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1. Introduction.  

 

This paper shows how to compute the in-sample effect of exogenous inputs on the 

endogenous variables in a general linear framework. Estimating this component may be, 

either interesting by itself, or a previous step before decomposing a time series into trend, 

cycle, seasonal and error components. 

 

About the latter application, many works define the additive structural decomposition of 

a time series, tz , as:  

 

t t t t tz t c s ε= + + +  (1.1) 

 

where tt  is the trend component, representing the long-term behavior of the series, tc  is the 

cyclical component, describing autocorrelated transitory fluctuations, ts  is the seasonal 

component, associated with persistent repetitive patterns over seasons, and tε  is an 

unpredictable irregular component. 

 

When tz  is affected by exogenous variables, there are three ways to accommodate 

their effects within the decomposition (1.1): 

 

(1) the effect of the inputs is a nuisance that must be removed from tz  before computing 

the decomposition or, equivalently, 

(2) these affects are another structural component, analogous to the classical ones 

shown in the right-hand-side of  (1.1) or, finally, 

(3) each component in (1.1) may be generated both, by the model disturbances and the 

exogenous variables; adopting this point of view we could talk, for example, about 

an “input-dependent trend” and an “error dependent trend”. 
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These three interpretations are equally valid and the methods described in this paper can 

support any one of them. 

 

On the other hand, estimating the effect of exogenous variables may be interesting by 

itself in different ways. For example if the inputs are control variables, their effect on the 

output provides a measure of the controller ability to govern the system. Also, if they are 

leading indicators for tz , their individual influence would show which ones have larger effect 

on forecasts. Finally, if they were intervention variables (Box and Tiao, 1975), such 

decomposition would distinguish between the deterministic-driven part of the time series and 

the purely stochastic component. 

 

Depending on the model dynamics, this decomposition may be either trivial or really 

hard to compute. Consider, e.g., the following single-input-single-output (SISO) models: 

 

0t t tz  u   âω̂= +  (1.2) 

 

0
t t tz  u   a

B
ˆ ˆˆ
ω
δ

= +
− 11

  (1.3) 

 

0 t
t t

az  u   
BB

ˆˆ
ˆ

ω
δ

= +
−− 1 11

  (1.4) 

 

where the symbol “^” denotes that the corresponding term is either a parameter estimate or a 

residual, 2(0, )t aa iid σ∼  and B is the backshift operator, such that for any tw : 

, 0, 1, 2,k
t t kB w w k−= = ± ± …  

 

 In the static regression (1.2) the contribution of the input, tu , to the output, tz , is 

trivially 0t tz  uˆ ω̂=  or t t tz  z   âˆ = − . The latter formula can be also applied to (1.3), while the 

direct calculation of tẑ  as a function of tu  would require solving a first-order difference 

equation. Finally, model (1.4) has autocorrelated errors, so computing tẑ  requires solving 
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difference equations, either to calculate tẑ  as a function of tu , or to compute the 

autocorrelated residuals as a function of tâ . On the basis of these simple examples it is easy to 

see that computing this decomposition manually may be very hard in models with seasonal 

structure, multiple inputs or, even worst, with multiple inputs and multiple outputs. 

 

In the remaining Sections we discuss the computation of this input-related component 

in a general linear SS framework. Setting the problem in SS has two main advantages. First, 

the resulting procedure will be able to support any model having an equivalent SS 

representation, therefore including univariate transfer functions, VARMAX or unobserved 

components models. Second, the SS literature provides all the “building blocks” that we need 

for our procedures. As a consequence, this article analyzes a potentially interesting problem 

and develops adequate computational algorithms to solve it, but it does not provide new 

theoretical results. 

 
The structure of the paper is as follows. Section 2 defines the notation and describes 

the decomposition of a SS model in two sub-systems, one exclusively related to the inputs and 

another one exclusively related to the errors. Section 3 describes a fast and stable recursion to 

estimate the effect of inputs. After doing so, the remainder component can be further 

decomposed according to (1.1). Section 4 discusses the case of models with several inputs and 

provides the results required to estimate the individual effects of each one of them. Section 5 

illustrates the application of these methods using the famous Lydia Pinkham monthly series of 

sales and advertising expenditures. In this framework, the part of sales exclusively related to 

advertising can be interpreted as an estimate of the return of investment (ROI) in advertising. 

The ROI estimate in this case is similar to the actual expenditure, so advertising did not create 

value for the firm. Further decomposition of the sales series suggests a possible explanation 

for this poor performance. Finally, Section 6 provides some concluding remarks and indicates 

how to obtain a free MATLAB toolbox which implements the methods described. 



 
5 

 

2. Model decomposition. 

  

2.1 Basic notation. 

 

 Consider the 1m×  random vector tz , which is the output of a steady-state innovations 

SS model (hereafter “innovations model”) defined by: 

 

1 Φ Γ Et+ t t tx   x  u   a= + +  (2.1) 

 

H D= + +t t t tz    x u   a  (2.2) 

 

where: 

tx  is an 1n×  vector of state variables or dynamic components, 

tu  is an 1r×  vector of exogenous variables or inputs, 

ta  is an 1m× vector of errors, such that ( )  iid   , 0∼ta Q . 

 

 The transition equation (2.1) characterizes the system dynamics while the observer 

(2.2) describes how tz  is realized as the sum of: (a) a linear combination of the dynamic 

components, given by H tx , (b) the instantaneous effect of the exogenous variables, given by 

D tu , and (c) the error ta .  

 

Without loss of generality we will assume that model (2.1)-(2.2) is minimal, meaning 

that the number of states n is the minimum required to realize tz , and that the errors ta  are 

independent of the exogenous variables tu  and the initial state vector 1x . 

 

 Many SS models have different errors in the transition and observation equations, as 

well as a coefficient matrix affecting the observation error. Model (2.1)-(2.2) does not 

conform to this common specification, but is general in the sense that any fixed-coefficients 
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SS model can be written in this form (Casals, Sotoca and Jerez 1999, Theorem 1). We favor 

the use of innovations models for signal extraction because the sequence of filtered/smoothed 

state covariances converge to a null matrix and, therefore, the components obtained do not 

change as the sample increases, see Casals, Jerez and Sotoca (2002). Despite this preference, 

the theoretical results in the following sections could have been obtained with a non-

innovations model. 

 

2.2. The deterministic/stochastic decomposition. 

 

 Assume now that a time series model has been fitted to tz  and has been written in the 

innovations form (2.1)-(2.2). Consider also the additive decompositions: 

 

= +d s
t t tz    z z  (2.3) 

 
d s

t t tx    x x= +  (2.4) 

 

where d
tz  denotes the part of the time series that exclusively depends on the value of the 

inputs, while s
tz  only depends on the errors ta . Accordingly, d

tx  and s
tx  are the parts of the 

state vector related to the inputs and the errors, respectively. Substituting (2.4) in (2.1)-(2.2) 

and (2.3) in (2.2) yields: 

 

( )1 1 Φ Γ E+ = + + +d s d s
t+ t+ t t t tx x   x x   u   a  (2.5) 

 

( )H D+ = + + +d s d s
t t t t t tz z   x x u   a  (2.6) 

 

and (2.5)-(2.6) can be immediately decomposed in two different SS models. The 

“deterministic sub-system”, that realizes d
tz : 
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1 Φ Γd d
t+ t tx   x  u= +  (2.7) 

 

H Dd d
t t tz    x u= +  (2.8) 

 

and the “stochastic sub-system”, which output is s
tz : 

 

1 Φ Es s
t+ t tx   x  a= +  (2.9) 

 

Hs s
t t tz    x  a= +  (2.10) 

 

This deterministic/stochastic decomposition is a rather standard result of linear 

systems theory, see e.g., Van Overschee and De Moor (1994). The terms “deterministic” and 

“stochastic” may be confusing for readers with a background in statistics or econometrics, 

who would probably find the terms “input-dependent” and “error-dependent” to be more 

accurate. Taking into account this remark, we will maintain the original terminology. 

 

2.3. Reducing the sub-systems to the minimal dimension. 

 

 We assumed (2.1)-(2.2) to be minimal, this condition being sufficient to assure 

observability of s
tz  and d

tz . On the other hand, decomposing this model into its deterministic 

and stochastic sub-systems replicates the state equation. To see this, note that (2.7) and (2.9) 

can be jointly written as: 

 

1

1

Φ 0 Γ 0
0 Φ 0 E

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

d d
t+ t

t ts s
t+ t

x x
    u  a

x x
 (2.11) 

 

and adding (2.8) and (2.10) yields, taking into account (2.3): 

 

[ ] D 0
H H

0 I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

d
t

t t ts
t

x
z     u a

x
 (2.12) 
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Note that this model realizes tz  using 2n states, while (2.1)-(2.2) only requires n 

dynamic components. Therefore (2.11)-(2.12) is a non-minimal system where the output is 

expressed as the sum of two components with identical dynamics which, therefore, cannot be 

distinguished. However, one must take into account that one of these components is the 

output of a deterministic sub-system with source of excitation, tu , which is exactly known. 

As we will see in next Section, this fact reduces the decomposition problem to computing 

adequate initial conditions for the deterministic sub-system. 

 

On the other hand, even if the outputs s
tz  and d

tz  were observable, both sub-systems 

can be separately non-minimal and may contain uncontrollable modes. This happens because 

controllability of the pair (Φ [Γ E]), corresponding to (2.1)-(2.2) does not assure 

controllability of the pairs (Φ Γ) and (Φ E), corresponding to (2.7)-(2.8) and (2.9)-(1.10), 

respectively. For example, if part of the model dynamics is uniquely associated to the inputs, 

as happens in a transfer function, the states describing these dynamics will not be excited in 

the stochastic sub-system and, as a consequence, this sub-system will be uncontrollable. 

 

These uncontrollable modes are redundant and may wreak havoc on standard signal 

extraction algorithms. Fortunately, it is easy to detect and eliminate them by applying, e.g., 

the Staircase algorithm (Rosenbrock 1970) to each sub-system. The following example 

illustrates the previous discussion and the elimination of uncontrollable modes. 

 

Example. Consider the following SISO model: 

 
.5 1

1 .6 1t t tz u a
B B

= +
− −

 (2.13) 

 

which can be written in block-diagonal innovations form (Casals, Jerez and Sotoca 2002, 

Result 2) as: 
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1 1

1
2 2

1

1 0 0 1.166
0 .6 .103 0

t t
t t

t t

x x
u a

x x
+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.14) 

 

[ ]
1

2.858 2.916 .5t
t t t

t

x
z u a

x
⎡ ⎤

= − + +⎢ ⎥
⎣ ⎦

 (2.15) 

 

and, according to (2.7)-(2.8) and (2.9)-(2.10) the deterministic and stochastic sub-systems are:  

 
1 1
1
2 2
1

1 0 0
0 .6 .103

d d
t t

td d
t t

x x
u

x x
+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.16) 

 

[ ]
1

2.858 2.916 .5
d

d t
t td

t

x
z u

x
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

 (2.17) 

 
1 1
1

2 2
1

1 0 1.166
0 .6 0

s s
t t

ts s
t t

x x
a

x x
+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.18) 

 

[ ]
1

2.858 2.916
s

s t
t ts

t

x
z a

x
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

 (2.19) 

 

 Note that the first state in (2.16) and the second state in (2.18) will never be excited, as 

they do not depend on the values of the input and the error, respectively. Therefore, they are 

uncontrollable and the overall system is not minimal. Applying the Staircase algorithm to 

(2.16)-(2.17) and (2.18)-(2.19) yields two equivalent and minimal systems:  

 

1 .6 .103d d
t t tx x u+ = −  (2.20) 

 

2.916 .5d d
t t tz x u= − +  (2.21) 

 

1 1.166s s
t t tx x a+ = +  (2.22) 

 

.858s s
t t tz x a= +  (2.23) 
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3. Signal decomposition. 

 

 Assuming that the minimal sub-system matrices are known, we will now address the 

problem of estimating the sequences, s
tz  and d

tz  (or i r, , , , ,= 1 2 …d i
tz ), for a given sample 

{ }N

t
,

=1t tz u . To this end, note that the solution of d
tx  in (2.7) is given by: 

 
t

i

-1 -1-
1Φ Φ Γ

−

=

= +∑
1

1

d t d t i
t ix   x  u  (3.1) 

 

If we had an adequate initial condition for the deterministic sub-system, 1ˆ
d

Nx , 

computing the decomposition would reduce to: (a) propagating (3.1) to obtain the sequence 

{ }N

t
ˆ

=2

d
t Nx ; (b) estimating the output of the deterministic sub-system which, by (2.8), would be: 

 

H Dˆˆ = +d d
tt N t Nz    x u  (3.2) 

 

and (c) obtaining the corresponding outputs of the stochastic sub-system using (2.3): 

 

ˆ ˆ= −s d
tt N t Nz    z z  (3.3) 

 

De Jong and Penzer [1998, eq. (11)] derived a result analogous to (3.1)-(3.2) in a 

slightly different context. 

 

The problem reduces then to estimating the initial state of the deterministic sub-system. 

De Jong (1988) shows that the parameter matrices in (2.1)-(2.2) and the Kalman filter gain, 

K t , are not affected by the initial state, 1x , and also that: 

 

-1 1H= + *
t t tz    x zΦ  (3.4) 

 

where: 
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tz : the sequence of innovations resulting from a Kalman filter arbitrarily 

initialized with a null state and a null covariance, 
*
tz : the Kalman filter innovations that would result if the true initial conditions 

were null, and 

tΦ : the matrix sequence resulting from: ( ) 1K H −= −Φ Φ Φt t t , with 1 I=Φ  

 

Expression (3.4) can be written in matrix form as:  

 

1= + *Z   X x Z  (3.5) 

 

where Z and *Z are (m×N)×1 vectors containing the innovations tz  and *
tz , respectively, and 

X is matrix which row-blocks contain the values -1H tΦ . 

 

 Taking into account that: 1 1 1= +d sx    x x , it would be natural to write (3.5) as 

( )1 1 1 1= + + = + +d s * d s *Z   X x x Z Xx Xx Z . However, the matrices affecting 1
dx  and 1

sx  in 

this expression can be different, because we concentrate on the controllable modes of the sub-

systems, see Section 2.3. Therefore, distinguishing between the initial states of the 

deterministic and stochastic sub-systems yields the following version of (3.5): 

 

1 1= + +d d s s *Z   X x X x Z  (3.6) 

 

 To solve the initialization problem, we will follow the logic of De Jong and Chu-

Chun-Lin (1994). Accordingly, an adequate initialization for the stochastic sub-system is 

given by 1 1(0, )∼sx N P , where 1P  is a covariance matrix that depends on the system roots, 

while the deterministic sub-system would have a non-zero initial state, 1
dx , with null 

covariance. The GLS estimate of 1
dx  (ML under normality) would then be given by: 

 

( ) ( ) ( ) ( )
-1-1 -1T T T T

1 11ˆ
⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

d d s s d d s s
Nx X X P X B X X X P X B Z  (3.7) 
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where ( )cov( ) diag 1 2, , ,= = …*
nB Z B B B , being tB  the covariance matrix of the innovations 

resulting from the KF(0,0). Note that Exp. (3.7) is a particular case of (E.13) in Terceiro 

(1990). Taking into account the Matrix Inversion Lemma: 

 

( ) ( ) ( )
-1

-1 -1 -1 -1T T T-1
1 1

⎡ ⎤ ⎡ ⎤+ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
s s s s s sX P X B B B X P X B X X B  (3.8) 

 

so (3.7) can be written equivalently as:  

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

-1
-1 -1 -1 -1

-1 -1 -1 -1

T T T T

T T T T

-1
11

-1
1

ˆ ⎡ ⎤= − + ⋅⎢ ⎥⎣ ⎦
⎡ ⎤− +⎢ ⎥⎣ ⎦

d d d d s s s s d
N

d d s s s s

x X B X X B X P X B X X B X

X B Z X B X P X B X X B Z
 (3.9) 

 

 These initial conditions allow for both, stationary and unit roots. This happens because 

(3.9) does not depend on 1P , which is arbitrarily large in the nonstationary case, but on -1
1P . 

As De Jong and Chu-Chun-Lin (1994) showed, when the system has both types of roots -1
1P  

converges to a finite matrix, with as many null eigenvalues as nonstationary system states. 

 

To compute (3.9), we need to calculate five terms: ( ) -1Td dX B X , ( ) -1Ts sX B X , 

( ) -1Td sX B X , ( ) -1TdX B Z  and ( ) -1TsX B Z . To do this, we first compute the matrices 

( ) -1TX B X  and ( ) -1TX B Z  as:  

 

( ) -1 -1
N

T

t

H H
=

=∑
1

T
t t tX B X BΤΦ Φ  (3.10) 

 

( ) -1 -1
N

T

t

H
=

=∑
1

T
t t tX B Z B zΤΦ  (3.11) 

 

and, as X is known, it is easy to find the matrices dT  and sT , such that: = d
dX T X  and 

= s
sX T X . Under these conditions the five terms needed to compute (3.9) are given by: 

 

( ) -1 -1T
=d d T T

d dX B X T X B X T  (3.12) 
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( ) -1 -1T
=d s T T

d sX B X T X B X T  (3.13) 

 

( ) -1 -1T
=s s T T

s sX B X T X B X T  (3.14) 

 

( ) -1 -1T
=d T T

dX B Z T X B Z  (3.15) 

 

( ) -1 -1T
=s T T

sX B Z T X B Z  (3.16) 
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4. Unscrambling the effect of individual inputs. 

 

The decomposition described in Sections 2 and 3 is useful when one is interested in 

the total effect of all the exogenous variables. On the other hand, in models with several 

inputs one may want to estimate the individual effect of each one of them.  

 

This separation is easier if we write the deterministic sub-system (2.7)-(2.8) in its 

equivalent Canonic Controllable Luenberger form (hereafter CCL form), denoted by: 

 

1 Φ Γ= +d d
t+ t tx   x  u  (4.1) 

 

H D= +d d
t t tz    x u  (4.2) 

 

Model (4.1)-(4.2) can be obtained by a similar transformation of (2.7)-(2.8) 

characterized by the matrix T, see Petkov et al. (1991), such that Φ T ΦT−= 1 ; H HT= ; 

Γ T Γ−= 1  and T−= 1d d
t tx  x . Accordingly, the initial state of the CCL system corresponding 

to the vector 1ˆ
d

Nx  defined in (3.9) would be:  

 

1 1Tˆ ˆ−= 1d d
N Nx x  (4.3) 

 

 The controllability matrix of the CCL realization ( )Φ H Γ D, , ,  separates the dynamics 

associated to each individual inputs, therefore allowing to discern whether a given input 

affects (or not) each system state. To see this, note that propagating the CCL model according 

to (3.1) yields: 

 
t t t

t

1Φ Φ Γ Φ Γ Γ− − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1

21 2 3

1

…d d
t

u
u

x   x  

u

 (4.4) 
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where t tΦ Γ Φ Γ Γ− −⎡ ⎤= ⎢ ⎥⎣ ⎦
2 3 …C  is the controllability matrix of the CCL system. 

According to (4.4), its zero/nonzero structure characterizes which inputs affect any given 

state. Specifically, if the i-th state is not excited by the j-th input, then the elements ( )i, jc , 

( )i, j r+c , ( )i, j r+2c , …, ( )i, j n r( )+ − ×1c  should be null, being r the number of inputs. 

 

 Under these conditions, estimating the individual effect of each input requires:  

 

 (1) Decomposing the initial condition (4.3) into r vectors, such that each one of them 

is exclusively related to one of the r system inputs.  

 

 (2) Propagating the r systems given by Φ , H , and the j-th columns of Γ  and D  

( j r, , ,= 1 2 … ), starting from the corresponding initial conditions. 

 

 Ideally, the initial vectors 1,
ˆ d

jx  would be orthogonal and such that 
j

1,1
ˆ ˆ

r

=

=∑
1

d d
jNx x . Its 

orthogonality can be assured by distributing the initial state of the CCL system according to 

the structure of the controllability matrix C : 

 

 ( )
( ) ( ) ( ) ( )

( )1,
1

if
otherwise

d
dj
N

i, j i, j r i, j r i, j n r
x i

x i

j r i n

( )
ˆ

, , , ; , , ,

⎧⎪ = + = + = = + − × =⎪= ⎨⎪⎪⎩

= =

0 2 1 0

1 2 1 2

…

… …

c c c c

 (4.5) 

 

where ( )1
d
Nx iˆ is the i-th element of 1

ˆ d
Nx . Last, the vectors resulting from (4.5), 1,

d
jx , should be 

transformed according to: 

 

j r1, 1,
ˆ ; , , ,= = 1 2 …d d

j j jx xΠ  (4.6) 

 

where jΠ  is the orthogonal projector in the null space of the matrix 

1,1 1,2 1, 1 1, 1 1,
ˆ ˆ ˆ ˆ ˆ

− +
⎡ ⎤⎢ ⎥⎣ ⎦… …d d d d d

j j rx x x x x . The initial conditions (4.6) can then be interpreted, 
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either as the part of the CCL initial state that is orthogonal to the rest of the inputs, or as the 

marginal contribution of each input to the initial condition of the CCL system. 

 

 In many models, such as e.g. transfer function models, each mode is affected only by a 

single input, so the orthogonal projector jΠ  is the identity and the condition 
j

1,1
ˆ ˆ

r

=

=∑
1

d d
jNx x  is 

assured. On the other hand, if a given input affects more than one mode, the decomposition 

does not assure a complete split of (4.3) so, in general, there will be a remainder 
r

j
1,1ˆ ˆ

=

− ≠∑ 0
1

d d
jNx x . This remainder can be propagated with the pair (Φ , H ) and the resulting 

component could be interpreted as the common effect of the system inputs. 
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5. Empirical example. 

 

Now we will show how the decomposition proposed can be used to gain insight on the 

relationship between different time series. To this end, we will use the famous monthly series 

of sales and advertising of the Lydia Pinkham vegetable compound, see Figure 1. 

 

[Insert Figure 1] 

 

This product was introduced in 1873. It was an herbal extract in a 18-20% alcoholic 

solution, and was considered to be effective against “all those painful Complaints and 

Weaknesses so common to our best female population”. Additional medical claims followed 

the commercial success of the compound. The company gained strong publicity because of 

controversies around the product ingredients and a large court case, which made public this 

data base. The company was finally sold in 1968, but some medicinal products with the 

generic “Lydia Pinkham” brand can be acquired today by direct order.  

 

These series are important in empirical research about the effects of advertising for 

several reasons: (a) the product is a frequently purchased, low-cost consumer nondurable, 

being this class of products specially interesting to marketing researchers; (b) advertising, 

primarily in newspapers, was the only marketing instrument used by the company; (c) price 

changes were small and infrequent; whereas (d) the distribution, mainly through drug 

wholesalers, remained fairly stable; furthermore, (e) there were no direct competitors for this 

product, so the market under study can be considered a closed sales-advertising system. 

Because of these convenient features, this data base was used by early researchers such as 

Palda (1964), Houston and Weiss (1975) or Bhattacharyya (1982), and in very recent works 

such as Kim (2005) or Smith, Naik and Tsai (2006). 
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Simple inspection of Figure 1 shows that both series have seasonal fluctuations and 

show a downward drift. We: (a) fitted an IMA(1,1)x(1,1)12 model to log advertising; (b) 

prewhitened the logs of both series using this model; and (c) computed the corresponding 

sample cross-correlations. These cross-correlations show a rough sinusoidal pattern between 

current sales and lagged advertising, with no substantial feedback. This sinusoidal pattern 

leads us to specify the following family of models:  

 
2 12

0 1 2
2 12

1 2

(1 )(1 )ln 100 ln 100
1 (1 )(1 )t t t

B B B BS A a
B B B B

ω ω ω θ
δ δ
+ + + +Θ

× = × +
+ + − −

 (5.1) 

 

where tS  and tA  denote, respectively, sales and advertising in month t, B denotes the 

backshift operator, such that for any tw : , 0, 1, 2,k
t t kB w w k−= = ± ± …  and 2(0, )t aa iid σ∼ . 

Table 1 summarizes the estimation results and some residual statistics for five particular cases 

of (5.1). On the basis of the small AIC and Q-statistic values, we choose model #5 as a valid 

specification for the illustrating purpose of this exercise. 

 

[Insert Table 1] 

 

Note that: 

 

1) The roots of the polynomials in the numerator and denominator of the transfer 

function are, respectively, -.186±1.040i and .475±1.052i so, even though this 

model may be somewhat overparametrized, these roots do not motivate a 

simplification of redundant dynamic factors. 

2) On the other hand, the impulse-response function implied by this specification 

has both, positive and negative values. In a sales-advertising system this can 

happen when the product has a loyal customer base and the advertising 

accelerates the consumption, therefore changing the distribution of re-stocking 

purchases over time. 
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 Using the decomposition described in previous Sections, we estimated the additive 

contribution of log advertising to log sales, obtained the corresponding multiplicative estimate 

of this effect and discounted it from the original sales series. The results are shown in Figure 

2. Figure 3 plots the resulting estimate of the value added by advertising, computed as the 

difference between the contribution of advertising to sales in each month and the 

corresponding investment. Note that the return in many months is negative. In fact, the sum of 

the estimates in Figure 3 is -.3 million dollars, so advertising in this case did not create value 

for the firm. 

[Insert Figures 2-3] 

 

 Further decomposition of the stochastic components reveals a possible cause for this 

lack of performance. Figure 4 plots the multiplicative components of sales corresponding to 

seasonality and the estimated effect of advertising. Note that both series have a clear negative 

correlation, meaning that advertising was systematically increased in the lower phases of the 

seasonal cycle and decreased in the higher phases. Taking into account that both effects are 

multiplicative, it is clear that this anti-cyclic management of advertising does not maximize 

the sales. In fact it is easy to devise a little contrafactual experiment consistent of: (a) 

distributing the annual advertising expenditure as a direct proportion of the seasonal 

component, (b) forecasting the corresponding sales, and (c) computing the corresponding 

value added by advertising, as was done in Figure 3. The resulting values substantially 

improve previous ROI estimates.  

 

[Insert Figure 4] 
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6. Concluding remarks. 

 

 This paper describes a method to compute the effect of exogenous inputs on the 

outputs of a model. The problem is solved in a general SS framework, using standard signal-

extraction techniques. Once the effect of model inputs has been estimated and extracted, the 

remaining “stochastic component” can be further decomposed by a standard method into 

trend, cycle, seasonal and irregular components.  

 

 With some work, the methods discussed here can be applied to VARMA-type models 

without exogenous inputs, by obtaining the causal transfer functions implied. Consider e.g., 

the example given by Wei (1994, pp. 338), which is based in the VAR model: 

 
1 1

11 12
2 2

22

1 0
; cov( )

1
t t

t
t t

B z a
a

B B z a
φ σ σ
φ φ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

11

21 22

−
= =

− − =ta  (6.1) 

 

Model (6.1) can be easily written in transfer function form as: 

 

 1 1

2 1 2

1

1 1

t t

t t t

z a
B

Bz z a
B B

φ

φ
φ φ

11

21

22 22

1=
−

1= +
− −

 (6.2) 

 

 

however, this representation does not account for nonzero covariances between the 

disturbances in both equations. Assume that:  

 
1 1 2 1 2;t t t t ta a aε ω ε= = +  (6.3) 

 

being 1
tε  and 2

tε  orthogonal errors. Under these conditions, it is easy to see that the causal 

transfer function relating 2
tz  and 1

tz  is:  
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( )2 1 2

1 1t t t

B
z z

B B
ω φ ωφ

ε
φ φ

21 11

22 22

+ − 1= +
− −

 (6.4) 

 

and the algorithm discussed in previous sections can be immediately applied to (6.4). 

 

The procedures described in this article are implemented in a MATLAB toolbox for 

time series modeling called E4, which can be downloaded at www.ucm.es/info/icae/e4. The 

source code for all the functions in the toolbox is freely provided under the terms of the GNU 

General Public License. This site also includes a complete user manual and other materials. 
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Figure 1: Monthly series of sales and advertising of the Lydia Pinkham vegetable compound 

from January 1954 to June 1960 (78 monthly values). Source: Palda (1964). 
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Figure 2: Sales versus the exponential of the stochastic component. The distance between 

both series (gray area) can be interpreted as an estimate of the effect of advertising over sales. 
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Figure 3: Estimated value added by advertising, computed in each period as the estimate of 

sales generated by advertising minus the advertising investment. 
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Figure 4: Multiplicative effect of advertising (thick line) versus multiplicative seasonality of 

sales (thin line). The values between November 1957 and February 1958 are fixed-interval 

smoothing interpolations. Note that Seasonal and Advertising factors are negatively correlated 

(-.87) so advertising was systematically increased in the seasonal cycle lows and decreased in 

the highs. 
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Table 1: Results from model estimation. Parameter estimates were obtained by maximizing the gaussian likelihood function, computed as 
described in Casals, Sotoca and Jerez (1999). The figures in parentheses are standard errors, obtained from an analytical information matrix, see 
Terceiro (1990). Observations between November 1957 and February 1958 have been treated as missing values, because they were outliers. 
 
 
 
Model # 0ω̂  1ω̂  2ω̂  

1̂δ  2̂δ  θ̂  Θ̂  ˆaσ  ĝ 1 Likelihood2 AIC3 SBC4 Q(10)5 

1 .061 
(.017) 

-- -- -.391 
(.165) 

-- -.910 
(.049) 

-.687 
(.186) 

8.321 .101 234.557 6.144 6.294 7.56 25.99
12.77 15.14
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

2 .050 
(.022) 

.037 
(.022) 

.034 
(.021) 

-- -- -.913 
(.058) 

-.651 
(.204) 

8.174 .121 229.941 6.050  6.231 5.68 23.91
9.95 15.14
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

3 .042     
(.012) 

-- -- -1.143   
(.122) 

.721     
(.084) 

-.905    
(.048) 

-.523    
(.120) 

7.855 .073 227.833 5.996 6.177 9.95 14.15
11.40 15.14
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4 .027     
(.015) 

.042     
(.015) 

-- -.817    
(.081) 

.697     
(.083) 

-.899    
(.051) 

-.572    
(.117) 

7.746 .078 226.981 6.000  6.211 8.87 6.81
 

10.98 15.14
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

5 .048 
(.018) 

.016 
(.016) 

.043 
(022) 

-.713 
(.118) 

.751 
(.088) 

-.899 
(.055) 

-.628 
(.162) 

7.536 .103 225.807 5.995  6.237 9.69 6.94
11.99 15.14
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 
 
 
1 Steady-state gain, computed as: 0 1 2

1 2

ˆ ˆ ˆ
ˆ ˆ ˆ1
g ω ω ω

δ δ
+ +

=
+ +

 

2 Value of the gaussian likelihood 
3 Akaike (1973) information criterion 
4 Schwartz (1978) information criterion 
5 Matrix of Ljung-Box (1978) Q statistics for the sample auto and cross-correlation functions of the model residuals and the prewhitened 
advertising series. 
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