', u)' is

the solLtion to problem (SK (b)) for aprobability level of b = P{T (x*,€) £} .

If (x*', u*)" is the solution to problem (SK (b)) for a probability b, then x* is a
solution to problem (SMR(u)) for an aspirdtion leved u such that
b=P{f(x*,) £u}.

The reciprocity between both criteria of maximum probability alows usto carry out a
study of the relationships between the problems corresponding to the two different approaches
by consdering only one of the criteria (either the minimum risk or Kataoka's criteria), and to
assrt that the same relationships will be verified for the other. From now on, the analysis of
the relationships between efficient solutions in the multiobjective and the stochastic gpproaches
by the criteria of maximum probability will be made exdusively for efficiency in probability.

On the other hand, it has to be pointed out that in the two maximum probakility criteria
the disribution function of the random variables Z(x,C),..,Z(x,c) and
~ g
f(x,€) =& mZ(x ¢) aeinvolved. Determining these distribution functions is not an easy

k=1
issue, because they depend not only on the probability distribution of ¢, but aso on the
vector of the decison variables of the problem, x. Thisleads to the need to establish additiona
hypotheses regarding the sructure of the problem and the distribution of its random
parameters. We will focus on linear objective functions under the smple randomness
hypothesis, and the hypothesis of vector normality of random parameters, C. Next, we
andyse both cases to verify that there is reciprocity between both criteria of maximum

probability in both instances.
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3.3.1. TheLinear Smple Randomization Case
Let us assumethat for every k1 {1, 2, ..., q} the objective function Z, (x, ) is linear:

Z (x,€) =¢'x, and that al stochadtic objective functions depend on the same random
vaiable, T, so that € =ci +tc’. Let us adso assume that the random varigble t is
continuous, its expected vaue T, and finite variance u?, and its distribution function, F,, is

srictly incressing. We findly assume that for every x T D, and for every k1 {1, 2, ..., },

cXx>0.

If these hypotheses are verified, the set of efficient solutions with probabilities
b,,...,b, for the initid stochastic multiobjective problem is the same as the following

multiobjective problem:

Min (ci‘x + R H(b)C X, G X+ R bq)cétx)

If the probability fixed for each of the objectives is the same and equa to the
probability fixed for the weighted problem, b, =..=b, = b, then the st of eficient

solutions with probability b for the stochastic multiobjective programming problem is the same

asfor the following problem:

Min (cx + F 2 (b)c?x,...,cix + F (b)) 1)

On the other hand, with the stochastic approach we have:

& Jd
_— o g, g gimamaxT
P(f(x,c)£u):Pg meix+TQ mex£ui= Igg";;:b
k=1 k=1 9 g amcitx -
€ k=1 2

which implies that:
4 4
u=a mei'x+F*(b)a mei'x
k=1 k=1

S0, the problem resulting from gpplying Kataoka's criterion to the weighted problem with

probability b is:
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Min & mcix+ F (D)4 meix @

Once the problems for the two criteria are outlined, we can move on and andyse the
relationship exising between the optima solution for problem (2) and the set of efficient
solutions with probabilities b, ,..., b

q°

From this point onwards, if we compare problems (1) and (2), we note that if we
aoply the weighting method to obtain efficient solutions for problem (1), we obtain problem
(2. In other words, in this case, if we weight the stochastic multiobjective programming
problem and apply Kataoka's criterion to it for a probability b, the problem to be solved is
the same as if we apply Kataoka's criterion to each objective separately — fixing the same
probability for al the stochadtic objectives — and gpply the weighting method to obtain the
efficient solutions for this problem. Therefore, the relationships between these two problems
are the same as for any linear multiobjective problem and its associated weighted problem, as

described in Theorem 1.

Furthermore, given the reciprocity between the two maximum probability criteria,
these relationships are dso verified for problem (SMR(u)), resulting from applying the
minimum risk criterion to the weighted problem, and for the sat of minimum risk aspiration
levels u,...,u, for the stochastic multiobjective progranming problem. Let us explore what

happens in the case of normal didribution.

3.3.2. Linear Objectiveswith Normal Distribution

Let us assumethat for every k1 {1, 2, ..., q} the objective function Z, (x,¢) is linear:

Z,(x,C) =¢Xx.

t t
=—[|R®t &®t =t —[x & = =
Let C—(Cl,Cz,...,Cq) —(cll,c:lz,...,cln,cﬂ,czz,...,CZH,...,cql,cqz,...,cqn . Let us

dso assume that € is a random vector multinormd with expected vdue

— —t — —t \t —  — - - — — P — — . ..
c:(ci,c;,...,c;) :(<:ll,c12,...,cln,c21,c22,...,02n,...,cql,cqz,...,cqn)t and variance and postive

definite covariance matrix V:



Eé‘/l Vi, Vi qu 9
QV21 V, Vs qu -
g —
v = e N
kal Vk2 Vks qu :
qul qu Vqs Vq 5

Let usassumeasotha Ol D.

If these hypotheses ae verified, the probability of the random varigble

~ d
f(x,€) =A@ mMT, x being lessor equd tou is
k=1

e 0

g o0 ¢ u- 8 mex
Pia mtx£uy=F¢ ==b

| k=1 g C d . d . -

¢ a nx'v.x+2a mmx'V, x .

k=1 k,s=1 )

e k<s (%]

where F isthe digribution function of the sandard normd digtribution. Then:

mtix+F *(b)

1

u=

d 3 3
a nix'Vx+2a mmx'V, x
K k=1 ks=1

k<s

and, the solution to the weighted problem (S), using Kataoka's criterion, is given by the

solution to the problem:
Q 9 0
Min g mcx+F*(b) g mix'V,x+2g mmx'V,x €)
X k=1 k=1 k,s=1
k<s

Given that the normd digtribution function is drictly increasng and continuous, there
dill is reciprocity between the optimd solutions for the problem obtained by applying the
minimum risk criterion to the weighted problem, and for problem (3) obtained by gpplying

Kataoka s criterion.

Note that problem (3) can aso be expressed as.
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Min & mz, (4 +as (9 @

k,s=1
k<s

g g
with Z, (X) =T X, s(X) :\/é mix'V, x+2 mmx'V, x anda =F X(b).
k=1

Once problem (4) has been expressed, we consider again the possble existence of a
relaionship between its optima solutions and some of the concepts of efficient solution for
gochagtic multiobjective programming problems. We will rdae the optima solution for
problem (4) to the expected vaue sandard deviation efficient solution. The following
proposition relates the optima solution for problem (4), obtained by resolving the weighted

problem using Kataoka s criterion, withtheset e . .

Proposition 1

Let us congder problems (4) and (Es). Let usassumethat ml R 9", a > 0 and thét it is
veifiedthat s, (x) =0 forevery k,sT {1, 2, .., q},with k* s and for every x 1 D.

Then, if x* isthe optima solution for (4), it is aso the efficient solution for (ES).

Demonstration

The demondtration is done by reductio ad absurdum.

Let x* T D bethe optima solution for (4) and let us assume that it is not the efficient solution

for (Es). In this case, thereisasolution x' that dominates x, and so, for every k1 {1, 2, ...,

a}:

Z(X) £Z,(x) ad s,(X) £S,(x)
andthereisat lesst asl {1, 2, ..., q} for which the inequality is strict, thet is:
Z,(X) < Z(x*) or s4(X) <s(X*)
Given tha mi R °", forevery k1 {1,2, ..., q} itisverified that:

Mz (X') £ Mz (x*) Q)



ms (X') £ ms , (x*) (6)
andthereisa lesstad {1, 2, ..., g} for which:
MZ,(X') <mMZ,(x*) or nE,(Xx')<ny(x*)

Given that the variance is dways non-negative, if we raise both Sdes of the inequdity

(6) to the power of 2, we obtain:
s (x') £ mis ¢(x*) ()

Adding up (5) and (7) in k we obtain:

& mz() £ & 2, () ®
& nisz(x) £ & nis?(x) ©

1 k=1

=
1l

From (9) we deduce that:

a |4 nisi(0¢) £a,§ nisi0c) 10)

and that one of theinequdities, either (8) or (10) isgtrict.
From the above expressions we obtain:

Mz ¢) +ay & mis? (¢) < & 0 +a[§ s 0e)
1 k=1 1 k=1

and thisis contrary to x* being the optima solution for (4).1

Qoo

=

7 Qoo
n 9303

Therefore, this proposition asserts that if the covariances of the stochastic objective
functions of the problem are zero, the optima solution obtained by applying Kataokas
criterion on the weighted problem, with strictly positive weights, is an expected vaue sandard
deviation efficent solution for the stochagtic multiobjective problem, if the vaue of the
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parameter a is drictly podtive. Given that a =F "*(b), if the fixed probability b is greater
than 0.5, then a > 0. In any other case, the optima solution to problem (4) does not have to

be the expected vaue standard deviation as shown in the example below.

Findly, given thet in this case there is aso reciprocity between the optima solution for
the problem (4) and for the problem obtained by gpplying the minimum risk criterion to the
weighted problem, the results obtained for Kataoka's criterion can be extrgpolated to the

minimum risk criterion.

4. Example

Let us congder the following stochastic bi-objective programming problem:

" Mxin" (Euxl +612X2’621X1 +62X2)
st x +2x,34

X, % £3

X, %30

with ¢ =(¢,,,C,,,C,,C,,)' being a random vector multinorma with expected vaue

€=(05112.5)" and with positive definite covariance matrix :

@25 0 0 3
0 25 3 0O
0 3 1 0:
és 0 0 9

In order to illustrate some of the results obtained in this work, we are going to solve
this problem using some of the criteria previoudy considered. Before carrying on, it should be
noted that given that the feasible set for this problem is a non-empty, closed and bounded set
(see Fgure 1) and, given that the objective functions for the equivaent deterministic problems
we will obtain are continuous in this feasble set, we can assert the existence of either optima

or efficient solutions (depending on the case) for them.

We now apply the minimum variance, expected vaue sandard deviation, and

Kataokd s criteria
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a) Minimum variance criterion: From the data of the problem, the set of minimum variance

efficient solutionsis the same as for problem:

Min (25x2 +25x2, X2 +9x2)

stx +2x,3% 4 (11)
X, X, £3
X, %30

which includes the variances of the stochastic objectives. This st is the segment that joins
point A, with coordinates (0.8, 1.6), to point B, with coordinates (2.769231, 0.6153846), in
Figure 1.

Figurel

On the other hand, if we solve the previous problem by using the stochastic gpproach,
weighting the stochestic objectives with weights mand m and then gpplying the minimum

variance criterion, we obtain the problem:

Min (25 +25x;) + (X +9x;) + 2mn(6x,x,)

st X, +2X,3 4 (12)
X, % £3
X, %30
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If the following weights m3 = 0.3, m =0.7 are used in this problem, we obtain the
solution x* = (1.316375, 1.341812)", which is a minimum variance solution, but, if we fix the
weights m =0.75, m = 0.35, the solution we obtain is x* = (0.7302074, 1.634896)', which

IS aminimum variance dominated solution.

This example shows that if the covariances of the stochastic objectives are not zero,
the minimum variance solutions to the weghted problem do not have to be minimum variance

efficient, as pointed out in section 3.

b) Kataoka's criterion and expected value standard deviation efficiency.
Let us now consder solving the weighted problem by aoply Kataoka's criterion. The
resulting problem, for a probability b is

Min m(05x, +x,)+m,(x, +25x,)+F (b )ynf(25x¢ +25x7) + mg (¢ +9xZ) + 12mmyx,x,
s.t X +2% 3 4 (12)

X, % £3
X, %, 3 0

As we have seen in section 3, if the covariance of the stochastic objective functions is
zero and the probability fixed is greater than 0.5, for each vector of weights m>0 the optimal
solution for problem (12) is expected vaue standard deviation efficient; but if elther of these
two hypothesesis not verified, the previous Statement is not necessarily true, as we show next.

First, we will relax the first hypothesis and then the second one.

To begin with, it has to be noted that the set of expected vaue standard deviation
efficient solutions for the initia problem is the segment that joins points A and x° in Figure 1.

Let us condder problem (12) for a probability b = 0.95. If the weight vector isfixed at
m= (0.2, 0.8)" we obtain the solution x® = (2.255366, 0.8723169), which belongs to the
expected value sandard deviation efficient set. However, for the weight vector m= (0.7, 0.3),
the solution to the weighted problem is x* = (0.7559553, 1.622022). As shown in the graph,
this solution does not belong to the expected vaue standard deviation efficient .
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On the other hand, let us assume that the covariance of the stochastic objective

functions is zero and that they have a normd digtribution; thet is, we assume that the vector

=(C,;,C,,6,,C,,)" IS a random vector multinorma  with expected vaue

ol

€©=(0.511,2.5)" and postive definite covariance matrix, V:

a5 0 0 05
§0 25 0 o0:
S0 0 1 07
€0 0 0 95

The st of expected vaue sandard deviation efficient solutions for this problem is the
same as for the previous one, but the problem obtained from applying Kataokas criterion to

the weghted problem for a probability b isnow:

Min m(0.5x, +x,) + m(x, +2.5x%, )+ F "(b)y/ni(25x2 + 25x2 )+ nj(x2 +9x¢)
st X, +2x%,3% 4

X, % £3

X, %30

As previoudy shown, for any weight vector, the solutions for this problem are
expected value standard deviation efficient solutions, if the probability fixed is greater than 0.5,
but this does not necessarily have to be the case if the probability fixed is less than 0.5. Thus,
for aweight vector m= (0.8, 0.2)', if the probability fixed is b = 0.4, the solution obtained is
x> = (3, 0.5); but if the probability fixed is b = 0.2, the solution obtained is x® = (3, 3), which
is not expected value standard deviation efficient solution, as shown in Figure 1.

5. Conclusions

In this paper, it is shown that the achievement of efficient solutions in problems of
sochadgtic multiobjective programming is carried out by combining the techniques of both
gochadtic programming and multiobjective programming, in a double trandformation of the
problem. The question we study isif the order in which the transformations are carried out has
an influence in the set of efficient solutions, which are obtained. Thus, we pretend to determine
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which gpproach is most gppropriate for the achievement of efficient solutions of stochastic
multiobjective programming problems.

Our study shows that, when among the stochastic objectives there exists a stochastic
dependence, the order of transformations can lead to an efficient solution by following a

certain order which is a non-efficient solution according to the inverse order.

From this work, we can conclude that the achievement of efficient solutions of
gtochastic multiobjective programming problems using the stochagtic approach, by usng the
weighted method, is closdly linked to problem resolution using the multiobjective agpproach.

Specificdly, the results obtained with the minimum variance criterion and the maximum
probability criteria establish that, in order to have a relaionship between the optima solutions
for the weighted problem obtained with these criteria, and some of the concepts of efficient
solutions defined in the multiobjective approach, it is necessary for the covariances of the

objectives to be equal to zero in some cases.

This suggests to some extent that the multiobjective approach "forgets' the possble
exisgence of stochastic dependencies between objectives. Note that the main criticism of the
goplication of the multiobjective approach is that, when obtaining the equivdent deterministic
problem, atransformation criterion is gpplied to each objective function separately. This means
that in the resolution of the stochastic multiobjective programming problem, the possible
stochastic dependency between the objectives is not taken into account.

The stochastic gpproach takes into account the dependency between them, even if

only partidly, intermsof covariance.

In this sense, given that in red dtuations it can be frequent that there exist stochastic
dependences among objectives, we can assert that when these dependences exist, the
gtochastic gpproach is more appropriate for the achievement of efficient solutions than the
multiobjective gpproach because it reflects to a certain extent the stochastic and multiobjective
nature of the redl problem.
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