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Abstract

We propose a new axiom, Weakest Collective Rationality (WCR) which is weaker

than both Weak Pareto Optimality (WPO) in Nash (1950)�s original characterization

and Strong Individual Rationality (SIR) in Roth (1977)�s characterization of the

Nash bargaining solution. We then characterize the Nash solution by Symmetry

(SYM), Scale Invariance (SI), Independence of Irrelevant Alternatives (IIA) and our

Weakest Collective Rationality (WCR) axiom.

JEL classi�cation: C78; D74

Keywords: Nash Bargaining Solution, Pareto Optimality, Strong Individual Ra-

tionality, Weak Pareto Optimality, Weakest Collective Rationality.

1 Introduction

Nash�s bargaining problem is a pair which consists of a convex and compact utility

possibility set and a disagreement point; the latter is the utility allocation that results

if no agreement is reached by both parties.

A bargaining solution selects a unique allocation from any given bargaining problem.

Nash (1950) axiomatically characterized the �rst solution to the bargaining problem,

the Nash solution N; by using Scale Invariance (SI), Symmetry (SYM), Independence of

Irrelevant Alternatives (IIA), and Weak Pareto Optimality (WPO).

Roth (1977) showed that WPO can be replaced by Strong Individual Rationality

(SIR) in the characterization of N . Although neither WPO nor SIR imply each other,
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intuitively Roth�s characterization has been considered as a very signi�cant improvement

over Nash�s original characterization.

We propose a new axiom, Weakest Collective Rationality (WCR), which is weaker

than both WPO and SIR. We then show that combining WCR with SI, SYM and IIA

uniquely characterizes N .

2 Basic De�nitions and Our Result

A two-person bargaining problem is a pair (S; d); where S � R2 is the set of utility
possibilities, and d 2 S is the disagreement point, which is the utility allocation that
results if no agreement is reached by both parties. It is assumed that (1) S is compact

and convex; and (2) x > d for some x 2 S.1 Let � be the class of all two-person problems
satisfying (1) and (2) above. De�ne IR(S; d) � fx 2 Sjx � dg; and WPO(S) � fx 2
Sj8x0 2 R2 and x0 > x) x0 =2 Sg: A solution is a function f : �! R2 such that for all
(S; d) 2 �; f 2 S: The Nash solution, N; is such that its outcome for each (S; d) 2 � is
given by N(S; d) = argmaxf(x1 � d1)(x2 � d2)jx 2 IR(S; d)g:

Nash (1950) showed that N is the unique solution that satis�es the following four

axioms:

Weak Pareto Optimality (WPO): For all (S; d) 2 �; f(S; d) 2WPO(S):
Symmetry (SYM): For all (S; d) 2 �; if [d1 = d2; and (x; y) 2 S ) (y; x) 2 S],

then f1(S; d) = f2(S; d):

Let T = (T1; T2) : R2 ! R2 be a positive a¢ ne transformation if T (x1; x2) =
(a1x1 + b1; a2x2 + b2) for some positive constants ai and bi:

Scale Invariance (SI): For all (S; d) 2 � and a positive a¢ ne transformation T;
f(T (S; d)) = T (f(S; d)) holds.

Independence of Irrelevant Alternatives (IIA) For all (S; d); (T; e) 2 � with
d = e; if T � S and f(T; d) 2 S; then f(S; d) = f(T; d):

Roth (1977) showed that WPO can be replaced by the following axiom:

Strong Individual Rationality (SIR): For all (S; d) 2 �; f(S; d) > d:
WPO, as a condition on collective rationality, requires that the compromise reached

by parties cannot be strictly improved upon. On the other hand, SIR, as a condition on

individual rationality, requires that each party must strictly bene�t from bargaining. As

mentioned in the Introduction, WPO and SIR do not imply each other.

Next, we will introduce a requirement of collective rationality that is considerably

weaker than both WPO and SIR. Denote by D(a) � fx 2 R2jx � ag the set of all points

1Given x; y 2 R2; x > y if xi > yi for each i; and x � y if xi � yi for each i:
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dominated by a: For a given problem (S; d); denote by PI(S) � fx 2 SnWPO(S)j
D(x) \ S = fxgg the set of Pareto inferior points in S: PI(S) is the collection of
non-weak Pareto-optimal compromises such that for each compromise, there is no other

feasible compromise that make both parties worse o¤. For any (S; d) where d is in the

interior of S; the points in PI are dominated by either d1 or d2 or both and they are

the worst possible compromises that the two parties can possibly �nd in S. Our axiom

states that parties should avoid such compromises as a solution outcome.

Weakest Collective Rationality (WCR) For all (S; d) 2 �; f(S; d) =2 PI(S):
Figure 1 shows the di¤erences among WPO, SIR and WCR. Suppose the set of utility

possibilities S consists of all points in a right-angled triangle (boundary included). WPO

then requires the bargaining outcome f(S; d) to be on the hypotenuse. SIR requires

f(S; d) to be in the small right triangle above d: In sharp contrast to WPO and SIR,

WCR allows f(S; d) to be any point in S except w; as PI(S) = fwg: Observe that if
f(S; d) =2 PI(S), then it is not necessarily the case that f(S; d) > d. To see that consider
an f(S; d) arbitrarily close to w in Part 3 of Figure 1. Thus, WCR does not imply SIR.

Likewise, if f(S; d) =2 PI(S), then it is not necessarily case that f(S; d) 2WPO(S). To
see that again consider an f(S; d) arbitrarily close to w in Part 3 of Figure 1. Thus,

WCR does not imply WPO either. But clearly, if f(S; d) > d, then f(S; d) =2 PI(S).
Likewise, if f(S; d) 2WPO(S), then f(S; d) =2 PI(S). Thus, both SIR and WPO imply
WCR. Hence the main result of this paper below improves on Nash (1950) and Roth

(1977)2:

2Although our result holds for more than two parties as well, we will only provide it for two parties
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Proposition 1 N is the unique solution satisfying SYM, SI, IIA, and WCR.

Proof. N satis�es these four axioms. Suppose f satis�es SYM, SI, IIA and WCR. We

will show that f = N: First we prove a lemma. Given any x 2 R and y 2 R such

that x < y; denote by 4(x; y) � convf(x; x); (x; 2y � x); (2y � x; x)g the symmetric
right-angled triangle with (x; x) and (y; y) on the boundary of 4(x; y) (see �gure 2).3

Lemma 1. If f satis�es SYM, SI, IIA andWCR, then for any x � z < y; f(4(x; y); (z; z)) =
(y; y):

Proof. Let l[x; y] (l(x; y)) be the closed (open) line segment connecting (x; x) and

(y; y): We prove it by establishing the following claims:

(i) f(4(x; y); (z; z)) 2 l[x; y] by SYM:
(ii) f(4(x; y); (z; z)) 6= (x; x): Since (x; x) 2 PI(4(x; y)): ByWCR, f(4(x; y); (z; z)) 6=

(x; x):

(iii) f(4(x; y); (z; z)) =2 l(x; y)nf(z; z)g: Simply follow Roth (1977)�s proof.
(iv) f(4(x; y); (z; z)) 6= (z; z): Suppose to the contrary that f(4(x; y); (z; z)) =

(z; z): By IIA, f(4(z; y); (z; z)) = (z; z): On the other hand, f(4(z; y); (z; z)) 6= (z; z)

by WCR, a contradiction.

Consider now a problem (S; d) and identify its Nash solution outcome, N(S; d): By

SI, we can, without loss of generality assume, d = (0; 0) and N(S; d) = (1; 1): By com-

pactness of S and the fact that (1; 1) is the Nash bargaining solution in (S; d); there

here.
3�conv�denotes �the convex hull of.�
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exists x 2 R such that 4(x; 1) � S: By Lemma 1, f(4(x; 1); (0; 0)) = (1; 1): By IIA,

f(S; d) = (1; 1) = N(S; d):

Now we provide intuition as to what roles di¤erent axioms ful�ll in singling out the

solution outcome of a given bargaining problem when one combines SI, IIA and SYM

with (i) SIR or (ii) WCR. Axioms - sometimes in tandem - can be used in ruling out

di¤erent parts or points of the utility possibility set until only the solution outcome

remains.

With Roth (1977)�s replacement of WPO by SIR, all alternatives but the strongly

individually rational ones can be eliminated via SIR. Then, as the proof of Roth�s Lemma

illustrates, IIA and SI together are su¢ cient to rule out any interior (ine¢ cient) alterna-

tives from becoming the solution outcome. Then the rest follows as with Nash�s original

axioms.

Note that if Individual Rationality (for all (S; d) 2 �; f(S; d) 2 IR(S; d)) is used
instead of SIR with SYM, SI and IIA, then both N and d become solution outcomes. If

only SYM, SI and IIA are used, then not only N and d but some point in PI(S) too

becomes a solution outcome.

With our replacement of SIR (or WPO) by WCR, in a nutshell, the two multi-purpose

axioms, IIA and SI, still perform their usual roles, and SYM and WCR provide �nishing

touches (the above proof is surely more complex than this story, but the intutition here

can still paint a su¢ cient picture): After SI makes a suitable transformation of the utility

possibility set, IIA can be used to reduce the utility possibility set to a symmetric one

with only individually rational alternatives. Then IIA and SI together are su¢ cient to

eliminate any interior alternatives from consideration (as in Roth). Subsequently, by

SYM, only d and the unique symmetric e¢ cient alternative remain eligible to become

the solution outcome. Finally, WCR eliminates the worst remaining alternative, d, from

consideration making the unique symmetric e¢ cient alternative the solution outcome.

In the following, we provide the independence of axioms by presenting four solutions.

Each solution violates one axiom while satisfying the remaining three.

SYM Let f(S; d) = argmaxf(x1 � d1)
1
3 (x2 � d2)

2
3 jx 2 IR(S; d)g:

SI Let e(S; d) denote maxfy 2 Rj(y + d1; y + d2) 2 Sg � 0: Let f(S; d) = (e(S; d) +
d1; e(S; d) + d2) if e(S; d) > 0; and f(S; d) = N(S; d) otherwise.

IIA The Kalai-Smorodinsky solution (Kalai and Smorodinsky (1975)): K(S; d) =

maxfu 2 Sj there exists � 2 [0; 1] such that u = �b(S; d) + (1 � �)dg; where b(S; d) �
(b1(S; d); b2(S; d)) with bi(S; d) = maxfxijx 2 IR(S; d)g is the ideal point in (S; d):

WCR For all (S; d) 2 �; f(S; d) � d.
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