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problem with only one objective function. Our aim is to determine whether the order in which
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1. Introduction

In the field of Operations Research (OR) we often encounter real problems in which

the Decision Maker (DM) wishes to optimize several objectives at the same time and,

moreover does not know the values of some parameters at the moment he or she has to make

the decision. When these unknown parameters can be considered as random variables, the

resulting problem is denominated in OR Stochastic Multiobjective Programming Problem.

The achievement of efficient solutions in multiobjective programmnig problems in which

some parameters are random variables has hitherto been analysed from different points of

view. This question is not easy to approach, because the fact that the objectives of the

problem depend on random variables makes these objectives random variables also. Given

that, in general, a random variable does not admit an order relation, a solution may be efficient

in the Pareto sense of a multiobjective stochastic problem for obtaining a specific value for the

random variables which intervene in the problem and not for others.

Therefore, in order to obtain the efficient solutions for these problems we need to

define previously the specific concepts of efficient solution that will be used. In general, the

studies approach the resolution of such problems with techniques from stochastic programming

and multiobjective programming. Thus, Stancu-Minasian (1984) points out that the resolution

of such problems always involves a double transformation: transforming the multiobjective

problem into a problem with only one objective function and the stochastic problem into its

equivalent deterministic problem. The same steps are also considered by Ben Abdelaziz

(1992) who also classifies the existing techniques available for the resolution of these problems

according to the order in which the transformations are carried out. In this classification, Ben

Abdelaziz uses the term multiobjective approach to refer to the set of techniques that solve

the problem by considering first the transformation of the stochastic multiobjective problem

into its equivalent multiobjective deterministic problem; and the term stochastic approach to

refer to those techniques that transform the stochastic multiobjective problem into a stochastic

problem with only one objective function to be solved later with any of the existing techniques
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in the literature.  The transformations which are carried out in both approaches appear in

figures 1 and 2.
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FIGURE 1. STEPS FOR OBTAINING EFFICIENT SOLUTIONS IN THE MULTIOBJECTIVE

APPROACH.
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FIGURE 2. STEPS FOR OBTAINING EFFICIENT SOLUTIONS IN THE STOCHASTIC

APPROACH.

Ben Abdelaziz also points out that both approaches present shortcomings because

they emphasise either the multiobjective or the stochastic nature of the problem to the

detriment of the other, and so the stochastic and multiobjective nature of the problem are not

simultaneously considered.

In this paper, we focus on obtaining efficient solutions for problems with continuous

random variables influencing only the objective functions. That is, we consider that the feasible

set of the problem is deterministic or that it has been transformed into its equivalent

deterministic, requiring that the constraints hold with, at lest, a given probability (this question is

largely analysed in different works such us Kall and Wallace (1994), Prékopa (1997) or Lin

and Iwamura (1997)). Moreover, we focus on problems in which the random variables

appearing in the problem are continuous. The analysis of the efficiency in multiobjective

stochastic programming when the random variables are discrete has been studied in different

papers among which we can highlight Ben Abdelaziz (1992) and Ben Abdelaziz, Lang and

Nadeau (1997, 1999).

For these problems we have to point out that, so far, different concept of efficient

solution has been defined. These definitions fit within what Ben Abdelaziz (1992) calls the

multiobjective approach and are determined by selecting a criterion that will be used to

transform each stochastic objective into its equivalent deterministic. Then, an equivalent

deterministic multiobjective problem is formulated, which has a corresponding set of efficient

solutions, which, in turn, is considered the efficient set of the initial problem. In this way, we

find in the literature the concepts of expected value efficient solution, minimum variance

efficient solution, or expected value standard deviation efficient solution (see, for example,

White (1982)). Other concepts defined in this way are those of minimum risk efficiency with

aspiration levels q1 uu ...,,  defined by Stancu-Minasian and Tigan (1984) or those of

efficiency in probability of Goicoechea, Hansen and Duckstein (1982).

Taking these concepts into account, and the criticism regarding these approaches, we

may ask: if, in the stochastic approach, we use any of the available multiobjective programming
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techniques to obtain efficient solutions for the stochastic multiobjective problem and the

resulting stochastic problem is later solved by some of the following criteria — expected value,

minimum variance, minimum risk, or Kataoka's criterion — would the optimal solution for the

resulting problem be in any way related to the concepts of efficiency outlined by the

multiobjective approach?

In this work, we deal with this issue. In the stochastic approach we consider the

application of the weighting method to the initial problem, because this is one of the more

widely used generating techniques in deterministic multiobjective programming. We have

organised our study according to the kind of stochastic criterion applied to obtain the

equivalent deterministic problem. For each criterion, we compare the optimal solutions for the

weighted problem, corresponding to the stochastic approach, to the efficient solutions

obtained with the multiobjective approach. First, we will look into some of the results of

multiobjective programming that will be dealt with in our work.

2. Formulation of the Problem and Efficient Solution Concepts

Let us consider the following stochastic multiobjective problem:

( ))~,(~),...,~,(~),~,(~)~,(~Min"" cxcxcxcxz
x q21D

zzz=
∈

                      (SMP)

In this problem the objective functions of the problem depend on a vector of

continuous random parameters, c~ , defined over a set E ⊂ Rs . Let us assume a family of

events F, i.e., subsets of E, and the probability distribution P defined on F, so that for any

subset of E, A ⊂ E, A ∈ F, the probability of A, P(A), is known. Also, we maintain the

hypothesis that the probability distribution, P, is independent from the decision variables of the

problem, n1 xx ,..., . We also assume that the feasible set of the problem, D ⊂ Rn, is convex

and, moreover, is deterministic or has been transformed into its equivalent deterministic using

the chance constrained method.

As has been previously pointed out, obtaining efficient solutions for this problem has

been hitherto considered from two approaches: the multiobjective approach and the stochastic

approach, that we subsequently analyse.
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2.1. Multiobjective Approach

In this approach, the stochastic objectives are transformed into their equivalents

deterministic in accordance with any of the criteria of stochastic programming, obtaining an

equivalent deterministic multiobjective problem which has a set of efficient solutions which are

considered efficient for the original problem. We can define, from this idea, the following

concept of efficient solution for problem (SMP):

Definition 1: Expected value efficient solution (White (1982))

x∈D is an expected value efficient solution to the problem (SMP) if it is Pareto efficient to the

problem:

( ))(...,),(),(Min xxx
x q21D

zzz
∈

                                           (E)

where )(xkz  is the expected value of the random variable )~,(~ cxkz , k ∈ {1, 2, …, q}.

That is, given the problem (SMP), we apply the expected value criterion to each one

of the stochastic objective functions of the problem and we obtain the equivalent deterministic

multiobjective problem (E).

Therefore, with this criterion each stochastic objective is substituted by the expected

value of each stochastic objective which is a measure of central trend.

Let us now consider the application of the minimum variance criterion to transform the

stochastic multiobjective problem into its equivalent deterministic problem. As the variance of

a random variable is defined as the expected value of the square of the deviation of the

random variable around its expected value, the choice of this criterion implies the choice of the

vector x for which the random variable )~,(~ cxz  is most concentrated around its expected

value. Therefore, the equivalent deterministic minimum variance can be interpreted as a

measure of quadratic error.

In the multiobjective approach, the application of this criterion gives the following

concept:
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Definition 2: Minimum variance efficient solution (White (1982))

x ∈ D is a minimum variance efficient solution to the stochastic multiobjective programming

problem (SMP) if it is a Pareto efficient solution to the problem:

( ))(...,),(),(Min 222 xxx
x q21D

σσσ
∈

                                         (V)

where )(2 xkσ  is the variance of the k-th objective function, k ∈ {1, 2, …, q}.

Let E
σ 2  be the set of efficient solutions to problem (V).

Definition 3: Expected value standard deviation efficient solution

x ∈ D is an expected value standard deviation efficient solution to the stochastic multiobjective

programming problem (SMP) if it is a Pareto efficient solution to the problem:

( ))(...,),(),(...,),(Min xxxx
x q1q1D

zz σσ
∈

                                 (Eσ)

which includes the expected value and the standard deviation of the problem’s stochastic

objective functions.

Let σEE  be the set of expected value standard deviation efficient solutions to problem

(SMP).

Let us observe that through this concept of efficiency a measure of central trend and a

measure of dispersion of each stochastic objective are registered. This criterion of solution of

problems of stochastic programming has been largely used in portfolio models in Finance

Economics in order to solve stochastic programming problems corresponding to economic

models.

We will now deal with the application of maximum probability — the minimum risk

and Kataoka's criteria — to stochastic multiobjective programming problems.

Given the problem (SMP), we can apply the minimum risk criterion to each stochastic

objective separately. In this case, the decision maker (DM) must fix a priori an aspiration

level, uk, for each stochastic objective function and find the vector x, in which the probability
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of the k-th objective function not being greater than the aspiration level fixed is maximum:

( )kk uzP ≤)~,(~ cx . The separate application of this criterion to each stochastic objective

function in the problem (SMP) lead us to the following definition of efficiency:

Definition 4: Minimum risk efficient solution for levels q1 uu ,...,  (Stancu-Minasian and

Tigan (1984))

x ∈D is a vectorial minimum risk solution for levels u u uq1 2, ,...,  if it is a Pareto efficient

solution to the problem:

( ) ( )( )qq11D
uzPuzP ≤≤

∈
)~,(~...,,)~,(~Max cxcx

x
                        (MR(u))

MRE (u) denotes the set of efficient solutions to problem (MR(u)).

The second criterion of maximum probability is the Kataoka’s criterion. In this case,

we fix a probability for the stochastic objective function, kβ , and look for the smaller value ku

for which we can assert that, given the fixed probability, the stochastic objective function does

not exceed the level. From the application of this criterion to each stochastic objective function

in the problem (SMP), we can define the following concept of efficiency:

Definition 5: Efficient solution with probabilities β β β1 2, ,..., q  or ββ -Efficient solution

Let x ∈ D; x is an efficient solution with probabilitiesβ β β1 2, ,..., q  if there exists any u ∈ Rq

such that (xt, ut) t is an efficient solution to problem

( )
( )

D

qkuzP

uu

kkk

q1

∈
=≥≤

x

cx
ux

...,,2,1,)~,(~s.t

,...,Min
,

β                           (K(ββ ))

The set of efficient solutions with probabilities β β β1 2, ,..., q  for the problem (SMP)

is denoted by )(ββkE  ⊂ Rn.

This concept is no more than a generalisation of the concept introduced by

Goicoechea, Hansen and Duckstein (1982), who set the same probability for all the stochastic

objective functions; that is, these authors consider ββ =k , for every k ∈ {1, 2, ..., q}.
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The two efficiency concepts of maximum probability we have just defined enable us to

obtain an efficient set for each vector of aspiration levels or probabilities. Further, the

distribution functions of the stochastic objective functions are involved in both concepts.

Caballero, Cerdá, Muñoz, and Rey (2000) relate both of these concepts as we will show in

the following theorem.

Theorem 2 (Caballero, Cerdá, Muñoz, and Rey (2000))

Let us assume that the distribution function of the random variable )~,(~ cxkz  is continuous and

strictly increasing. Then, x is an efficient solution to problem (MR(u)) if and only if (xt, ut)t is

an efficient solution to problem (K(ββ )), with u and ββ  such that:

( ) }...,,2,1{,)~,(~ qkuzP kkk ∈∀=≤ βcx .

Corollary 1 (Caballero, Cerdá, Muñoz, and Rey (2000))

UU
B∈∈

=
ββ

ββ)()( KMR
q

EE
Ru

u

with B = {ββ  ∈ Rq / βk ∈ (0,1), k = 1, 2,..., q}.

From the results obtained, we can see that the union of the sets of efficient points of

both problems coincide. Moreover, if for some fixed probabilities ββ  = t),...,,( q21 βββ , x ∈ D

is an efficient solution to problem K(ββ ), we know from Theorem 2 that it is also a minimum

risk efficient solution of levels q21 uuu ,...,, and vice versa. Further, the aspiration levels and the

probabilities will have the relation established in Theorem 2. This result allows us to perform

the analysis of these efficient solutions by either of the two concepts and, from Theorem 2, to

obtain the level or the probability for which it is efficient in accordance with the other.

On the other hand, in Caballero, Cerdá, Muñoz, Rey, and Stancu-Minasian (2001),

other relations among the five concepts of efficient solution defined in the multiobjective

approach are established. The relations stated in the two papers referred to permit these

efficient sets to be characterized and establish which efficient criterion is the most appropriate

in a specific problem, using as a starting point the preferences of the DM. As each one of
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these criteria registers some statistical characteristics of the objectives, at first, the sets of the

defined efficient solutions are different and apparently not related.

2.2. Stochastic Approach

Let us consider again the problem (SMP). In order to obtain efficient solutions to this

problem it is also possible to apply first any of the techniques for obtaining efficient solutions

used in multiobjective programming which leads, in general, to solve a stochastic programming

problem with one objective function which has to be solved next, applying any of the criteria of

solution to the stochastic programming. As has been previously pointed out, this order in the

transformations has been called in the literature stochastic approach.

Among the existing methods in deterministic multiobjective programming, one of the

most important in order to obtain efficient solutions is the weighting method. In this method, a

non-negative weight is assigned to each one of the objective functions of the problem. The aim

is to minimise the sum of the objective functions of problem (SMP), which is weighted by the

weight assigned to it. Let µµ = ( ,... , )µ µ1 q
t  be the weight vector, µk ∈R + . The problem

associated with problem (SMP) by the weighting method is the following stochastic

programming problem:

∑
=

∈
=

q

k
kk

D
zf

1

)~,(~)~,(
~

Min"" cxcx
x

µ                                          (S)

In order to solve it, we can apply one of the existing criteria in stochastic programming,

e.g., expected value, minimum variance, minimum risk, or Kataoka’s criterion. The application

of these criteria to the problem (S) would lead us to obtain four different equivalent

deterministic problems whose optimal solutions are efficient solutions to problem (SMP).

From the previous comments, it can be asked if these   efficient solutions maintain some

relationship with the efficient solutions previously defined in the multiobjective approach. That

is, can a solution which is efficient according to any of these approaches be efficient according

to other approach? And, in that case, which one of the two  approaches is most appropriate in

order to obtain efficient solutions? As we will see in the next section, the answers to these

questions are complex although under certain hypothesis it is possible to answer them.
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Before studying these questions, we consider it convenient to point out which

relationships exist between the efficient solutions of a deterministic multiobjective problem and

the optimal solutions to the corresponding weighted problem.

Let us consider the following deterministic multiobjective problem:

( ))(),...,(Min xx
x q1D

zz
∈

                                                  (P)

and the problem associated with problem (P) by the weighting method:

∑
=

∈

q

k
kk

D
z

1

)(Min x
x

µ                                                 (P(µµ ))

where µµ = ( ,... , )µ µ1 q
t  is the weight vector, µk ∈R + .

The following theorem establishes the relationship between the problem's solution

(P(µµ )) and the efficient solutions to problem (P).

Theorem 1. Sawaragi, Nakayama and Tanino (1985).

a) Let us assume that functions z zq1 , ...,  are convex, and D is a convex set. If x* is a

properly efficient solution for the problem (P), there exists

},...,2,1{every for   0,,..., qkkq1 ∈>µµµ , such that x* is the solution to problem

(P(µµ )).

b) If x* is the solution to problem (P(µµ )), with µµ  > 0, then, x* is a properly efficient

solution to problem (P).

c) If x* is the only solution to problem (P(µµ )), with µµ  ≥ 0, then x* is an efficient

solution to problem (P). If this is not the only one, the solutions obtained for (P) are

weakly efficient.

From this theorem, if the convexity of the feasible set and the objective functions is

verified, the set of properly efficient solutions to problem (P) can be obtained by simply solving

problem (P(µµ )) for all possible values of the vector µµ  with strictly positive components. On
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the other hand, if the convexity condition is not verified, some efficient solutions to the problem

(P) might not be obtained by this method. Furthermore, from point (c) of this theorem, if we

take weight vectors with some null components — which means that the objective function

associated with this component will not be taken into account when solving problem (P(µµ )))

— we can assert that the solution obtained is efficient only if it is the only solution to (P(µµ )). In

any other case, we can only assert that the solutions obtained are weakly efficient.

3. Stochastic Approach versus Multiobjective Approach

In order to answer the stated questions about the relationships between the efficient

solutions of a stochastic multiobjective problem we solve the weighted problem (S) by means

of the following criteria: expected value, minimum variance, minimum risk and Kataoka. In

each case, we will compare the efficient solutions obtained using the stochastic approach with

some of the efficient solution concepts defined in section 2.1, corresponding to the

multiobjective approach.

3.1. Expected Value Criterion

Let the problem be (S) and let us consider the expected value criterion in order to

solve it. Then we obtain the following equivalent deterministic problem:

∑
=

∈
=

q

k
kk

D
zf

1

)()(Min xx
x

µ                                             (SE)

where )(xf  denotes the expected value of the random variable ∑
=

=
q

k
kk zf

1

)(~)(
~

xx µ .

Thus, if we apply the expected value criterion to problem (S), the resulting problem

minimises a linear combination of the expected value of the original problem’s stochastic

objective functions, and the coefficients of such a linear combination are no more than the

weights assigned to the stochastic objectives in the first stage of the problem resolution. In

other words, the problem obtained is the same as solving the original stochastic multiobjective

programming problem, transforming the problem into its equivalent deterministic problem by

applying the expected value criterion to each one of the stochastic objective functions of
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(SMP) and then applying the weighting method in order to obtain the expected value efficient

solutions.

Therefore, based on the concept of expected value efficient solution and the results of

the deterministic multiobjective programming, given that the weights, µk , k ∈ {1, 2, ..., q},

are not negative, for each vector, µµ  ∈ Rq+, the relationship between problem (E) and problem

(SE) is the same as the relationship between any multiobjective problem and its associated

weighted problem, which is expressed in Theorem 1.

3.2. Minimum Variance Criterion

Let us now consider the application of the minimum variance criterion to the weighted

problem. Given that the random variable ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  is a linear function of the

random variables )~,(~),...,~,(~),~,(~ cxcxcx q21 zzz , its variance depends on the variances of

these random variables and their covariances (see, for example, Hogg and Craig (1989), p.

177.). Thus, we have:

∑∑
<

==

2 σ+σ=σ
q

sk
sk

kssk

q

k
kk

1,1

22 )(2)()( xxx µµµ

where )(xksσ  denotes the covariance of the random variables )~,(~   and  )~,(~ cxcx sk zz :

( )( ){ })()~,(~)()~,(~)( xcxxcxx sskkks zzzzE −−=σ .

Therefore, the variance of the function ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  depends not only

on the variances of functions )~,(~),...,~,(~),~,(~ cxcxcx q21 zzz , but also on their covariances.

Thus, if we apply the minimum variance criterion to resolve the problem (S), we obtain the

problem:

∑∑
<

==

2

∈
σ+σ=σ

q

sk
sk

kssk

q

k
kk

D
1,1

22 )(2)()(  Min xxx
x

µµµ                            (SV)
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We can see that the relationships between a weighted problem and the multiobjective

equivalent deterministic problem are not so direct as in the previous case. In order to establish

these relationships we differentiate between the case of the covariances of the stochastic

objective functions all being zero and the case of some of them not being zero.

If the covariances of the objective functions are zero, that is, if it fulfils the following:

0)( =xksσ  for every k, s ∈ {1, 2, ..., q}, with k ≠ s and for every x  ∈ D

then, the problem (SV), resulting from applying the minimum variance criterion to the weighted

problem (S), is:

∑
=

2

∈
σ=σ

q

k
kk

D
1

22 )()(  Min xx
x

µ

that is, the problem obtained is the same as the one we would have obtained by solving the

stochastic multiobjective programming problem using the multiobjective approach, i.e.,

applying the minimum variance criterion to each stochastic objective function and then, the

weighted method to the equivalent deterministic multiobjective problem. Both problems are

related as shown by Theorem 1.

The second situation to deal with is the case of the covariances of some stochastic

objective functions are non-null. In this case, for each vector µµ  ∈ Rq+, the optimal solution to

the problem (SV) does not have to be necessarily minimum variance efficient, as shown in

section 4, where a linear stochastic bi-objective problem is formulated with stochastic

objective functions whose covariance is not zero. In this example, we see that if we apply the

minimum variance criterion to the weighted problem (S), the solution obtained is not

necessarily minimum variance efficient. The only way to ensure efficiency is if the covariances

of the objective functions are zero. As we know, the covariance of two random variables

measures the dependence between them. In this sense, we know that if two random variables

are independent, their covariance is zero. However, and generally speaking, the opposite is

not necessarily true. In other words, the fact that the covariance is zero does not necessary

means that the random variables are independent. Therefore, the application of the minimum
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variance criterion to the weighted problem reflects to some extent the dependency between

the stochastic objective functions.

3.3. Maximum Probability Criteria

Let us now consider applying the criteria of maximum probability (minimum risk and

Kataoka’s) to the weighted problem:

∑
=

∈
=

q

k
kk

D
zf

1

)~,(~)~,(
~

Min"" cxcx
x

µ                                          (S)

In order to apply the minimum risk criterion to this problem, we must fix a value u

(aspiration level of the problem’s objective function) and maximise the probability of the

random variable ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  not exceeding such a value. The equivalent

deterministic problem generated is:









≤∑
=

∈
uzP

q

k
kkD

1

)~,(~Max cx
x

µ

Given that ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  is a function of the q objective functions for the

problem, the choice made for value u in the previous problem is not a trivial issue. Note that

this level must be fixed for the random variable ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ , where this

variable is not an objective of the initial stochastic multiobjective programming problem, but

has been constructed from it in order to resolve it. Therefore, value u, which in stochastic

programming is the aspiration level fixed by the DM for the stochastic objective, no longer has

this meaning. This could lead to think that the minimum risk criterion is not applicable to the

weighted problem. However, we can decide to determine the value u from an aspiration level

for each objective. In such a case, the DM has to determine an aspiration level, uk , for each

objective function, and level u is calculated as the addition of the levels fixed by the DM,

weighting each level with the weight assigned to the corresponding objective. That is,

u uk k
k

q

= =
=

∑ µ
1

µµ t u. In this way,  level u is  set to be a function of the aspiration levels fixed

by the DM for each objective function, but weighted according to the significance given to
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each of them by the weight assigned to each objective. The equivalent deterministic problem is

as follows:









≤ ∑∑

==
∈

q

k
kk

q

k
kkD

uzP
11

)~,(~Max µµ cx
x

                            (SMR(u))

On the other hand, if we apply Kataoka’s criterion to the weighted problem (S), the

equivalent deterministic problem generated is as follows:

D

uzP

u

q

k
kk

∈

=







≤∑

=

x

cx

x

βµ
1

u,

)~,(~s.t

Min

                                  (SK(ββ ))

where β is the probability fixed for the problem. The resolution of this problem determines the

lowest u level the objective function of the weighted problem with probability β can reach.

Once again, the question arises whether it is advisable or not to apply this criterion to solve the

initial stochastic multiobjective programming problem, because applying this criterion on the

weighted problem (S) involves the need to fix a probability for the random variable

∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ , and this function is constructed from the stochastic objectives of

the initial problem, which, in general, have different characteristics. This fact could call into

question the suitability of applying this criterion. As in the minimum risk criterion, in order to fix

the probability β ∈ (0,1) for the problem (SK(ββ )), we can consider the possibility of asking

the DM to fix a probability for each one of the stochastic objectives, )1,0(∈kβ , and,

assuming that the weight vector µµ  has a norm equal to one (in any other case, the weights

would have to be normalised), we fix the probability β for problem (SK(ββ )) as:

∑
=

=
q

k
kk

1

βµβ

Now that we have established a possible way to fix the aspiration levels and the

probabilities in the two criteria of the maximum probability, in order to state the possible

relationships between the efficient sets which are obtained in the two approaches, we consider
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it convenient to indicate that the obtained equivalent deterministic problems (SMR(u)) and

(SK(ββ )) are, under certain conditions, reciprocal. Note that from Theorem 2, by simply

making k = 1 and taking optimal solutions instead of efficient solutions, we can affirm that if the

distribution function for the random variable ∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  is continuous and

strictly increasing, it is verified that:

• If x* is the solution to problem  (SMR(u)) for an aspiration level u, then  (x*t, u)t is

the solution to problem  (SK(ββ )) for a probability level of { }ufP ≤= )~*,(
~

cxβ .

• If (x*t, u*)t is the solution to problem (SK(ββ )) for a probability β, then x* is a

solution to problem (SMR(u)) for an aspiration level u such that

{ }ufP ≤= )~*,(
~

cxβ .

The reciprocity between both criteria of maximum probability allows us to carry out a

study of the relationships between the problems corresponding to the two different approaches

by considering only one of the criteria (either the minimum risk or Kataoka’s criteria), and to

assert that the same relationships will be verified for the other. From now on, the analysis of

the relationships between efficient solutions in the multiobjective and the stochastic approaches

by the criteria of maximum probability will be made exclusively for efficiency in probability.

On the other hand, it has to be pointed out that in the two maximum probability criteria

the distribution function of the random variables )~,(~...,),~,(~ cxcx q1 zz  and

∑
=

=
q

k
kk zf

1

)~,(~)~,(
~

cxcx µ  are involved. Determining these distribution functions is not an easy

issue, because they depend not only on the probability distribution of c~ , but also on the

vector of the decision variables of the problem, x. This leads to the need to establish additional

hypotheses regarding the structure of the problem and the distribution of its random

parameters. We will focus on linear objective functions under the simple randomness

hypothesis, and the hypothesis of vector normality of random parameters, c~ . Next, we

analyse both cases  to verify that there  is reciprocity between both criteria of maximum

probability in both  instances.
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3.3.1. The Linear Simple Randomization Case

Let us assume that for every k ∈{1, 2, ..., q} the objective function )~,(~ cxkz  is linear:

~ ( , ~) ~zk x c c xk
t= , and that all stochastic objective functions depend on the same random

variable, ~t , so that  ~ ~c c ck k
1

k
2= + t . Let us also assume that the random variable ~t  is

continuous, its expected value t , and finite variance 2
tυ , and its distribution function, Ft , is

strictly increasing. We finally assume  that for every x ∈ D, and for every k ∈ {1, 2, ..., q},

c xk
2t > 0.

If these hypotheses are verified, the set of efficient solutions with probabilities

β β1 ,... , q  for the initial stochastic multiobjective problem is the same as the following

multiobjective problem:

( )xcxcxcxc 2t
q

1t
q

2t
1

1t
1x

)(,...,)(Min 11
qt1tD

FF ββ −−

∈
++

If the probability fixed for each of the objectives is the same and equal to the

probability fixed for the weighted problem, βββ === q1 ... , then the set of efficient

solutions with probability β  for the stochastic multiobjective programming problem is the same

as for the following problem:

( )xcxcxcxc 2t
q

1t
q

2t
1

1t
1x

)(,...,)(Min 11 ββ −−

∈
++ ttD

FF                               (1)

On the other hand, with the stochastic approach we have:

( ) β
µ

µ
µµ =


















−

=







≤+=≤

∑

∑
∑∑

=

=

==
q

k
k

q

k
k

t

q

k
k

q

k
k

u
FutPufP

1

1

11

~)~,(
~

xc

xc
xcxccx

2t
k

1t
k

2t
k

1t
k

which implies that:

u Fk
k

q

t k
k

q

= +
=

−

=
∑ ∑µ β µc x c xk

1t
k
2t

1

1

1

( )

so, the problem resulting from applying Kataoka’s criterion to the weighted problem with

probability β is:
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∑∑
=

−

=
∈

+
q

k
kt

q

k
k

D
F

1

1

1

)(Min xcxc 2t
k

1t
k

x
µβµ                                         (2)

Once the problems for the two criteria are outlined, we can move on and analyse the

relationship existing between the optimal solution for problem (2) and the set of efficient

solutions with probabilities β β1 ,... , q .

From this point onwards, if we compare problems (1) and (2), we note that if we

apply the weighting method to obtain efficient solutions for problem (1), we obtain problem

(2). In other words, in this case, if we weight the stochastic multiobjective programming

problem and apply Kataoka’s criterion to it for a probability β,  the problem to be solved is

the same as if we apply Kataoka’s criterion to each objective separately — fixing the same

probability for all the stochastic objectives — and apply the weighting method to obtain the

efficient solutions for this problem. Therefore, the relationships between these two problems

are the same as for any linear multiobjective problem and its associated weighted problem,  as

described in Theorem 1.

Furthermore, given the  reciprocity between the two maximum probability criteria,

these relationships are also verified for problem (SMR(u)), resulting from applying the

minimum risk criterion to the weighted problem, and  for the set of minimum risk aspiration

levels q1 uu ,...,  for the stochastic multiobjective programming problem. Let us explore what

happens in the case of normal distribution.

3.3.2. Linear Objectives with Normal Distribution

Let us assume that for every k ∈{1, 2, ..., q} the objective function )~,(~ cxkz  is linear:

xccx t
k

~)~,(~ =kz .

Let ( ) ( )~ ~ ,~ ,..., ~ ~ ,~ ,..., ~ ,~ ,~ ,..., ~ ,..., ~ ,~ ,..., ~c c c c1
t

2
t

q
t

t

= = c c c c c c c c c
t

11 12 1n 21 22 2n q1 q2 qn . Let us

also assume that ~c  is a random vector multinormal with expected value

( ) ( )tt
,...,,,...,,...,,,,...,,,...,, qnq2q12n22211n1211 ccccccccc== t

q
t
2

t
1 cccc  and variance and positive

definite covariance matrix V:
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Let us assume also that 0 ∉ D.

If these hypotheses are verified, the probability of the random variable

~( , ~) ~f k
k

q

x c c xk
t=

=
∑ µ

1

 being  less or equal to u is:

P u
u

k
k

q k
k

q

k
k

q

k s
k s

k s

q
µ

µ

µ µ µ

β~

,

c x
c x

x V x x V x
k
t

k
t

t
k

t
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=

=

= =
<

∑
∑

∑ ∑
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=
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=
1

1

2

1 1

2

Φ

where Φ is the distribution function of the standard normal distribution. Then:

u k
k

q

k
k

q

k s
k s
k s

q

= + +
=

−

= =
<

∑ ∑ ∑µ β µ µ µc x x V x x V xk
t t

k
t

ks
1

1 2

1 1
2Φ ( )

,

and, the solution to the weighted problem (S), using Kataoka’s criterion, is given by the

solution to the problem:

∑∑∑
<

==

−

=
∈

+Φ+
q

sk
sk

sk

q

k
k

q

k
kD

1,1

21

1

2)(Min xVxxVxxc ks
t

k
tt

kx
µµµβµ                      (3)

Given that the normal distribution function is strictly increasing and continuous, there

still is reciprocity between the optimal solutions for the problem obtained by applying the

minimum risk criterion to the  weighted problem,  and for problem (3) obtained by applying

Kataoka’s criterion.

Note that problem (3)  can also be expressed as:
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))(Min
1

xx
x

σ(+∑
=

∈
αµ

q

k
kk

D
z                                                (4)

with ,)( xcx t
k=kz ∑∑

<
==

+=σ
q

sk
sk

sk

q

k
k

1,1

2 2)( xVxxVxx ks
t

k
t µµµ  and )(1 βα −Φ= .

Once problem (4) has been expressed, we consider again the possible existence of a

relationship between its optimal solutions and some of the concepts of efficient solution for

stochastic multiobjective programming problems. We will relate  the optimal solution for

problem (4) to the expected value standard deviation efficient solution. The following

proposition relates the optimal solution for problem (4), obtained by resolving the weighted

problem using Kataoka’s criterion,  with the set σEE .

Proposition 1

Let us consider problems (4) and (Eσ). Let us assume that µµ ∈ +R q
o      

, α  > 0 and that it is

verified that 0)( =σ xks  for every  k, s ∈ {1, 2, ..., q}, with k ≠ s  and for every x  ∈ D.

Then, if x* is the optimal solution for (4), it is also the efficient solution for (Eσ).

Demonstration

The demonstration is done by reductio ad absurdum.

Let x* ∈ D be the optimal solution for (4) and let us assume that it is not the efficient solution

for (Eσ). In this case, there is a solution 'x  that dominates x, and so, for every k ∈ {1, 2, …,

q}:

*)()'(and*)()'( xxxx kkkk zz σσ ≤≤

and there is at least a s ∈ {1, 2, …, q} for which the inequality is strict, that is:

*)()'(or*)()'( xxxx ssss zz σσ <<

Given  that µµ ∈ +R q
o      

, for every  k ∈ {1, 2, …, q} it is verified that:

*)()'( xx kkkk zz µµ ≤                                                   (5)
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*)()'( xx kkkk σµσµ ≤                                                 (6)

and there is at least a s∈ {1, 2, …, q} for which:

*)()'( xx ssss zz µµ <    or   *)()'( xx ssss σµσµ <

Given that the variance is always non-negative, if we raise both sides of the inequality

(6) to the power of 2, we obtain:

*)()'( 2222 xx kkkk σµσµ ≤                                                  (7)

Adding up (5) and (7) in k we obtain:

∑∑
==

≤
q

k
kk

q

k
kk zz

11

*)()'( xx µµ                                              (8)

∑∑
==

≤
q

k
k

q

k
k

1

2
k

2

1

2
k

2 *)()'( xx σµσµ                                             (9)

From (9) we deduce that:

∑∑
==

≤
q

k
k

q

k
k

1

2
k

2

1

2
k

2 *)()'( xx σµασµα                                      (10)

and that one of the inequalities, either  (8) or (10) is strict.

From the above expressions we obtain:

∑∑∑∑
====

+<+
q

k
kk

q

k
kk

q

k
kk

q

k
kk zz

1

22

11

22

1

*)(*)()'()'( xxxx σµαµσµαµ

and this is contrary to x* being the optimal solution for (4).n

Therefore, this proposition asserts that if the covariances of the stochastic objective

functions of the problem are zero, the optimal solution obtained by applying Kataoka's

criterion on the weighted problem, with strictly positive weights, is an expected value standard

deviation efficient solution for the stochastic multiobjective problem, if the value of the
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parameter  α is strictly positive. Given that )(1 βα −Φ= , if the fixed probability β is greater

than 0.5, then α > 0. In any other case, the optimal solution to problem (4) does not  have to

be the expected value standard deviation as shown in the example below.

Finally, given that in this case there is also reciprocity between the optimal solution for

the problem (4) and for the problem obtained by applying the minimum risk criterion to the

weighted problem, the results obtained for Kataoka’s criterion can be extrapolated to the

minimum risk criterion.

4. Example

Let us consider the  following stochastic bi-objective programming problem:

( )"Min"

s. t
x

~ ~ , ~ ~

,
,

c x c x c x c x

x x
x x
x x

11 1 12 2 21 1 22 2

1 2

1 2

1 2

+ +

+ ≥
≤
≥

2 4
3
0

with ~ (~ ~ ~ ~ )c = c ,c ,c ,c11 12 21 22
t   being a random vector multinormal with expected value

t)5.2,1,1,5.0(=c  and with positive definite covariance matrix :

V =



















25 0 0 3

0 25 3 0

0 3 1 0

3 0 0 9

In order to illustrate some of the results obtained in this work, we are going to solve

this problem using some of the criteria previously considered. Before carrying on, it should be

noted that given that the feasible set for this problem is a non-empty, closed and bounded set

(see Figure 1) and, given that the objective functions for the equivalent deterministic problems

we will obtain are continuous in this feasible set, we can assert the existence of either optimal

or efficient solutions (depending on the case) for them.

We now apply the minimum variance, expected value standard deviation, and

Kataoka’s criteria.
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a) Minimum variance criterion: From the data of the problem, the set of minimum variance

efficient solutions is the same as for problem:

( )

0,

3,

42s.t

9,2525Min

2

2222

≥
≤

≥+

++

21

21

1

2121

xx

xx

xx

xxxx
x

                                      (11)

which includes the variances of the stochastic objectives. This set is the segment that joins

point A, with coordinates (0.8, 1.6), to point B,  with coordinates (2.769231, 0.6153846), in

Figure 1.

Figure 1

On the other hand, if we solve the previous problem by using the stochastic approach,

weighting the stochastic objectives with weights 21  and µµ  and  then applying the minimum

variance criterion, we obtain the problem:

0,

3,

42s.t

)6(2)9()2525(Min 222222

≥
≤

≥+

++++

21

21

21

2121212211

xx

xx

xx

xxxxxx µµµµ
x

                     (12)
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If the following weights 7.0,3.0 == 21 µµ  are used in this problem, we obtain the

solution x1 = (1.316375, 1.341812)t, which is a minimum variance solution, but, if we fix the

weights 35.0,75.0 == 21 µµ , the solution we obtain is x2 = (0.7302074, 1.634896)t, which

is a minimum variance dominated solution.

This example shows that if the covariances of the stochastic objectives are not zero,

the minimum variance solutions to the weighted problem do not have to be minimum variance

efficient, as pointed out in section 3.

b) Kataoka’s criterion and expected value standard deviation efficiency.

Let us now consider solving the weighted problem by apply Kataoka’s criterion. The

resulting problem, for a probability β is:

( ) ( ) ( ) ( )

0,

3,

42s.t

1292525)(5.25.0Min 2
2

22
2

2
2

221

≥

≤
≥+

++++Φ++++ −

21

21

21

2121111212211

xx

xx

xx

xxxxxxxxxx µµµµβµµ
x

  (12)

As we have seen in section 3, if the covariance of the stochastic objective functions is

zero and the probability fixed is greater than 0.5, for each vector of weights µµ  >0 the optimal

solution for problem (12) is expected value standard deviation efficient; but if either of these

two hypotheses is not verified, the previous statement is not necessarily true, as we show next.

First, we will relax the first hypothesis and then the second one.

To begin with, it has to be noted that the set of expected value standard deviation

efficient solutions for the initial problem is the segment that joins points A and x5 in Figure 1.

Let us consider problem (12) for a probability β = 0.95. If the weight vector is fixed at

µµ  = (0.2, 0.8)t,  we obtain the solution x3 = (2.255366, 0.8723169), which belongs to the

expected value standard deviation efficient set. However, for the weight vector µµ  = (0.7, 0.3),

the solution to the weighted problem is x4 = (0.7559553, 1.622022). As shown in the graph,

this solution does not belong to the expected value standard deviation efficient set.
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On the other hand, let us assume that the covariance of the stochastic objective

functions is zero and that they have a normal distribution; that is, we assume that the vector

~ (~ ~ ~ ~ )c = c ,c ,c ,c11 12 21 22
t  is a random vector multinormal with expected value

t)5.2,1,1,5.0(=c and positive definite covariance matrix, V:



















=

9000

0100

00250

00025

V

The set of expected value standard deviation efficient solutions for this problem is the

same as for the previous one, but the problem obtained from applying Kataoka's criterion to

the weighted problem for a probability β is now:

( ) ( ) ( ) ( )

0,

3,

42s.t

92525)(5.25.0Min 2
2

22
2

2
2

221

≥

≤
≥+

+++Φ++++ −

21

21

21

111212211

xx

xx

xx

xxxxxxxx µµβµµ
x

As previously shown, for any weight vector, the solutions for this problem are

expected value standard deviation efficient solutions, if the probability fixed is greater than 0.5,

but this does not necessarily have to be the case if the probability fixed is less than 0.5. Thus,

for a weight vector µµ  = (0.8, 0.2)t, if the probability fixed is β = 0.4, the solution obtained is

x5 = (3, 0.5); but if the probability fixed is β = 0.2, the solution obtained is x6 = (3, 3), which

is not expected value standard deviation efficient solution, as shown in Figure 1.

5. Conclusions

In this paper, it is shown that the achievement of efficient solutions in problems of

stochastic multiobjective programming is carried out by combining the techniques of both

stochastic programming and multiobjective programming, in a double transformation of the

problem. The question we study is if the order in which the transformations are carried out has

an influence in the set of efficient solutions, which are obtained. Thus, we pretend to determine
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which approach is most appropriate for the achievement of efficient solutions of stochastic

multiobjective programming problems.

Our study shows that, when among the stochastic objectives there exists a stochastic

dependence, the order of transformations can lead to an efficient solution by following a

certain order which is a non-efficient solution according to the inverse order.

From this work, we can conclude that the achievement of efficient solutions of

stochastic multiobjective programming problems using the stochastic approach, by using the

weighted method, is closely linked to problem resolution using the multiobjective approach.

Specifically, the results obtained with the minimum variance criterion and the maximum

probability criteria establish that, in order to have a relationship between the optimal solutions

for the weighted problem obtained with these criteria, and some of the concepts of efficient

solutions defined in the multiobjective approach, it is necessary for the covariances of the

objectives to be equal to zero in some cases.

This suggests to some extent that the multiobjective approach "forgets" the possible

existence of stochastic dependencies between objectives. Note that the main criticism of the

application of the multiobjective approach is that, when obtaining the equivalent deterministic

problem, a transformation criterion is applied to each objective function separately. This means

that in the resolution of the stochastic multiobjective programming problem, the possible

stochastic dependency between the objectives is not taken into account.

The stochastic approach takes into account the dependency between them, even if

only partially,  in terms of covariance.

In this sense, given that in real situations it can be frequent that there exist stochastic

dependences among objectives, we can assert that when these dependences exist, the

stochastic approach is more appropriate for the achievement of efficient solutions than the

multiobjective approach because it reflects to a certain extent the stochastic and multiobjective

nature of the real problem.
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