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Abstract

In this paper we measure the welfare cost of fluctuations in a simple representative
agent economy with nonclearing markets. The market friction we consider involves
price rigidities and a voluntary exchange rationing scheme. These features are in-
corporated into an otherwise standard neoclassical growth model. We show that the
frictions we introduce make the losses from fluctuations much bigger than in a friction-
less environment.
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1 Introduction

In a seminal contribution, Lucas [1987] has shown that in a representative agent framework,

the potential welfare gain from stabilizing consumption around its mean is small. Let us recall

briefly Lucas’s argument. Assume that aggregate consumption follows a log linear process

around a deterministic trend, ct = (1 + µ)te−
1
2
σ2

zzt, where {zt} is a stationary stochastic

process with a stationary distribution given by ln zt  N(0, σ2
z) so the expected value of

consumption does not depend on the variance. Then, the cost of instability can be computed

as the percentage increase in consumption, uniform across all dates and values of the shocks,

required to leave the consumer indifferent between consumption instability and a perfectly

smooth consumption path. With a CRRA utility function with risk aversion coefficient ν,

this cost is given by 1
2
νσ2

z . With σz = 0.013 (Lucas’s estimate), and ν = 5, the welfare cost

of fluctuations is only 0.042% of average consumption. When implemented in calibrated

versions of standard representative-agent Dynamic Stochastic General Equilibrium (DSGE)

models, the conclusion is basically unchanged.1

In this paper we propose a model in which the welfare cost of fluctuations is non trivial,

because fluctuations magnify some market imperfections. The market friction we consider is

the predetermination of some prices. When prices are set in advance, markets do not clear,

and we assume that transactions occur at the minimum of demand and supply. Such a ra-

tioning scheme is known as “voluntary exchange hypothesis” in the literature on nonclearing

1Two strands of the literature have looked for DSGE models in which Lucas’s measure can be higher.
The first relaxes the assumption of a representative agent and introduces incomplete insurance markets as
in Imrohoroglu [1988], Atkeson and Phelan [1994] and Krusell and Smith [1999] among others. A second
strand, following the work of Epstein and Zin [1991], adopts more general utility functions, for which the
intertemporal elasticity of substitution is not the inverse of the degree of relative risk aversion, as in Obstfeld
[1994] and Epaulard and Pommeret [2003] among others.
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markets (see Benassy [1993] for an overview), and it is a very natural one in a free market

economy: no agent can be forced to purchase more than she demands, or to sell more than

she supplies. As in Lucas [1987] and Lucas [203], our approach consists of measuring the

costs to risk averse households of the consumption variability associated with the business

cycle.2 As we know the model economy we adopt a structural measure of the welfare cost

of fluctuations. We discuss this measure and its relation with a measure that only requires

the knowledge of the equilibrium process of consumption in some detail.

We show that nonclearing markets make the losses from fluctuations much bigger than

in a frictionless environment. But this is so only when the welfare cost of fluctuations

is measured taking fully account of transitions and nonlinearities. In order to make the

argument more transparent we restrict ourselves to a fully analytically computable case.

The paper is organized as follows. In Section 2 we present a simple analytical Real

Business Cycle model with or without nonclearing markets. Section 3 describes the way we

measure welfare costs of fluctuations. In Section 4 we present our main quantitative results.

A last section concludes.

2 The Model Economy

We first introduce the environment, and then describe the two cases we consider: the wal-

rasian case and the nonclearing market case.

The economy is competitive, populated by one final good firm, one intermediate good

firm and one household. All agents behave competitively and have rational expectations.

2As it is standard in this context we are restricting ourselves to the question about the welfare gains of
eliminating business cycles which is truly a hypothetical one. The limitation of doing so is that the exercise
is silent about the design of policy that would stabilize the economy.
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The final good is the numéraire. The household buys the consumption good, accumulates

capital, and sells labor services to the intermediate good firm at price wt and capital services

to the final good firm at price zt. The intermediate good firm uses only labor as input, and

sells its output to the final good firm at price ωt. The final good firm sells its output to the

household, that allocates it between consumption ct and investment (next period capital)

kt. The production function of the final good firm is subject to technology shocks. The

intermediate and consumption good cannot be stored.

The non-walrasian feature of the model comes from the fact that the price of the inter-

mediate good is set, before observation of the technology shock, at the level that clears the

intermediate good market in expectation (the expected walrasian price). As there are no

pricing decisions made by agents in this competitive model, the next period walrasian price

is a natural target for price setting. Such an assumption is generally made in the fixed-price

literature with perfect competition (see for example Benassy [1995]). The production of the

intermediate good is done before observation of the technology shock, and the worker is

promised a wage that is indexed on the firm sales. The payment of that wage is done after

observation of the shock and transactions on the intermediate good market. Therefore, in

case of a negative surprise on the level of technology, a fraction of the intermediate good will

not be sold, and will be wasted, although the amount wasted is zero in expectations. Once

the shock is observed, the final good firm determines its optimal demand for intermediate

good, and trade occurs. As prices are not walrasian, supply and demand will not equalize,

and a rationing scheme must be specified. We assume voluntary exchange: no agent is forced

to buy or sell if she does not want to. As a consequence, the level of transaction on the inter-

mediate good market will be the minimum of demand and supply at given (non walrasian)
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price. If demand is lower than supply, workers will receive a wage that is ex post lower than

their marginal disutility of labor, although it was ex ante clearing the labor market. With-

out shocks, the preset price economy replicates the competitive allocations, and is therefore

efficient. Fluctuations are costly not only because agents prefer smooth consumption and

leisure, as in the competitive model, but also because fluctuations create inefficiencies and a

waste of resources.

It goes without saying that the calibrated model we consider needs not to be the most

realistic, as we restrict ourselves to a fully analytically computable case. Indeed, we will

consider a case with logarithmic utility, lognormal shocks and full depreciation.

2.1 Technology and Preferences

Utility is derived from consumption and leisure, the intermediate good is produced with

labor, while the final good is produced using capital and the intermediate good. The final

good is either consumed or invested.

More specifically, the final good firm uses ht units of the intermediate good and kt units

of capital to produce according to a Cobb Douglas technology:

yt = θtk
α
t−1h

1−α
t (1)

with

θt = Θ(σε, ρ)θρ
t−1εt. (2)

Here, εt is the innovation to θt, and it is assumed that log εt follows an i.i.d. Gaussian

process with zero mean and standard deviation σε. We also assume that |ρ| < 1. Θ(σε, ρ) =(
exp

(
−1

2
σ2

ε

1−ρ2

))1−ρ

is a correction parameter that guarantees that the mean of θ is always
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equal to one, for any level of σε and ρ. Therefore, variations in the level of σε will be

mean preserving spread variations of uncertainty. It is useful for the following to note that

θt = Et−1[θt]εt.

The final good cannot be stored, is used for consumption and investment, and capital

fully depreciates from one period to another, so that

ct + kt = yt (3)

The intermediate good firm hires labor nt and produces intermediate good ht according

to the linear one-to-one technology

ht = nt (4)

The intermediate good cannot be stored.

Preferences are given by the following expected discounted lifetime utility

Et

[
∞∑

j=0

βj (log ct+j + γ log(1− nt+j))

]
(5)

We consider two cases. In the first one (the Walrasian case), there are no preset prices.

In the second case (the nonclearing markets case), the price ωt of the intermediate good is

preset and the production of the intermediate good is realized before the current shock has

been observed.

2.2 The Walrasian Case

In this case, all decisions are taken after the shock εt has been revealed.

Optimal Individual Behavior : The final good firm maximizes its profit yt−ωtht−ztkt−1

for given walrasian input prices ωt (labor) and zt (capital). From this problem, one gets the
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two following first order conditions:

ωt = (1− α)θtk
α
t−1h

−α
t (6)

zt = αθtk
α−1
t−1 h1−α

t (7)

The household maximizes its utility with respect to an intertemporal budget constraint.

This problem admits the following recursive representation:

V (kt−1, θt) = max
ct,nt,kt+1

{(log ct + γ log(1− nt)) + βEtV (kt, θt+1)} (8)

s.t. ct + kt ≤ ztkt−1 + wtnt (9)

The first order conditions of this problem are given by

γ

1− nt

=
wt

ct

(10)

1

ct

= βEt

[
zt+1

ct+1

]
(11)

together with the budget constraint and the transversality condition limj→∞Etβ
j kt+j

ct+j
= 0.

The intermediate good firm maximizes ωtht−wtnt subject to the technological constraint

ht ≤ nt. Its optimal behavior is therefore
nt = ht = 0 if wt > ωt

nt = ht ≥ 0 if wt = ωt

nt = ht = ∞ if wt < ωt

(12)

Walrasian Equilibrium : From those optimal behaviors, and imposing market clearing

conditions on the input and product markets, one can derive equilibrium allocations and

prices. From the intermediate good firm behavior (12), we have that, at the walrasian

equilibrium, ωt = wt and ht = nt ∀ t, so that the intermediate good firm is transparent.

From (11) and (7), and using (3), we obtain

kt

ct

= αβEt

[
1 +

kt+1

ct+1

]
(13)
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Solving (13) forward, using (3) and the transversality condition, we obtain

ct = (1− αβ)yt (14)

kt = αβyt (15)

In this model, the saving rate is constant, which is key to get an analytical solution. Com-

bining (10) with (6) and (14) gives

ht = h̃ = nt = ñ =
(1− α)

1− α + γ(1− αβ)
(16)

According to (16), employment is constant in a competitive equilibrium.

In the walrasian case, the dynamics is therefore fully characterized by the following set

of equations: 

ht = h̃
nt = ht

θt = Θ(σε, ρ)θρ
t−1εt

yt = θtk
α
t−1h

1−α
t

ct = (1− αβ)yt

kt = αβyt

ww
t = (1− α)θtk

α
t−1h

−α
t

(17)

where the superscript w stands for walrasian. Note that one will have ωw
t = ww

t

2.3 The Nonclearing Market Case

In that case, we assume that the period is composed of two subperiods. In the first one, the

shock εt is unknown, while it is known on the second.

First Subperiod Optimal Individual Behavior : In that subperiod, the household

supplies labor to the intermediate good firm, production of intermediate good takes place

and the price ωt at which the intermediate good will be sold to the final good firm is set.
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The household’s labor supply and optimal consumption-saving behavior follows from the

program

V (kt−1, θt−1) = max
nt

{
γ log(1− nt) + Et−1

[
max
kt,ct

{log ct + βEtV (kt, θt)}
]}

(18)

s.t. ct + kt ≤ ztkt−1 + wtnt (19)

Note that labor supply is decided before observation of the shock while consumption and

savings are decided after. The first order conditions of this problem are given by

γ

1− nt

= Et−1

[
wt

ct

]
(20)

1

ct

= βEt

[
zt+1

ct+1

]
(21)

together with the budget constraint and the transversality condition limj→∞Etβ
j kt+j

ct+j
= 0.

The intermediate firm maximizes its expected profit Et−1[ωtht − wtnt], and follows the

following optimal rule: 
nt = 0 if Et−1[wt] < ωt

nt = Et−1[ht] ≥ 0 if Et−1[wt] = ωt

nt = ∞ if Et−1[wt] > ωt

(22)

It is assumed that ωt is preset at the level that clears the intermediate good market at

period t in expectation Et−1[ω
w
t ] = Et−1[w

w
t ]. We therefore have

ωt = Et−1[ω
w
t ] = Et−1[w

w
t ] = (1− α)kα

t−1ñ
−αEt−1[θt] (23)

where we use the fact that kt is known at period t− 1.

As the amount of sales of the intermediate good firm in the second subperiod is uncertain,

the wage contract it offered to the household is specified as follows. The household works nt

in subperiod 1, and receives in subperiod 2 the proceeds of the intermediate goods ωw
t ht. The
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current wage offered is therefore wt = Et−1[ωtht]/nt. Note that profits of the intermediate

good firm are null in all states of the world.3

Second subperiod Optimal Individual Behavior : In the second subperiod, the

shock εt is revealed, and the final firm determines its optimal demands for input, that solve

ωt = (1− α)θtk
α
t−1h

−α
t (24)

zt = αθtk
α−1
t−1 h1−α

t (25)

In particular, intermediate input demand is given by (solving (24) for ht):

hd
t = ω

−1/α
t (1− α)1/αθ

1/α
t kt−1 (26)

The intermediate firm holds a stock of intermediate good hs
t = nt, that has been produced

in subperiod 1, and sells as much as it can for the preset price ωt. Transactions on the

intermediate good market will be given by ht = min(hs
t , h

d
t )

The household receives labor income ωtht/nt, and decides to allocate it between con-

sumption and investment according to (21) together with the budget constraint and the

transversality condition.

Nonclearing Market Equilibrium : We first derive the optimal non walrasian equi-

librium employment, and then compute other equilibrium quantities. From the expression

of intermediate input demand (26) and the value of the wt, as given in (23), we get

hd
t = ñε

1/α
t (27)

3An alternative interpretation can be given to the wage schedule. One can assume that the intermediate
firms promise a fixed wage ww

t to the worker. If εt > 1, then the intermediate firm sells all its output and is
able to pay its wage bill. If εt < 1, then cash flow ωtht is smaller than the wage bill. The firm goes bankrupt
and the worker, who is the only claimant, gets the residual value of the firm ωtht, which is ωtht/nt per unit
of time worked.
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where ñ is the constant walrasian equilibrium level of employment and intermediate input

production in the walrasian equilibrium. From the optimal behavior of the intermediate firm

(22), we obtain that in a nonclearing market equilibrium, nt = Et−1[ht] and ωt = Et−1[wt].

Therefore,

h = min
(
nt, ñε

1/α
t

)
(28)

Using (25), (21), the budget constraint and the transversality condition, we obtain that the

saving rate is also constant in the nonclearing market economy:

ct = (1− αβ)yt (29)

kt = αβyt (30)

One can now compute the right hand side of labor supply (20), using (23), (28) and (29):

Et−1

[
wt

ct

]
=

1− α

1− αβ

ñ−α

nt

Et−1

[(
min(nt, ñε

1/α
t

)α]
(31)

Optimal first subperiod labor supply is therefore the solution of

γnt

(1− α)(1− nt)
=

1

1− αβ
ñ−αEt−1


(
min(nt, ñε

1/α
t

)α

εt

 (32)

Equation (32) deserves some comments. First, the solution does not depend on time, as ε

is an iid shock. Therefore, we will have nt = n ∀ t in the nonclearing market equilibrium.

Second, without shocks, i.e. if εt = 1 ∀ t, the preset price ωt is the walrasian one, and one can

check that n = ñ. Third, n < ñ: as there exists some uncertainty on the second subperiod

wage when the household supplies hours, a precautionary motive leads to lower labor supply

and lower employment. Equation (32) has no analytical solution, but its solution can be

easily computed numerically. Once n is known, the rest of the model is solved trivially.
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In the nonclearing markets case, the dynamics of aggregate quantities is therefore fully

characterized by the following set of equations:

nt = n
θt = Θ(σε, ρ)θρ

t−1εt

h = min
(
nt, ñε

1/α
t

)
yt = θtk

α
t−1h

1−α
t

ct = (1− αβ)yt

kt = αβyt

(33)

3 Welfare Analysis

3.1 Measuring Costs

To obtain a structural (model driven) measure of the welfare cost of fluctuations, we compare

the economies with and without fluctuations starting from the same set of initial conditions

S = (k, θ). The measure we compute can be understood as the outcome of the following

thought experiment of structural change: let us assume that we have been in an economy

with shocks from −∞ to T −1, and that from T to ∞, fluctuations are eliminated by setting

εt = 1 ∀ t ≥ T . We evaluate the welfare gain of this structural change by comparing the

expected intertemporal utility of the representative agent in two economies: an economy A

that starts with initial condition ST−1 and in which shocks are not shut down; an economy

B that starts with initial condition ST−1 and without shocks. The conditional (on ST−1)

welfare cost of fluctuations C(ST−1) is then defined as the percentage increase in consumption,

uniform across all dates and values of the shocks, required to leave the consumer indifferent

between consumption path A and B. By repeating this experiment for many different

starting points, drawn in the ergodic distribution of the economy with shocks, one will get

an unconditional measure of the welfare cost of fluctuations C = E [C(ST−1)]. More formally,

the measure we propose is given by
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∫
ST−1

∫
E

∞∑
j=0

βj
[
log

(
cA
T+j (1 + C × cSS)

)
+ γ log(1− nA

T+j)
]

dg(E) df(S)

=

∫
ST−1

∞∑
j=0

βj
[
log cB

T+j + γ log(1− nB
T+j)

]
df(S). (34)

where E is an infinite sequence of ε and f the ergodic joint density of (k, θ) in the economy

with shocks. Note that C is expressed in percentage points of the non stochastic steady-state

level of consumption cSS. Next we explain the way in which we implement the unconditional

measure of the welfare cost of fluctuations that we refer to as a comprehensive one.

3.2 Computation of the Welfare Cost of Fluctuations

The first step consists of computing the solution of the model. This is immediate in our

simple analytical case but it should be obtained by accurate computational methods in most

DSGE models. Note that even though we are able to obtain an analytical solution to the

model in the nonclearing market case, we cannot compute its moments analytically, because

of its nonlinearity (the min operator). We then simulate the solution of the model over 45.000

periods and build upon an empirical estimate of the invariant distribution f(k, θ) of capital

stock and productivity to obtain an evenly spaced grid of 50× 50 points in the k × θ space.

Then we draw initial conditions (k−1, θ−1) in that probability distribution of the economy

with shocks to compute a 1500 periods deterministic transition to the non stochastic steady

state.4 These paths are denoted
{

cB
k−1,θ−1

(t), nB
k−1,θ−1

(t)
}1499

t=0
.

We proceed in a similar way for the economy with shocks. Specifically, this amounts to

simulating 1000 stochastic paths starting from the same initial conditions from which no-

4We extensively compute transition paths for all the cells of the 50 by 50 (k, θ) matrix, and then weight
the utility of each of these paths with the density of its initial conditions.

13



uncertainty transition paths have been computed. These paths are denoted correspondingly{
cA
k−1,θ−1

(t), nA
k−1,θ−1

(t)
}1499

t=0
.

We then evaluate C, our comprehensive measure, using equation (34). We also com-

pute the measure ` = 1
2
σ2

z that corresponds to a non structural evaluation, with σ2
z =

E
[(

cA − E(cA)
)2

]
.

4 Quantitative Findings

The choice of parameter values used in the simulation of the model is given in Table 1. All

these values are standard in the literature. Note that we assume full depreciation to obtain

an analytical solution. The disutility of labor parameter γ is set such that worked hours

represent 20% of the time endowment at the non stochastic steady state.

Table 1: Parameters

Preferences
Subjective discount factor β 0.99
Disutility of labor γ 3.9712
Technology
Capital elasticity α 0.42
Depreciation rate δ 1
Shock process
Serial Correlation of Tech. shock ρ 0.95
Std. dev. of innovation σ 0.01

Table 2: Welfare Cost of Fluctuations

` C
Walrasian economy 0.14% 0.14%
Nonclearing markets 0.16% 0.66%

Table 2 reports the welfare results. First, notice that in the walrasian case, the com-

prehensive welfare cost of fluctuations C is small, and equal to the non structural measure
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`. This result holds because the model is log-linear and shocks are log-normal. Second, the

introduction of price rigidities sharply modifies the evaluation of the welfare cost of fluctu-

ations, as C is now five time bigger. With low risk aversion and small shocks (σε = 0.01),

we measure the welfare cost of fluctuations to be about 0.66% of deterministic steady state

consumption. In the nonclearing market economy, the dominant effects are the underuti-

lization of labor and the waste of intermediate goods. In every period, worked hours are

lower than what they would have been had the real wage been flexible. Therefore, capital

is less productive, accumulation is lower, and output and consumption are lower than in a

walrasian economy. On top of that, there is a waste of intermediate goods when productivity

is lower than expected, as the final good firm does not buy all the production at the preset

price. Once shocks are shut down, the allocation of the preset price economy coincides with

the flexible economy one: the value of capital increases given that time is now efficiently

allocated between work and leisure, and no intermediate goods are wasted. Therefore, the

welfare cost of fluctuations is large. This cost is not properly measured by the non structural

measure `, as this measure does not take into account the increase in the mean of consump-

tion that is associated with stabilization. The C measure, taking into account nonlinearities

(the “min” function in this simple model) and computing the transition from the stochastic

steady-state to the deterministic one, gives a comprehensive measure of this cost.

5 Concluding remarks

When a structural measure of the welfare cost of fluctuations is adopted, this cost appears to

be non trivial in economies where allocations are inefficient, and where those inefficiencies are

magnified by shocks. In the (admittedly specific) example of this paper, the comprehensive
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measure can be almost one order of magnitude larger than in a walrasian model. Working

out the value of the comprehensive measure in more realistic environments is a potentially

fruitful route, that we leave for further research.
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