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Shiqing Ling
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Michael McAleer
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Abstract

This paper investigates the asymptotic theory for a vector ARMA-GARCH
model. The conditions for the strict stationarity, ergodicity, and the higher-
order moments of the model are established. Consistency of the quasi- maxi-
mum likelihood estimator (QMLE) is proved under only the second-order mo-
ment condition. This consistency result is new, even for the univariate ARCH
and GARCH models. Moreover, the asymptotic normality of the QMLE for
the vector ARCH model is obtained under only the second-order moment of
the unconditional errors, and the finite fourth-order moment of the conditional
errors. Under additional moment conditions, the asymptotic normality of the
QMLE is also obtained for the vector ARMA-ARCH and ARMA-GARCH
models, as well as a consistent estimator of the asymptotic covariance.

1 INTRODUCTION

The primary feature of the autoregressive conditional heteroskedasticity (ARCH)

model, as proposed by Engle (1982), is that the conditional variance of the errors

varies over time. Such conditional variances have been strongly supported by a huge

body of empirical research, especially in stock returns, interest rates, and foreign

exchange markets. Following Engle’s pathbreaking idea, many alternatives have

∗The authors wish to thank the Co-Editor, Bruce Hansen, and two referees for very helpful
comments and suggestions, and to acknowledge the financial support of the Australian Research
Council. This paper was revised while the second author was visiting the Institute of Social and
Economic Research at Osaka University.
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been proposed to model conditional variances, forming an immense ARCH family;

see, for example, the surveys of Bollerslev, Chou and Kroner (1992), Bollerslev,

Engle and Nelson (1994), and Li, Ling and McAleer (1999). Of these models, the

most popular is undoubtedly the generalised ARCH (GARCH) model of Bollerslev

(1986). Some multivariate extensions of these models have been proposed; see, for

example, Engle, Granger and Kraft (1984), Bollerslev, Engle and Wooldridge (1988),

Engle and Rodrigues (1989), Ling and Deng (1993), Engle and Kroner (1995), Wong

and Li (1997), and Li, Ling and Wong (1999), among others. However, apart from

Ling and Deng (1993) and Li, Ling and Wong (1998), it seems that no asymptotic

theory of the estimators has been established for these multivariate ARCH-type

models. In most of these multivariate extensions, the primary purpose has been

to investigate the structure of the model, as in Engle and Kroner (1995), and the

reporting of empirical findings.

In this paper, we propose a vector ARMA-GARCH model which includes the

multivariate GARCH model of Bollerslev (1990) as a special case. The sufficient

conditions for the strict stationarity and ergodicity, and a causal representation of

the vector ARMA-GARCH model, are obtained as extensions of Ling and Li (1997).

Based on Tweedie (1988), a simple sufficient condition for the higher-order moments

of the model is also obtained.

The main part of this paper investigates the asymptotic theory of the quasi-

maximum likelihood estimator (QMLE) for the vector ARMA-GARCH model. Con-

sistency of the QMLE is proved under only the second-order moment condition.

Jeantheau (1998) proved consistency for the constant conditional mean drift model

with vector GARCH errors. His result is based on a modified result in Pfanzagl

(1969), in which it is assumed that the initial values consisting of the infinite past

observations are known. In practice, of course, this is not possible.

In the univariate case, the QMLE based on any fixed initial values has been

investigated by Weiss (1986), Pantula (1989), Lee and Hansen (1994), Lumsdaine
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(1996), and Ling and Li (1997). Weiss (1986) and Ling and Li (1997) use the

conditions of Basawa, Feigin and Heyde (1976), whereby their consistency results

rely on the assumption that the fourth-order moments exist. Lee and Hansen (1994)

and Lumsdaine (1996) use the conditions of Amemiya (1985, pages 106-111), but

their methods are only valid for the simple GARCH (1,1) model and cannot be

extended to more general cases. Moreover, the conditional errors, that is, η0t when

m = 1 in equation (2.3) in the next section, are required to have the (2 + κ)th

(κ > 0) finite moment by Lee and Hansen (1994), and the 32nd finite moment by

Lumsdaine (1996).

The consistency result in this paper is based on a uniform convergence as a

modification of a theorem in Amemiya (1985, page 116). Moreover, the consistency

of the QMLE for the vector ARMA-GARCH model is obtained only under the

second-order moment condition. This result is new, even for the univariate ARCH

and GARCH models. For the univariate GARCH (1,1) model, our consistency result

also avoids the requirement of the higher-order moment of the conditional errors, as

in Lee and Hansen (1994) and Lumsdaine (1996).

This paper also investigates the asymptotic normality of the QMLE. For the

ARCH model, asymptotic normality requires only the second-order moment of the

unconditional errors, and the finite fourth-order moment of the conditional errors.

The corresponding result for univariate ARCH requires the fourth-order moment,

as in Weiss (1986) and Pantula (1989). The conditions for asymptotic normality of

the GARCH (1,1) model in Lee and Hansen (1994) and Lumsdaine (1996) are quite

weak. However, their GARCH(1,1) model explicitly excludes the special case of the

ARCH(1) model because they assume that B1 6= 0 (see equation (2.7) in the next
section) for purposes of identifiability. Under additional moment conditions, the

asymptotic normality of the QMLE for the general vector ARMA-GARCH model

is also obtained. Given the uniform convergence result, the proof of asymptotic

normality does not need to explore the third-order derivative of the quasi-likelihood
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function. Hence, our method is simpler than those in Weiss (1986), Lee and Hansen

(1994), Lumsdaine (1996), and Ling and Li (1997).

It is worth emphasizing that, unlike Lumsdaine (1996) and Ling and Li (1997),

Lee and Hansen (1994) do not assume that the conditional errors η0t are i.i.d instead

of a series of strictly stationary and ergodic martingale difference. Although it is

possible to use this weaker assumption for our model, for simplicity we use the i.i.d.

assumption.

The paper is organized as follows. Section 2 defines the vector ARMA-GARCH

model and investigates its properties. Section 3 presents the quasi-likelihood func-

tion and gives a uniform convergence result. Section 4 establishes the consistency

of the QMLE and Section 5 develops its asymptotic normality. Concluding remarks

are offered in Section 6. All proofs are given in Appendices A and B.

Throughout this paper, we use the following notation. | · | denotes the absolute
value of a univariate variable or the determinant of a matrix. k · k denotes the
Euclidean norm of a matrix or vector. A0 denotes the transpose of the matrix or

vector A. O(1) (or o(1)) denotes a series of non-stochastic variables that are bounded

(or converge to zero). Op(1) (or op(1)) denotes a series of random variables that are

bounded (or converge to zero) in probability. −→p (or −→L ) denotes convergence
in probability (or in distribution). ρ(A) denotes the eigenvalue of the matrix A with

largest absolute value.

2 THE MODEL AND ITS PROPERTIES

Bollerslev (1990) presented an m−dimensional multivariate conditional covariance
model, namely,

Yt = E(Yt|Ft−1) + ε0t, V ar(ε0t|Ft−1) = D0tΓ0D0t, (2.1)

where Ft is the past information available up to time t, D0t = diag(h1/201t , · · · , h1/20mt),
and
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Γ0 =


1 σ012 · · · σ01m

σ021 1 σ023 · · ·
· · ·

σ0m,1 · · · σ0m,m−1 1

 ,
in which σ0ij = σ0ji. The main feature of this model is that the conditional correla-

tion E(ε0itε0jt|Ft−1)/
q
E(ε20it|Ft−1)E(ε20jt|Ft−1) = σ0ij is constant over time, where

i 6= j and ε0it is the ith element of ε0t. By assuming that

h0it = w0i +
rX
j=1

a0ijε
2
0it−j +

sX
j=1

b0ijh0it−j, i = 1, · · · ,m, (2.2)

Bollerslev (1990) modeled the exchange rates of the German mark, French franc,

and British pound against the U.S. dollar. His results provided evidence that the as-

sumption of constant correlations was adequate. Tse (2000) developed the Lagrange

multiplier test for the hypothesis of constant correlation in Bollerslev’s model, and

provided evidence that the hypothesis was adequate for spot and futures prices, and

foreign exchange rates.

It is possible to provide a straightforward explanation for the hypothesis of con-

stant correlation. Suppose that h0it captures completely the past information, with

Eh0it = Eε20it. Then η0it = ε0ith
−1/2
0it will be independent of the past information.

Thus, for each i, {η0it, t = 0,±1,±2, · · ·} will be a sequence of independently and
identically distributed (i.i.d.) random variables, with zero mean and variance 1. In

general, η0it and η0jt are correlated for i 6= j, and hence it is natural to assume that
η0t = (η01t, · · · , η0mt)0 is a sequence of i.i.d. random vectors, with zero mean and

covariance Γ0. Thus, we can write

ε0t = D0tη0t. (2.3)

Obviously, ε0t in (2.1) has the same conditional covariance matrix as that in (2.3).

Now, the remaining problem is how to define h0it so that it can capture com-

pletely the past information. It is obvious that h0it may have as many different

forms as in the univariate case. In the multivariate case, h0it should contain some
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past information, not only from εit but also from ε0jt. Hence, a simple specification

such as (2.2) is likely to be inadequate. In particular, if it is desired to explain the

relationships of the volatilities across different markets, it would be necessary to

accommodate some interdependence of the ε0it or the h0it in the model. Note that

D0t depends only on (h01t, · · · , h0mt)0, denoted by H0t. It is natural to define H0t
in the form of (2.5) below, which has also been used by Jeantheau (1998). Speci-

fying the conditional mean part as the vector ARMA model, we define the vector

ARMA-GARCH model as follows:

Φ0(L)(Yt − µ0) = Ψ0(L)ε0t, (2.4)

ε0t = D0tη0t, H0t =W0 +
rX
i=1

A0i~ε0t−i +
sX
i=1

B0iH0t−i, (2.5)

where D0t and η0t are defined as in (2.3), Φ0(L) = Im − Φ01L − · · · − Φ0pL
p and

Ψ0(L) = Im+Ψ01L+· · ·+Ψ0qL
q are polynomials in L, Ik is the k×k identity matrix,

and ~ε0t = (ε
2
01t, · · · , ε20mt)0. The true parameter vector is denoted by λ0 = (ϕ00, δ00,σ00)0,

where ϕ0 = vec(µ0,Φ01, · · · ,Φ0p,Ψ01, · · · ,Ψ0q), δ0 = vec(W0, A01, · · · , A0r, B01, · · · ,
B0s), and σ0 = (σ021, · · · ,σ0m,1,σ032, · · · ,σ0m,2, · · · ,σ0m,m−1)0. This model was used
to analyze the Hang Seng index and Standard and Poor’s 500 Composite index by

Wong, Li and Ling (2000). They found that the off-diagonal elements in A01 are

significantly different from zero, and hence can be used to explain the volatility

relationship between the two markets.

The model for the unknown parameter λ = (ϕ0, δ0,σ0)0, with ϕ, δ, and σ defined

in a similar manner to ϕ0, δ0, and σ0, respectively, is

Φ(L)(Yt − µ) = Ψ(L)εt, (2.6)

Ht =W +
rX
i=1

Ai~εt−i +
sX
i=1

BiHt−i, (2.7)

where Ht = (h1t, · · · , hmt)0, ~εt = (ε21t, · · · , ε2mt)0, and Φ(L) and Ψ(L) are defined in a

similar manner to Φ0(L) andΨ0(L), respectively. First, the εt are computed from the

observations Y1, · · ·, Yn, from (2.6), with initial value Ȳ0 = (Y0, · · · , Y1−p, ε0, · · · , ε1−q).
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Then Ht can be calculated from (2.7), with initial values ε̄0 = (~ε0, · · · , ~ε1−r, H0, · · · ,
H1−s). We assume that the parameter space Θ is a compact subspace of Euclidean

space, such that λ0 is an interior point in Θ and, for each λ ∈ Θ, it is assumed that:

Assumption 1. All the roots of |Φ(L)| = 0 and all the roots of |Ψ(L)| = 0 are
outside the unit circle.

Assumption 2. Φ(L) and Ψ(L) are left coprime (i.e., if Φ(L) = U(L)Φ1(L)

and Ψ(L) = U(L)Ψ1(L), then U(L) is unimodular with constant determinant), and

satisfy other identifiability conditions given in Dunsmuir and Hannan (1976).

Assumption 3. Γ is a finite and positive definite symmetric matrix, with the

elements on the diagonal being 1 and ρ(Γ) having a positive lower bound over Θ

; all the elements of Ai and Bj are nonnegative, i = 1, · · · , r, j = 1, · · · , s; each
element of W has positive lower and upper bounds over Θ; and all the roots of

|Im −Pr
i=1AiL

i −Ps
i=1BiL

i| = 0 are outside the unit circle.
Assumption 4. Im−Pr

r=1AiL
i and

Ps
i=1BiL

i are left coprime; and satisfy other

identifiability conditions given in Jeantheau (1998) (see also Dunsmuir and Hannan

(1976)).

In Assumptions 2 and 4, we use the identifiability conditions in Dunsmuir and

Hannan (1976) and Jeantheau (1998). These conditions may be too strong. Alter-

natively, we can use other identifiability conditions, such as the final form or echelon

form in Lütkepohl (1991, Chapter 7), under which the results in this paper for con-

sistency and asymptotic normality will still hold with some minor modifications.

These identifiability conditions are sufficient for the proofs of (B.3) and (B.6) in

Appendix B.

Note that, under Assumption 4, Bs 6= 0 and hence the ARCH and GARCH

models are nonnested. We define the ARMA-ARCH model as follows:

Φ0(L)(Yt − µ0) = Ψ0(L)ε0t, (2.8)

ε0t = D0tη0t, H0t =W0 +
rX
i=1

A0i~ε0t−i. (2.9)
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Similarly, under Assumption 2, it is not allowed that all the coefficients in the ARMA

model are zero, so that the ARMA-ARCH model does not include the following

ARCH model as a special case:

Yt = µ0 + ε0t, (2.10)

ε0t = D0tη0t, H0t =W0 +
rX
i=1

A0i~ε0t−i. (2.11)

In models (2.8)-(2.9) and (2.10)-(2.11), we assume that all the components of A0i,

i = 1, · · · , r, are positive. In practice, this assumption may be too strong. If the
parameter matrices Ai are assumed to have the nested reduced-rank form, as in Ahn

and Reinsel (1988), then the results in this and following sections will still hold with

some minor modifications.

The unknown parameter ARCH and ARMA-ARCH models are similarly defined

as models (2.6)-(2.7). The true parameter λ0 = (ϕ
0
0, δ

0
0,σ

0
0)
0, with δ0 = vec(W0, A01,

· · · , A0r), σ0 being defined as in models (2.4)-(2.5), and ϕ0 being defined as in models
(2.4)-(2.5) for models (2.8)-(2.9), and ϕ0 = µ0 for models (2.10)-(2.11). Similarly,

define the unknown parameter λ and the parametric space Θ, with 0 < alijk ≤ aijk ≤
auijk <∞, where aijk is the (j, k)th component of Ai, alijk and auijk are independent
of λ, i = 1, · · · , r, and j, k = 1, · · · ,m1.

The following theorem gives some basic properties of models (2.4)-(2.5). When

m = 1, the result in Theorem 2.1 reduces to that in Ling and Li (1997) and the result

in Theorem 2.2 reduces to Theorem 6.2 in Ling (1999). When the ARMA model

is replaced by a constant mean drift, the second-order stationarity and ergodicity

condition in Theorem 2.1 appears to be the same as Proposition 3.1 in Jeantheau

(1998). Our proof is different from that in his paper and provides a useful causal

expansion. Also note that, in the following theorems, Assumptions 2 and 4 are not

imposed and hence these results hold for models (2.8)-(2.9) and models (2.10)-2.11).

However, for these two special cases, the matrix Ã0t below can simply be replaced

by its (1,1) block.
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THEOREM 2.1. Under Assumptions 1 and 3, models (2.4)-(2.5) possess an

Ft-measurable second-order stationary solution {Yt, ε0t, H0t}, which is unique, given

the η0t, where Ft is a σ−field generated by {η0k : k ≤ t}. The solutions {Yt} and

{H0t} have the following causal representations:

Yt =
∞X
k=0

Υ0kε0t−k, a.s, (2.12)

H0t = W0 +
∞X
j=1

c0 (
jY
i=1

Ã0t−i) ξt−j−1, a.s., (2.13)

where Φ−10 (L)Ψ0(L) =
P∞
k=0Υ0kL

k, ξt = [(η̃0tW0)
0, 0, · · · , 0,W 0

0, 0, · · · , 0]0(r+s)m×1,
that is, the subvector consisting of the first m components is η̃0tW0 and the subvector

consisting of the (rm+1)th to (r+1)mth components isW0; η̃0t = diag(η
2
01t, · · · , η20mt),

c0 = (0, · · · , 0, Im, 0, · · · , 0)m×(r+s)m with the subvector consisting of the (rm + 1)th

to (r + 1)mth columns being Im, and

Ã0t =


η̃0tA01 · · · η̃0tA0r η̃0tB01 · · · η̃0tB0s

Im(r−1) Om(r−1)×m Om(r−1)×ms

A01 · · · A0r B01 · · · B0s
Om(s−1)×mr Im(s−1) Om(s−1)×m

 .

Hence, {Yt, ε0t,H0t} are strictly stationary and ergodic.

THEOREM 2.2. Suppose that the assumptions of Theorem 2.1 hold. If

ρ[E(Ã⊗k0t )] < 1, with k being a strictly positive integer, then the 2kth moments of

{Yt, ε0t} are finite, where Ã0t is defined as in Theorem 2.1, and A⊗ k is the Kronecker

product of the k matrices A.

3 QUASI- MAXIMUM LIKELIHOOD ESTIMA-

TOR

The estimators of the parameters in models (2.4)-(2.5) are obtained by maximizing,

conditional on (Ȳ0, ε̄0),

Ln(λ) =
1

n

nX
t=1

lt(λ), lt(λ) = −1
2
ln |DtΓDt|− 1

2
ε0t(DtΓDt)

−1εt, (3.1)
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where Ln(λ) takes the form of the Gaussian log-likelihood, and Dt = diag(h
1/2
1t , · · · ,

h
1/2
mt ). Since we do not assume that η0t is normal, the estimators from (3.1) are the

quasi-maximum likelihood estimators (QMLE). Note that the processes εi and Di,

i ≤ 0, are unobserved, and hence they are only some chosen constant vectors. Thus,
Ln(λ) is the likelihood function which is not conditional on the true (Ȳ0, ε̄0) and, in

practice, we work with this likelihood function.

For convenience, we introduce the unobserved process {(ε²t,H²
t ) : t = 0,±1,±2, · · ·},

which satisfies

Φ(L)(Yt − µ) = Ψ(L)ε²t, (3.2)

H²
t =W +

rX
i=1

Ai~ε
²
t−i +

sX
i=1

BiH
²
t−i, (3.3)

where ~ε²t = (ε
²2
1t, · · · , ε²2mt)0 and H²

t = (h
²
1t, · · · , h²mt)0. Denote Y 0 = (Y0, Y−1, · · ·). The

unobserved log-likelihood function conditional on Y 0 is

L²n(λ) =
1

n

nX
t=1

l²t(λ), l
²
t(λ) = −

1

2
ln |D²

tΓD
²
t |−

1

2
ε²
0
t (D

²
tΓD

²
t)
−1ε²t, (3.4)

where D²
t = diag(h²1t, · · · , h²mt). When λ = λ0, we have ε²t = ε0t, H

²
t = H0t and

D²
t = D0t. The primary difference in the likelihoods (3.1) and (3.4) is that (3.1)

is conditional on any initial values, while (3.4) is conditional on the infinite past

observations. In practice, the use of (3.4) is not possible. Jeantheau (1998) inves-

tigated the likelihood (3.4) for models (2.4)-(2.5) with p = q = 0, that is, with

the conditional mean part identified as the constant drift. By modifying a result in

Pfanzagl (1969), he proved the consistency of the QMLE for a special case of models

(2.4)-(2.5). An improvement on his result requires only the second-order moment

condition. However, the method of his proof is valid only for the log-likelihood

function (3.4) and it is not clear whether his result also holds for the likelihood

(3.1).

The likelihood function Ln(λ) and the unobserved log-likelihood function L
ε
n(λ)

for models (2.8)-(2.9) and models (2.10)-(2.11) are similarly defined as in (3.1) and

(3.4).
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The following uniform convergence theorem is a modification of Theorem 4.2.1

in Amemiya (1985). This theorem, as well as Lemma 4.5 in the next Section, makes

it possible to prove the consistency of the QMLE from the likelihood (3.1) under

only a second-order moment condition.

THEOREM 3.1.2 Let g(y, θ) be a measurable function of y in Euclidean space

for each θ ∈ Θ, a compact subset of Rm (Euclidean m−space), and a continuous

function of θ ∈ Θ for each y. Suppose that yt is a sequence of strictly stationary

and ergodic time series, such that Eg(yt, θ) = 0 and E supθ∈Θ |g(yt, θ)| <∞. Then

supθ∈Θ |n−1
Pn
t=1 g(yt, θ)| = op(1).

4 CONSISTENCY OF THE QMLE

In (3.4), D²
t is evaluated by an infinite expansion of (3.3). We need to show that

such an expansion is convergent. In general, all the roots of |Im − Pr
i=1AiL

i −Ps
i=1BiL

i| = 0 lying outside the unit circle does not ensure that all the roots of

|Im −Ps
i=1BiL

i| = 0 are outside the unit circle. However, since all the elements of
Ai and Bi are negative, we have the following lemma.

LEMMA 4.1. Under Assumption 3, all the roots of |Im −Ps
i=1BiL

i| = 0 are

outside the unit circle.

We first present five lemmas. Lemma 4.2 ensures the identification of λ0. Lem-

mas 4.3, 4.4 and 4.6 ensure that the likelihood Ln(λ) of the ARMA-GARCH, ARMA-

ARCH and ARCH models converges uniformly in the whole parameter space, with

its limit attaining a unique maximum at λ0. Lemma 4.5 is important for the proof

of Lemma 4.6 under the second-order moment condition.

LEMMA 4.2. Suppose that Yt is generated by models (2.4)-(2.5) satisfying As-

sumptions 1-4, or models (2.8)-(2.9) satisfying Assumptions 1-3, or models (2.10)-

(2.11) satisfying Assumption 3. Let cϕ and c be constant vectors, with the same

dimensions as ϕ and δ, respectively. Then c0ϕ(∂ε
²0
t /∂ϕ) = 0 a.s. only if cϕ = 0, and

c0(∂H²0
t /∂δ) = 0 a.s. only if c = 0.
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LEMMA 4.3. Define L(λ) = E[l²t(λ)]. Under the assumptions of Lemma 4.2,

L(λ) exists for all λ ∈ Θ and supλ∈Θ |L²n(λ)− L(λ)| = op(1).
LEMMA 4.4. Under the assumptions of Lemma 4.2, L(λ) achieves a unique

maximum at λ0.

LEMMA 4.5. Let Xt be a strictly stationary and ergodic time series, with

E|Xt| <∞, and ξt be a sequence of random variables such that

sup
1≤t≤n

|ξt| ≤ C and n−1
nX
t=1

|ξt| = op(1).

Then n−1
Pn
t=1Xtξt = op(1).

LEMMA 4.6. Under the assumptions of Lemma 4.2, supλ∈Θ |L²n(λ)−Ln(λ)| =
op(1).

Based on the above lemmas, we now have the following consistency theorem.

THEOREM 4.1. Denote λ̂n as the solution to maxλ∈Θ Ln(λ). Under the as-

sumptions of Lemma 4.2, λ̂n →p λ0.

5 ASYMPTOTIC NORMALITY OF THE QMLE

To prove the asymptotic normality of the QMLE, it is inevitable to explore the

second derivative of the likelihood. The method adopted by Weiss (1986), Lee and

Hansen (1994), Lumsdaine (1996) and Ling and Li (1997) uses the third derivative

of the likelihood. By using Theorem 3.1, our method requires only the second

derivative of the likelihood, which simplifies the proof and reduces the requirement

for higher-order moments.

For the general models (2.4)-(2.5), the asymptotic normality of the QMLE would

require the existence of the sixth moment. However, for models (2.8)-(2.9) or models

(2.10)-(2.11), the moment requirements are weaker. Now we can state some basic

results.

LEMMA 5.1. Suppose that Yt is generated by models (2.4)-(2.5) satisfying As-

sumptions 1-4, or models (2.8)-(2.9) satisfying Assumptions 1-3, or models (2.10)-
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(2.11) satisfying Assumption 3. Then, it follows that

E sup
λ∈Θ

°°°°°∂ε²
0
t

∂ϕ
(D²

tΓD
²
t)
−1 ∂ε

²
t

∂ϕ0

°°°°° <∞ and E

"
∂ε²

0
t

∂ϕ
(D²

tΓD
²
t)
−1 ∂ε

²
t

∂ϕ0

#
> 0, (5.1)

where a matrix A > 0 means that A is positive definite.

LEMMA 5.2. Suppose that Yt is generated by models (2.4)-(2.5) satisfying

Assumptions 1-4 and E||Yt||4 <∞, or models (2.8)-(2.9) satisfying Assumptions 1-

3 and E||Yt||4 <∞, or models (2.10)-(2.11) satisfying Assumption 3 and E||η0t||4 <
∞. Then Ω0 = E[(∂l

²
0t /∂λ)(∂l

²
0t/∂λ

0)] is finite. Furthermore, if Ω0 > 0, then

1√
n

nX
t=1

∂l0t
∂λ
−→L N(0,Ω0),

where ∂lε0t/∂λ = ∂lεt/∂λ|λ0 and ∂l0t/∂λ = ∂lt/∂λ|λ0.

LEMMA 5.3. Suppose that Yt is generated by models (2.4)-(2.5) satisfying

Assumptions 1-4 and E||Yt||6 < ∞, or models (2.8)-(2.9) satisfying Assumptions

1-3 and E||Yt||4 <∞, or models (2.10)-(2.11) satisfying Assumption 3. Then,

E sup
λ∈Θ

°°°°°∂H²0
t

∂λ̃
D²−2
t ∆²

tD
²−2
t

∂H²
t

∂λ̃0

°°°°° <∞, (5.2)

where λ̃ = (ϕ0, δ0)0, ∆²
t = η̃²tΓ

−1η̃²t + ∆̃²
tη̃
²
t , ∆̃²

t = diag(e1Γ
−1η²t , · · · , emΓ−1η²t), ei =

(0, · · · , 0, 1, 0 · · · , 0)0 of which the ith element is 1, η²t = (η²1t, · · · , η²mt)0 and η̃²t =

diag(η²1t, · · · , η²mt) with η²it = ε²it/h
²1/2
it , i = 1, · · · ,m.

LEMMA 5.4. Under the assumptions of Lemma 5.3,

(a) sup
λ∈Θ

°°°°°1n
nX
t=1

∂2l²t
∂λ∂λ0

− E
"

∂2l²t
∂λ∂λ0

#°°°°° = op(1),
(b) sup

λ∈Θ

°°°°°1n
nX
t=1

"
∂2l²t
∂λ∂λ0

− ∂2lt
∂λ∂λ0

#°°°°° = op(1).

By straightforward calculation, we can show that

Σ0 ≡ E
"

∂2l²t
∂λ∂λ0

#
λ0

= −
Ã

Σλ̃0 Σλ̃σ0

Σ0̃
λσ0

1
2
P 0P

!
,

where Σλ̃0 = E[(∂ε²
0
0t/∂λ̃) (D0tΓ0D0t)

−1(∂ε²0t/∂λ̃
0)] +E[(∂H²0

0t/∂λ̃)D
−2
0t CD

−2
0t (∂H

²
0t

/∂λ̃0)]/4, Σλ̃σ0 = E
h
(∂H²0

0t/∂λ̃)D
−2
0t

i
C1P/2, ∂ε

²
0t/∂λ̃

0 = ∂ε²t/∂λ̃
0|λ0 , ∂H

²
0t/∂λ̃

0 =
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∂H²
t/∂λ̃

0|λ0, P = (Im ⊗ Γ−10 )K, C1 = (C11, · · · , C1m), C1i is an m ×m matrix with

the (i, i)th component being 1 and the other components zero, K = ∂vec(Γ)/∂σ0 is

a constant matrix, and C = Γ−10 ¯Γ0+ Im, where A¯B = (aijbij) for two matrices
A = (aij) and B = (bij). In practice, Σ0 is evaluated by

Σ̂n = −
Ã

Σ̂λ̃ Σ̂λ̃σ

Σ̂0̃
λσ

1
2
P̂ 0P̂

!
,

where Γ̂n = Γ|λ̂n
,

Σ̂λ̃ =
1

n

nX
t=1

"
∂ε0t
∂λ̃
(DtΓDt)

−1 ∂εt
∂λ̃0

#
λ̂n

+
1

4n

nX
t=1

"
∂H 0

t

∂λ̃
D−2t ĈnD

−2
t

∂Ht

∂λ̃0

#
λ̂n

,

Σ̂λ̃σ =
1

2n

nX
t=1

"
∂H 0

t

∂λ̃
D−2t

#
λ̂n

C1P̂ , P̂ = (Im ⊗ Γ̂−1n )K, Ĉn = Γ̂−1n ¯ Γ̂n + Im.

LEMMA 5.5. Under the assumptions of Lemma 5.3, ||Σ0|| < ∞ and Σ̂n =

Σ0 + op(1) for any sequence λn, such that λn − λ0 = op(1). If Γ−10 ¯ Γ0 ≥ Im, then

−Σ0 > 0.
From the proof, we can see that the sixth-order moment in models (2.4)-(2.5)

is required only for Lemma 5.4(a), while the fourth-order moment is sufficient for

Lemma 5.4(b). If we can show that the convergent rate of the QMLE is Op(n
−1/2),

then the fourth-order moment is sufficient for models (2.4)-(2.5). However, it would

seem that proving the rate of convergence is quite difficult.

LEMMA 5.6. Under the assumptions of Lemma 5.2, if
√
n(λn − λ0) = Op(1),

then

(a)
1

n

nX
t=1

"
∂l²t
∂λ

∂l²t
∂λ0
− ∂l²0t

∂λ

∂l²0t
∂λ0

#
λn

= op(1),

(b) Ω̂n ≡ 1

n

nX
t=1

"
∂lt
∂λ

∂lt
∂λ0

#
λn

= Ω0 + op(1).

THEOREM 5.1. Suppose that Yt is generated by models (2.4)-(2.5) satisfy-

ing Assumptions 1-4 and E||Yt||6 < ∞, or models (2.8)-(2.9) satisfying Assump-

tions 1-3 and E||Yt||4 < ∞, or models (2.10)-(2.11) satisfying Assumption 3 and

E||η0t||4 <∞. If Ω0 > 0 and Γ−10 ¯Γ0 ≥ Im, then
√
n(λ̂n−λ0)→L N(0,Σ−10 Ω0Σ

−1
0 ).

Furthermore, Σ0 and Ω0 can be estimated consistently by Σ̂n and Ω̂n, respectively.

14



When m = 1 or 2, we can show that Γ−10 ¯ Γ0 ≥ Im, and hence, in this case,
−Σ0 > 0. However, it is difficult to prove Γ−10 ¯Γ0 ≥ Im for the general case. When
Γ0 = Im, it is straightforward to show that −Σ0 > 0 and Ω0 are positive definite.

When η0t follows a symmetric distribution,

Ω0 = E

 ∂l²0t

∂ϕ

∂l²0t

∂ϕ0 0

0
∂l²0t

∂δ̃

∂l²0t

∂δ̃0

 and Σ0 = −
Ã

Σϕ0 0
0 Σδ̃0

!
,

in which δ̃ = (δ0,σ0)0,

Σϕ0 = E[
∂ε²

0
0t

∂ϕ
(D0tΓ0D0t)

−1∂ε
²
0t

∂ϕ0
] +

1

4
E[

∂H²0
0t

∂ϕ
D−20t CD

−2
0t

∂H²
0t

∂ϕ0
],

Σδ̃0 =

Ã
Σδ0 Σδσ0

Σ0δσ0
1
2
P 0P

!
,

where Σδ0 = E[∂H²0
0t/∂δD

−2
0t CD

−2
0t ∂H

²
0t/∂δ

0]/4 and Σδσ0 = E[∂H²0
0t/∂δD

−2
0t ]C1P/2.

Furthermore, if η0t is normal, it follows that −Σ0 = Ω0. Note that the QMLE here is

the global maximum over the whole parameter space. The requirement of the sixth-

order moment is quite strong for models (2.4)-(2.5), and is used only because we

need to verify the uniform convergence of the second derivative of the log-likelihood

function, that is, Lemma 5.4(a). If we consider only the local QMLE, then the

fourth-order moment is sufficient. For univariate cases, such proofs can be found in

Ling and Li (1998) and Ling and McAleer (1999).

6 CONCLUSION

This paper presented the asymptotic theory for a vector ARMA-GARCH model. An

explanation of the proposed model was offered. Using a similar idea, different mul-

tivariate models such as E-GARCH, threshold GARCH, and asymmetric GARCH

can be proposed for modelling multivariate conditional heteroskedasticity. The con-

ditions for the strict stationarity and ergodicity of the vector ARMA-GARCH model

were obtained. A simple sufficient condition for the higher-order moments of the

model was also provided. We established a uniform convergence result by modify-

ing a theorem in Amemiya (1985). Based on the uniform convergence result, the
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consistency of the QMLE was obtained under only the second-order moment condi-

tion. Unlike Weiss (1986) and Pantula (1989) for the univariate case, the asymptotic

normality of the QMLE for the vector ARCH model requires only the second-order

moment of the unconditional errors, and the finite fourth-order moment of the condi-

tional errors. The asymptotic normality of the QMLE for the vector ARMA-ARCH

model was proved using the fourth-order moment, which is an extension of Weiss

(1986) and Pantula (1989). For the general vector ARMA-GARCH model, the

asymptotic normality of the QMLE requires the assumption that the sixth-order

moment exists. Whether this result will hold under some weaker moment condi-

tions remains to be proved.

NOTES

1.For models (2.8)-(2.9) and (2.10)-(2.11), Bi in Assumption 3 reduces to the zero matrix,

where i = 1, · · · , s..

2. The Co-editor has suggested that this theorem may not be new, consisting of Lemma 2.4

and footnote 18 of Newey and McFadden (1994).
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A APPENDIX: PROOFS OF THEOREMS 2.1-

2.2

Proof of Theorem 2.1. Multiplying (2.5) by η̃0t yields

~ε0t = η̃0tW0 +
rX
i=1

η̃0tA0i~ε0t−i +
sX
i=1

η̃0tB0iH0t−i. (A.1)

Now rewrite (A.1) in vector form as

Xt = Ã0tXt−1 + ξt, (A.2)

where Xt = (~ε
0
0t, · · · , ~ε00t−r+1,H 0

0t, · · · ,H 0
0t−s+1)

0 and ξt is defined as in (2.9). Let

Sn,t = ξt +
nX
j=1

(
jY
i=1

Ã0t−i+1) ξt−j, (A.3)

where n = 1, 2, · · ·. Denote the kth element of (Qji=1 Ã0t−i) ξt−j−1 by sn,t. We have
E|sn,t| = e0kE(

jY
i=1

Ã0t−i) ξt−j−1

= e0k(
jY
i=1

EÃ0t−i)Eξt−j−1 = e0kÃ
jc∗, (A.4)
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where ek = (0, · · · , 0, 1, 0, · · · , 0)0m(r+s)×1 and 1 appears in the kth position, c∗ = Eξt
is a constant vector, and

Ã =


A01 · · · A0r B01 · · · B0s

Im(r−1) Om(r−1)×m Om(r−1)×ms

A01 · · · A0r B01 · · · B0s
Om(s−1)×mr Im(s−1) Om(s−1)×m

 . (A.5)

By direct calculation, we know that the characteristic polynomial of Ã is

f(z) = |z|(r+s)m|Im −
rX
i=1

Aiz
−i −

sX
i=1

Biz
−i|. (A.6)

By Assumption 3, it is obvious that all the roots of f(z) lie inside the unit circle.

Thus, ρ(Ã) < 1 and hence each component of Ãi is O(ρi). Therefore, the right-hand

side of (A.4) is equal to O(ρj). Note that η̃0t is a sequence of i.i.d. random matrices,

and each element of Ã0t and ξt is non-negative. We know that each component of

Sn,t converges almost surely (a.s.) as n→∞, as does Sn,t. Denote the limit of Sn,t
by Xt. We have

Xt = ξt +
∞X
j=1

(
jY
i=1

Ã0t−i) ξt−j−1, (A.7)

with the first-order moment being finite.

It is easy to verify that Xt satisfies (A.2). Hence, there exists an Ft−measurable
second-order solution ε0t to (2.5) with ith element ε0it = η0it

√
h0it = η0it(e

0
rm+iXt)

1/2,

with the representation (2.13).

Now we show that such a solution is unique to (2.5). Let ε
(1)
t be another Ft−

measurable second-order stationary solution of (2.5). As in (A.2), we have X
(1)
t =

Ã0tX
(1)
t−1 + ξt, where X

(1)
t = (~ε

(1)0
t , · · · , ~ε(1)0t−r+1, H

(1)0
t , · · · , H(1)0

t−s+1)0, and H
(1)
t = W0 +Pr

i=1A0i ~ε
(1)
t−i+

Ps
i=1B0iH

(1)
t−i with ~ε

(1)
t = (ε

(1)2
1t , · · · , ε(1)2mt )

0. Let Ut = Xt−X(1)
t . Then

Ut is first-order stationary and, by (A.2), Ut = (
Qn
i=0 Ã0t−i)Ut−n−1. Denote the kth

component of Ut as uk,t. Then, as each element of Ãt is nonnegative,

|ukt| ≤ |e0k(
nY
i=0

Ã0t−i)Ut−n−1| ≤ e0k(
nY
i=0

Ã0t−i)|Ut−n−1|, (A.8)
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where ek is defined as in (A.4), and |Ut| is defined as (|u1t|, · · · , |u(r+s)m,t|)0. As Ut
is first-order stationary and Ft−measurable, by (A.8), we have

E|ukt| ≤ e0kE(
nY
i=0

Ã0t−i)E|Ut−n−1| = e0kÃnc∗1 → 0 (A.9)

as n→∞, where c∗1 = E|Ut| is a constant vector. So ukt = 0 a.s., that is, Xt = X(1)
t

a.s.. Thus, hit = h
(1)
it a.s., and hence ε0t = ε

(1)
0t = η0ith

1/2
0it a.s.. That is, ε0t satisfying

(2.5) is unique.

For the unique solution ε0t, by the usual method, we can show that there exists

a unique Ft−measurable second-order stationary solution Yt satisfying (2.4), with
the expansion given by

Yt =
∞X
k=0

Υ0kε0t−k. (A.10)

Note that the solution {Yt, ε0t, H0t} is a fixed function of a sequence of i.i.d. random
vectors η0t, and hence is strictly stationary and ergodic. This completes the proof.

2

The proof of Theorem 2.2 first transforms models (2.4)-(2.5) into a Markov

chain and then uses Tweedie’s criterion. Let {Xt; t = 1, 2, · · ·} be a temporally
homogeneous Markov chain with a locally compact completely separable metric

state space (S,B). The transition probability is P (x,A) = Pr(Xn ∈ A|Xn−1 = x),
where x ∈ S and A ∈ B. Tweedie’s criterion is the following lemma.

LEMMA A.1. (Tweedie, 1988, Theorem 2) Suppose that {Xt} is a Feller chain.

(1) If there exists, for some compact set A ∈ B, a non-negative function g and ε > 0

satisfying

Z
Ac
P (x, dy)g(y) ≤ g(x)− ε, x ∈ Ac, (A.11)

then there exists a σ-finite invariant measure µ for P with 0 < µ(A) < ∞; (2)

Furthermore, if

Z
A
µ(dx)[

Z
Ac
P (x, dy)g(y)] <∞, (A.12)

21



then µ is finite, and hence π = µ/µ(S) is an invariant probability; (3) Furthermore,

if

Z
Ac
P (x, dy)g(y) ≤ g(x)− f(x), x ∈ Ac, (A.13)

then µ admits a finite f-moment, i.e.

Z
S
µ(dy)f(y) <∞. (A.14)

The following two lemmas are preliminary results for the proof of Theorem 2.2.

LEMMA A.2. Suppose that E(||η0t||2k) < ∞ and ρ[E(Ã⊗k0t )] < 1. Then there

exists a vector M > 0 such that [Im−E(Ã⊗k0t )0]M > 0, where a vector B > 0 means

that each element of B is positive.

Proof. From the condition given, Im−E(Ã⊗k0t ) is invertible. Since each element
of E(Ã⊗k0t ) is non-negative, we can choose a vector L1 > 0 such that

M := [Im − E(Ã⊗k0t )0]−1L1 = L1 +
∞X
i=1

[E(Ã⊗k0t )
0]iL1 > 0.

Thus, [Im − E(Ã⊗k0t )0]M = L1 > 0. This completes the proof. 2

LEMMA A.3. Suppose that there is a vector M > 0 such that

[Im −E(Ã⊗k0t )0]M > 0. (A.15)

Then there exists a compact set A = {x : x̃k ≡ (
P(r+s)m
i=1 xi)

k ≤ ∆} ⊂ R
(r+s)m
0

with R0 = (0,∞), a function g1(x), and κ > 0 such that the function g, defined by

g(x) = 1 + (x⊗k)0M , satisfies

E(g(Xt)|Xt−1 = x) ≤ g(x) + g1(x), x ∈ R(r+s)m0 , (A.16)

and

E(g(Xt)|Xt−1 = x) ≤ (1− κ)g(x), x ∈ Ac, (A.17)

where Ac = R(r+s)m − A, xi is the ith component of x, maxx∈A g1(x) < C0, Xt is

defined as in (A.2), and C0, κ and ∆ are positive constants not depending on x.
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Proof. We illustrate the proof for k = 3. The technique for k 6= 3 is analogous.
For any x ∈ R(r+s)m0 , by straightforward algebra, we can show that

E[(ξt + Ã0tx)
⊗3]0M

= (x⊗3)0E(Ã⊗30t )
0M + C 01M + x0C 02M + (x⊗2)0C 03M

≤ (x⊗3)0E(Ã⊗30t )0M + c(1 + x̃+ x̃2), (A.18)

where C1, C2 and C3 are some constant vectors or matrices with non-negative el-

ements, which do not depend on x, and c =maxk{all components of C 01M , C 02M
and C 03M}.
By (A.2) and (A.18), we have

E[g(Xt)|Xt−1 = x] = 1 +E[(ξt + Ã0tx)
⊗3]0M

≤ 1 + (x⊗3)0E(Ã⊗30t )
0M + g1(x)

= 1 + (x⊗3)0M − (x⊗3)0M∗ + g1(x)

= g(x)[1− (x
⊗3)0M∗

g(x)
+
g1(x)

g(x)
], (A.19)

where M∗ = [Im − E(Ã⊗30t )0]M and g1(x)=c(1 + x̃+ x̃
2).

Denote

A = {x : x̃3 ≤ ∆, x ∈ R(r+s)m0 }, c1 = min{all components of M∗},

c2 = max{all components of M}, c3 = min{all components of M}.

It is obvious that A is a compact set on R
(r+s)m
0 . Since M∗,M > 0, it follows that

c1, c2, c3 > 0. From (A.19), we can show that

E[g(Xt)|Xt−1 = x] ≤ g(x) + g1(x), x ∈ R(r+s)m0 , (A.20)

where maxx∈A g1(x) < C0(∆), and C0(∆) is a constant not depending on x.

Let ∆ > max{1/c2, 1}. When x ∈ Ac,

c3∆ < c3x̃
3 ≤ g(x) ≤ 1 + c2x̃3 ≤ 2c2x̃3. (A.21)
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Thus,

(x⊗3)0M∗

g(x)
≥ c1x̃

3

2c2x̃3
=
c1
2c2
, (A.22)

and furthermore, since 1 + x̃ ≤ 2x̃ as x ∈ Ac, we can show that
g1(x)

g(x)
≤ g1(x)
c3x̃3

≤ C
∆
, (A.23)

where C is a positive constant not depending on x and ∆. By (A.19), and (A.22)-

(A.23), as x ∈ Ac,

E[g(Xt)|Xt−1 = x] ≤ g(x)(1− c1
2c2

+
C

∆
).

Provided 0 < c1/4c2 < κ < c1/2c2 and ∆ > max{1, 1/c2, C/(c1/2c2 − κ)}, then
E[g(Xt)|Xt−1 = x] ≤ g(x)(1− κ). This completes the proof. 2

Proof of Theorem 2.2. Obviously, Xt defined as in (A.2) is a Markov chain

with state space R
(r+s)m
0 . It is straightforward to prove that, for each bounded

continuous function g on R
(r+s)m
0 , E[g(Xt)|Xt−1 = x] is continuous in x, that is,

{Xt} is a Feller chain. In a similar manner to Lemma A.3, in the following we
illustrate only that the conditions (A.11)-(A.13) are satisfied for k = 3.

From Lemmas A.2 and A.3, we know that there exists a vectorM > 0, a compact

set A = {x : x̃3 = (P(r+s)m
i=1 xi)

3 ≤ ∆} ⊂ R(r+s)m0 and κ > 0 such that the function

defined by g(x) = 1 + (x⊗3)0M satisfies

E[g(Xt)|Xt−1 = x] ≤ g(x) + g1(x), x ∈ R(r+s)m0 (A.24)

and

E[g(Xt)|Xt−1 = x] ≤ (1− κ)g(x), x ∈ Ac, (A.25)

where maxx∈A g1(x) < C0, and C0, κ and ∆ are positive constants not depending

on x.

Since g(x) ≥ 1, it follows that E[g(Xt)|Xt−1 = x) ≤ g(x) − κ. By Lemma A.1,

there exists a σ-finite invariant measure µ for P with 0 < µ(A) <∞.
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Denote c2 = max{all components of M} and c3 = min{all components of M}.
From (A.24), as x ∈ A, it is easy to show that

E[g(Xt)|Xt−1 = x] ≤ 1 + c2(
(r+s)mX
i=1

xi)
3 + g1(x)

≤ ∆1 <∞,

where ∆1 is a constant not depending on x. Hence,

Z
A
µ(dx){

Z
Ac
P (x, dy)g(y)}

≤
Z
A
µ(dx)E[g(Xt)|Xt−1 = x] ≤ ∆1µ(A) <∞.

This shows that {Xt} has a finite invariant measure µ, and hence π = µ/µ(R(r+s)m0 )

is an invariant probability measure of {Xt}, that is, there exists a strictly stationary
solution satisfying (A.2), still denoted by Xt.

Let f(x) be the function on R
(r+s)m
0 defined by f(x) = c3κ(

P(r+s)m
i=1 xi)

3. Then,

by (A.25), as x ∈ Ac, we have
Z
Ac
P (x, dy)g(y) ≤ E[g(Xt)|Xt−1 = x]

≤ g(x)− κg(x) ≤ g(x)− f(x).

By Lemma A.1(3), we know that Eπ[f(Xt)] = c3κE[(
P(r+s)m
i=1 xit)

3] < ∞, where π

is the stationary distribution of {Xt}, where xit is the i-th component of Xt. Thus,
Eπ1||ε0t||6 < ∞, where π1 are the stationary distributions of {ε0t}. Now, since
Eπ1||ε0t||6 < ∞, it is easy to show that Eπ2||Yt||6 < ∞, where π2 is the stationary
distribution of Yt.

By Hölder’s inequality, Eπ1||ε0t||2 < (Eπ1 ||ε0t||2k)
1
k < ∞. Similarly, we have

Eπ2||Yt||2 <∞. Thus, {Yt, ε0t} is a second-order stationary solution of models (2.4)-
(2.5). Furthermore, by Theorem 2.1, the solution {Yt, ε0t} is unique and ergodic.
Thus, the process {Yt, ε0t} satisfying models (2.4)-(2.5) has a finite 2kth moment.
This completes the proof. 2
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B APPENDIX: PROOFS OF RESULTS IN SEC-

TIONS 3-5

Proof of Theorem 3.1. The proof is similar to that of Theorem 4.2.1 in Amem-

ina (1985), except that the Kolmogorov law of large numbers is replaced by the

ergodic theorem. This completes the proof. 2

Proof of Lemma 4.1. Note that

Ã º
Ã
O O

O B̃

!
,

where Ã is defined as in (A.5), B̃ =

Ã
B01 · · · B0s

Im(s−1) Om(s−1)×m

!
, and here ”the

matrix A º the matrix B” means that each component of A is larger than or equal
to the corresponding component of B. Thus, we have

Ãi º
Ã
O O

O B̃i

!
. (B.1)

By Assumption 3, ρ(Ã) < 1, and hence
Pk
i=0 Ã

i converges to a finite limit as k →∞.
By (B.1),

Pk
i=0 B̃

i also converges to a finite limit as k → ∞, and hence ρ(B̃) < 1,
which is equivalent to all the roots of |Im −Ps

i=1BiL
i| = 0 lying outside the unit

circle. This completes the proof. 2

In the following, we prove Lemmas 4.2-4.4 and 4.6 and Theorem 4.1 only for

models (2.4)-(2.5). The proofs for models (2.8)-(2.9) and (2.10)-(2.11) are similar

and simpler, and hence are omitted.

Proof of Lemma 4.2. First, by (3.2),

ε²t = Ψ(L)−1Φ(L)(Yt − µ), ∂ε²t
∂ϕ0

= Ψ−1(L)[−Φ(1),Xt−1 ⊗ Im], (B.2)

where Xt−1 = (Y 0t−1 − µ0, · · · , Y 0t−p+1 − µ0, ε²0t−1, · · · , ε²0t−q+1), and the above vector
differentiation follows rules in Lütkepohl (1993, Appendix A). Denote Ut = ∂ε²t/∂ϕ

0

and Vt = [−Φ(1), Xt−1 ⊗ Im]. Then

Ut +Ψ1Ut−1 + · · ·+ΨqUt−q = Vt. (B.3)
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If Utcϕ = 0 a.s., then Vtcϕ = 0 a.s.. Let c1 be the vector consisting of the first m

elements of cϕ, while c2 is the vector consisting of the remaining elements of cϕ.

Then −Φ(1)c1+(Xt−1⊗ Im)c2 = 0. Since Xt−1 is not degenerate, (Xt−1⊗ Im)c2 = 0
and Φ(1)c1 = 0. By Assumption 1, Φ(1) is of full rank, and hence c1 = 0. By

Assumption 2, we can show that c2 = 0. Thus, cϕ = 0.

Next, by (3.3),

H²
t = (Im −

sX
i=1

BiL
i)−1[W + (

rX
i=1

AiL
i)~ε²t], (B.4)

∂H²
t

∂δ0
= (Im −

sX
i=1

BiL
i)−1(Im, H̃²

t−1 ⊗ Im), (B.5)

where H̃²
t−1 = (~ε

²0
t−1, · · · , ~ε²0t−r, H²0

t−1, · · · , H²0
t−s). Denoting U1t = ∂H²

t /∂δ
0 and V1t =

(Im, H̃
²
t−1 ⊗ Im), we have the following recursive equation:

U1t = B1U1t−1 + · · ·+BsU1t−s + V1t. (B.6)

If U1tc = 0 a.s., then V1tc = 0 a.s.. By Assumptions 3-4, in a similar manner to

Vtcϕ = 0, we can conclude c = 0 (also refer to the proof of Proposition 3.4 in

Jeantheau (1998)). This completes the proof. 2

Proof of Lemma 4.3. As the parameter space Θ is compact, all the roots of

Φ(L) lie outside the unit circle, and the roots of a polynomial are continuous func-

tions of its coefficients, there exist constants c0, c1 > 0 and 0 < % < 1, independent

of all λ ∈ Θ, such that

||ε²t|| ≤ c0 + c1
∞X
i=0

%i||Yt−i|| ≡ ε∗t . (B.7)

Thus, E supλ∈Θ ||ε²t||2 <∞ by Theorem 2.1. Note that, by Assumption 3, |D²
tΓD

²
t |

has a lower bound uniformly over Θ. We have E supλ∈Θ[ε
²0
t (D

²
tΓD

²
t)
−1ε²t] <∞. By

Assumption 3 and Lemma 4.1, we can show that

||H²
t || ≤ c2 + c3

∞X
i=1

%i1||Yt−i||2 ≡ ε∗ht, (B.8)

where c2, c3 > 0 and 0 < %1 < 1 are constants independent of all λ ∈ Θ. Thus,

E supλ∈Θ ||H²
t || < ∞, and hence E supλ∈Θ |D²

tΓD
²
t | < ∞. By Jensen’s inequality,
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E supλ∈Θ |ln |D²
tΓD

²
t || < ∞. Thus, E|l²t(λ)| < ∞ for all λ ∈ Θ. Let g(Y t,λ) =

l²t − El²t , where Y t = (Yt, Yt−1, · · ·). Then E supλ∈Θ |g(Y t,λ)| < ∞. Further-

more, since g(Y t,λ) is strictly stationary with Eg(Y t,λ) = 0, by Theorem 3.1,

supλ∈Θ |n−1
Pn
t=1 g(Y t, λ)| = op(1). This completes the proof. 2

Proof of Lemma 4.4. First,

−E ln |D²
tΓD

²
t |−E[ε²

0
t (D

²
tΓD

²
t)
−1ε²t]

= −E ln |D²
tΓD

²
t |− E[(ε²t − ε0t + ε0t)

0(D²
tΓD

²
t)
−1(ε²t − ε0t + ε0t)]

= {−E ln |D²
tΓD

²
t |−E[ε00t(D²

tΓD
²
t)
−1ε0t]}

−E[(ε²t − ε0t)
0(D²

tΓD
²
t)
−1(ε²t − ε0t)] ≡ L1(λ) + L2(λ). (B.9)

L2(λ) obtains its maximum at zero, and this occurs if and only if ε²t = ε0t. Thus,

ε²t − ε0t =
∂ε²t
∂ϕ0

¯̄̄̄
¯
ϕ∗
(ϕ− ϕ0) = 0. (B.10)

By Lemma 4.2, we know that equation (B.10) holds if and only if ϕ = ϕ0.

L1(λ) = −E ln |D²
tΓD

²
t |− Etr(Mt)

= −[−E ln |Mt|+Etr(Mt)]− E ln |D0tΓ0D0t|, (B.11)

where Mt = (D
²
tΓD

²
t)
−1/2(D0tΓ0D0t)(D²

tΓD
²
t)
−1/2. Note that, for any positive defi-

nite matrixM , −f(M) ≡ − ln |M |+trM ≥ m (see Lemma A.6 in Johansen (1995)),
and hence

−E ln |Mt|+Etr(Mt) ≥ m. (B.12)

WhenMt = Im, we have f(Mt) = f(Im) = −m. IfMt 6= Im, then f(Mt) < f(Im), so

that Ef(Mt) ≤ Ef(Im) with equality only if Mt = Im with probability one. Thus,

L1(λ) reaches its maximum −m − E ln(D0tΓ0D0t), and this occurs if and only if
D²
tΓD

²
t = D0tΓ0D0t. From the definition of Γ, we have hit = h0it, and hence Γ = Γ0.

Note that

max
λ∈Θ

L(λ) ≤ max
λ∈Θ

L1(λ) + max
λ∈Θ

L2(λ).
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maxλ∈Θ L(λ) =−m−E ln(D0tΓ0D0t) if and only if maxλ∈Θ L2(λ) = 0 and maxλ∈Θ L1
(λ) = −m − E ln(D0tΓ0D0t), which occurs if and only if ϕ = ϕ0, Γ = Γ0 and

hit = h0it. From ϕ = ϕ0 and hit = h0it, we have

(H²
t −H0t)|ϕ=ϕ0

=
∂H²

t

∂δ0
|(ϕ0,δ∗)(δ − δ0) = 0 (B.13)

with probability one, where δ∗ lies between δ and δ0. By Lemma 4.2, (B.13) holds

if and only if δ = δ0. Thus, L(λ) is uniquely maximised at λ0. This completes the

proof. 2

Proof of Lemma 4.5. First, for any positive constant M ,

|1
n

nX
t=1

XtξtI(|Xt| > M)| ≤ C
n

nX
t=1

|Xt|I(|Xt| > M), (B.14)

where I(·) is the indicator function. For any small ²,κ > 0, since E|Xt| <∞, there
exists a constant M0 such that

P

Ã
|1
n

nX
t=1

XtξtI(|Xt| > M0)| > κ

!

≤ 1
κ
E

Ã
|1
n

nX
t=1

XtξtI(|Xt| > M0)|
!

≤ C
κ
E

Ã
1

n

nX
t=1

|Xt|I(|Xt| > M0)

!

≤ C
κ

Z
|x|>M0

|x|dF (x) < ²

2
, (B.15)

where F (x) is the distribution of Xt. For such a constantM0, by the given condition,

there exists a positive integer N such that, when n > N ,

P

Ã
|1
n

nX
t=1

XtξtI(|Xt| ≤M0)| > κ

!
≤ P

Ã
1

n

nX
t=1

|ξt| > κ/M0)

!
<
²

2
. (B.16)

By (B.15) and (B.16), as n > N , P (|n−1Pn
t=1Xtξt| > 2κ) < ², that is, n−1

Pn
t=1Xtξt =

op(1). This completes the proof. 2

Proof of Lemma 4.6. For convenience, let the initial values be Ȳ0 = 0 and

ε̄0 = 0. When the initial values are not equal to zero, the proof is similar. By

Assumption 1, ε²t and εt have the expansions:

ε²t =
∞X
k=0

Υk(Yt−k − µ), εt =
t−1X
k=0

Υk(Yt−k − µ), (B.17)
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where Φ−1(L)Ψ(L) =
P∞
k=0ΥkL

k. By (B.17),

||ε²t − εt|| ≤ c1
∞X
k=t

%k1||Yt−k − µ||, (B.18)

where 0 < %1 < 1, and c1 and %1 are constants independent of the parameter λ. By

Assumption 3 and Lemma 4.1, we have

H²
t =

∞X
k=0

Γk[W + (
rX
i=1

AiL
i)~ε²t−k], Ht =

t−1X
k=0

Γk[W + (
rX
i=1

AiL
i)~εt−k], (B.19)

where (Im −Ps
i=1BiL

i)−1 =
P∞
k=0 ΓkL

k. By (B.19)

||H²
t −Ht|| ≤

∞X
k=t

%k2(c2 + c3||~ε²t−k − ~εt−k||), (B.20)

where 0 < %2 < 1, and c2, c3 and %2 are constants independent of the parameter λ.

By (B.18) and (B.20), we have

E sup
λ∈Θ
(ε²it − εit)

2 = O(%t) and E sup
λ∈Θ

|h²it − hit| = O(%t), (B.21)

where i = 1, · · · ,m, 0 < % < 1, and O(·) holds uniformly in all t. Since hit has a
lower bound, by (B.21), it follows that

1

n

nX
t=1

E sup
λ∈Θ

|ln |D²
tΓD

²
t |− ln |DtΓDt||

=
mX
i=1

"
1

n

nX
t=1

E sup
λ∈Θ

¯̄̄̄
¯ln

Ã
h²it
hit

!¯̄̄̄
¯
#

≤
mX
i=1

"
1

n

nX
t=1

E sup
λ∈Θ

¯̄̄̄
¯h²it − hithit

¯̄̄̄
¯
#

= O(1)
mX
i=1

"
1

n

nX
t=1

E sup
λ∈Θ

|h²it − hit|
#

= O(1)
mX
i=1

1

n

nX
t=1

O(%t) = o(1). (B.22)

Again, since hεit and hit have a lower bound uniformly in all t, i and λ,

mX
i=1

¯̄̄̄
¯ ε²it√
h²it
− εit√

hit

¯̄̄̄
¯
2

≤
mX
i=1

ε²2it
¯̄̄̄
¯ 1√h²it −

1√
hit

¯̄̄̄
¯
2

+ (ε²it − εit)
2

O(1), (B.23)
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where O(1) holds uniformly in all t. We have

¯̄̄
ε²
0
t (D

²
tΓD

²
t)
−1ε²t − ε0t(DtΓDt)

−1εt
¯̄̄

=
¯̄̄
2ε²

0
t D

²−1
t Γ−1(D²−1

t ε²t −D−1t εt)− (ε²0t D²−1
t − ε0tD

−1
t )Γ

−1(D²−1
t ε²t −D−1t εt)

¯̄̄
≤
 mX
i=1

¯̄̄̄
¯ ε²it√
h²it
− εit√

hit

¯̄̄̄
¯
2
1/2 kε²tkO(1) +

 mX
i=1

¯̄̄̄
¯ ε²it√
h²it
− εit√

hit

¯̄̄̄
¯
2
O(1)

≤
mX
i=1

||ε²t|| |ε²it|
¯̄̄̄
¯ 1√h²it −

1√
hit

¯̄̄̄
¯+ ε²2it

¯̄̄̄
¯ 1√h²it −

1√
hit

¯̄̄̄
¯
2
O(1)

+
mX
i=1

h
||ε²t|| |ε²it − εit|+ (ε²it − εit)

2
i
O(1)

= O(1)R1t +O(1)R2t, (B.24)

where O(1) holds uniformly in all t and the second inequality comes from (B.23).

By (B.7) and (B.21), it is easy to show that n−1
Pn
t=1 supλ∈Θ R2t = op(1). Thus,

it is sufficient to show that n−1
Pn
t=1 supλ∈ΘR1t = op(1). Let Xt = ε∗2t and ξt =

supλ∈Θ
¯̄̄
h
²−1/2
it − h−1/2it

¯̄̄2
, where ε∗t is defined by (B.7). Then, Xt is a strictly station-

ary and ergodic time series, with EXt <∞ and |ξt| ≤ C, a constant. Furthermore,
by (B.21),

1

n

nX
t=1

ξt =
1

n

nX
t=1

sup
λ∈Θ

¯̄̄̄
¯ h²it − hit√
h²ithit(

√
h²it +

√
hit)

¯̄̄̄
¯
2

≤ 1

n

nX
t=1

sup
λ∈Θ

|h²it − hit| (h²it + hit)
h²ithit(

√
h²it +

√
hit)2

≤ O(1)
1

n

nX
t=1

sup
λ∈Θ

|h²it − hit|

= O(1)
1

n

nX
t=1

Op(%
t) = op(1).

By Lemma 4.5, n−1
Pn
t=1Xt supλ∈Θ

¯̄̄
h
²−1/2
it − h−1/2it

¯̄̄2
= op(1). Similarly, we can show

that n−1
Pn
t=1Xt supλ∈Θ

¯̄̄
h
²−1/2
it − h−1/2it

¯̄̄
= op(1). Thus,

1

n

nX
t=1

sup
λ∈Θ

R1t ≤
mX
i=1

(
1

n

nX
t=1

"
Xt sup

λ∈Θ

¯̄̄
h
²−1/2
it − h−1/2it

¯̄̄2
+ Xt sup

λ∈Θ

¯̄̄
h
²−1/2
it − h−1/2it

¯̄̄#)
= op(1).

This completes the proof. 2
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Proof of Theorem 4.1. First, the space Θ is compact and λ0 is an interior

point in Θ. Second, Ln(λ) is continuous in λ ∈ Θ and is a measurable function of

Yt, t = 1, · · · , n for all λ ∈ Θ. Third, by Lemmas 4.3-4.4, L²n(λ)→p L(λ) uniformly

in Θ. From Lemma 4.6, we have

sup
λ∈Θ

|Ln(λ)− L(λ)| ≤ sup
λ∈Θ

|L²n(λ)− L(λ)|+ sup
λ∈Θ

|L²n(λ)− Ln(λ)| = op(1).

Fourth, Lemma 4.4 showed that L(λ) has a unique maximum at λ0. Thus, we have

established all the conditions for consistency in Theorem 4.1.1 in Amemiya (1985).

This completes the proof. 2

Proof of Lemma 5.1. In the proof of Lemma 4.3, we have shown that

E supλ∈Θ ||ε²t||2 <∞. With the same argument, it can be shown thatE supλ∈Θ ||(∂ε²0t
/∂ϕ)||2 < ∞. Since D²

tΓD
²
t has a lower bound uniformly for all λ ∈ Θ, we have

E supλ∈Θ || (∂ε²0t /∂ϕ)(D²
tΓD

²
t)
−1(∂ε²t/∂ϕ

0)|| < ∞. Let c be any constant vector

with the same dimension as ϕ. If c0E[(∂ε²
0
t /∂ϕ)(D

²
tΓD

²
t)
−1(∂ε²t/ ∂ϕ0)]c = 0, then

c0(∂ε²
0
t /∂ϕ)(D

²
tΓD

²
t)
−1/2 = 0 a.s., and hence c0∂ε²

0
t /∂ϕ = 0 a.s.. By Lemma 4.2,

c = 0. Thus E[(∂ε²
0
t /∂ϕ)(D

²
tΓD

²
t)
−1 (∂ε²t/∂ϕ

0)] > 0. This completes the proof. 2

Proof of Lemma 5.2. First,

∂l²t
∂ϕ

= −∂ε²
0
t

∂ϕ
(D²

tΓD
²
t)
−1ε²t −

1

2

∂H²0
t

∂ϕ
D²−2
t ζt, (B.25)

∂H²
t

∂ϕ0
= (Im −

sX
i=1

BiL
i)−1(

rX
i=1

AiL
i)(2~ε∗t

∂ε²t
∂ϕ0

), (B.26)

∂l²t
∂δ
= −1

2

∂H²0
t

∂δ
D²−2
t ζt, (B.27)

∂l²
0
t

∂σ
= −1

2

∂vec0(Γ)
∂σ

vec(Γ−1 − Γ−1D²−1
t ε²tε

²0
t D

²−1
t Γ−1), (B.28)

where ~ε∗t = diag(ε
²
1t, · · · , ε²mt), ζt = Π − η̃²tΓ

−1η²t , Π = (1, · · · , 1)0m×1, and η²t and η̃²t

are defined as in Lemma 5.3. When λ = λ0, η
²
t = η0t and, in this case, we denote ζt

and η̃²t by ζ0t and η̃²0t, respectively.

For models (2.10)-(2.11),

∂H²
t

∂µ0
= −2

rX
i=1

Ai~ε
∗
t−i. (B.29)
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Since |ε²2jt−i| ≤ h²jt/αiij and αiij ≥ aliij > 0, j = 1, · · · ,m and i = 1, · · · , r, we have

||∂H
²0
t

∂µ
D²−2
t || ≤ κ1

mX
j=1

rX
i=1

|ε²jt−i|
h²jt

< κ2, (B.30)

where κ1 and κ2 are some constants independent of λ. Furthermore, since all the

terms in ∂hit/∂δ appear in h
²
it, ||(∂H²0

t /∂δ) D
²−2
t || < M , a constant independent of

λ. Since Eη40it <∞ and E||ζ0t||2 <∞, it follows that Ω0 <∞.
For models (2.4)-(2.5), since (B.25)-(B.26), E||ζ0t||2 <∞, E||Yt||4 <∞ and D0t

has a lower bound, we have

E||∂l
²
0t

∂ϕ
||2 ≤ 2E||∂ε

²0
0t

∂ϕ
||2 + 1

2
E||∂H

²0
0t

∂ϕ
D−20t ||2E||ζ0t||2 <∞.

Similarly, we can show that E||∂l²0t/∂δ||2 is finite. It is obvious that E||∂l²0t/∂σ||2 <
∞. Thus, we also have Ω0 <∞. In a similar manner, it can be shown that Ω0 <∞
for models (2.8)-(2.9).

Let St =
Pn
t=1 c

0∂l²0t/∂λ, where c is a constant vector with the same dimension

as λ. Then Sn is a martingale array with respect to Ft. By the given assump-
tions, ESn/n = c

0E[∂l²0t/∂λ∂l
²
0t/∂λ

0]c > 0. Using the central limit theorem of Stout

(1974), n−1/2Sn converges to N(0, c0Ω0c) in distribution. Finally, by the Cramér-

Wold device, n−1/2
Pn
t=1 ∂l

²
0t/∂λ converges to N(0,Ω0) in distribution.

In a similar manner to the proof of Lemma 4.6, we can show that

1√
n

nX
t=1

||∂l
²
0t

∂λ
− ∂l0t

∂λ
|| = op(1).

Thus, n−1/2
Pn
t=1 ∂l0t/∂λ converges to N(0,Ω0) in distribution. This completes the

proof. 2

Proof of Lemma 5.3. For models (2.10)-(2.11), from the proof of Lemma 5.2,

we have shown that

sup
λ∈Θ

||(∂H²0
t /∂λ̃)D

²−2
t || < C <∞ with probability one,

where C is a nonrandom constant. Furthermore,

sup
λ∈Θ

||∆²
t|| ≤ κ1||η²t ||2 ≤ κ1||ε²t||2 ≤ κ3ε

∗2
t ,
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where ε∗t is defined as in (B.7). Thus, E supλ∈Θ ||(∂H²0
t /∂λ̃)D

²−2
t ∆²

tD
²−2
t (∂H²

t/∂λ̃
0)||

<∞.
For models (2.8)-(2.9),

∂H²
t

∂ϕ0
= 2

rX
i=1

Ai~ε
∗
t−i

∂ε²t
∂ϕ0

,

where ~ε∗t is defined as in (B.26). Thus, with probability one,

||∂H
²0
t

∂ϕ
D²−2
t || ≤ κ1

mX
j=1

rX
i=1

|ε²jt−i|
h²jt

||∂ε
²0
t

∂ϕ
|| ≤ κ2

mX
j=1

rX
i=1

||∂ε
²0
t−i

∂ϕ
||, (B.31)

where κ1 and κ2 are constants independent of λ. Since all the components in ∂H
ε0
t /∂δ

also appear in D²2
t , we have

sup
λ∈Θ

||∂H
²0
t

∂δ
D²−2
t || < C <∞, (B.32)

where C is a nonrandom constant independent of λ. By (B.31)-(B.32), it is easy to

show that, if E||Yt||4 <∞, E supλ∈Θ ||(∂H²0
t /∂λ̃)D

²−2
t ∆²

t D
²−2
t (∂H²

t / ∂λ̃0)|| <∞.
For models (2.4)-(2.5), since E||Yt||6 <∞,

E sup
λ∈Θ

||∂H
²0
t

∂λ̃
D²−2
t ∆²

tD
²−2
t

∂H²
t

∂λ̃0
|| ≤ CE sup

λ∈Θ
||∂H

²0
t

∂λ̃
∆²
t

∂H²
t

∂λ̃0
|| <∞,

where C is a nonrandom constant independent of λ. This completes the proof. 2

Proof of Lemma 5.4. By direct differentiation of (B.25) and (B.27)-(B.28),

we have

∂2l²t
∂λ̃∂λ̃0

= −R(1)t −R(2)t −R(3)t , (B.33)

where

R
(1)
t =

∂ε²
0
t

∂λ̃
(D²

tΓD
²
t)
−1∂ε

²
t

∂λ̃0
, R

(2)
t =

1

4

∂H²0
t

∂λ̃
D²−2
t ∆²

tD
²−2
t

∂H²
t

∂λ̃0
,

R
(3)
t = (ε²

0
t ⊗ Im)

∂

∂λ̃0
vec

"
∂ε²

0
t

∂λ̃
(D²

tΓD
²
t)
−1
#

+(ζ 0t ⊗ Im)
∂

∂λ̃0
vec

"
1

2

∂H²0
t

∂λ̃
D²−2
t

#
− 1
2

∂H²0
t

∂λ̃
D²−2
t

h
η̃εtΓ

−1D²−1
t + ∆̃²

tD
²−1
t

i ∂ε²t
∂λ̃0
,
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and ∆²
t, ∆̃

²
t and η̃²t are defined as in Lemma 5.3. By Lemmas 5.1 and 5.3, we have

E supλ∈ΘR
(1)
t < ∞ and E supλ∈ΘR

(2)
t < ∞. Similarly, we can show that E supλ∈Θ

R
(3)
t <∞. Thus, by (B.33), E supλ∈Θ ||∂2l²t/∂λ̃∂λ̃0|| <∞. Furthermore,

∂2l²t
∂ϕ∂σ0

=
∂ε²

0
t

∂ϕ
(ε²

0
t D

²−1
t Γ−1 ⊗D²−1

t Γ−1)K− 1
2

∂H²0
t

∂ϕ
D²−2
t

∂ζt
∂σ0
,

∂2l²t
∂δ∂σ0

= −1
2

∂H²0
t

∂δ
D²−2
t

∂ζt
∂σ0
,

∂ζt
∂σ0

= (η²
0
t Γ

−1 ⊗ η̃²t)(Im ⊗ Γ−1)K,
∂2l²t
∂σ∂σ0

=
1

2
K0(Γ−1 ⊗ Im)[Im − (Γ−1D²−1

t ε²tε
²0
t D

²−1
t ⊗ Im)

−(Im ⊗ Γ−1D²−1
t ε²tε

²0
t D

²−1
t )](Im ⊗ Γ−1)K.

In a similar manner, it is straightforward to show that E supλ∈Θ ||∂2l²t/∂ϕ∂σ0|| <∞,
E supλ∈Θ ||∂2l²t/∂δ∂σ0|| < ∞ and E supλ∈Θ ||∂2l²t/∂σ∂σ0|| < ∞. Finally, by the

triangle inequality, we can show that E supλ∈Θ ||∂2l²t/∂λ∂λ0|| < ∞. By Theorem
3.1, (a) holds. The proof of (b) is similar to that of Lemma 4.6, and hence the

details are omitted. This completes the proof. 2

Proof of Lemma 5.5. By Lemmas 5.1 and 5.3, we know ||Σ0|| < ∞. By
Lemma 5.4, we have Σn = Σ0 + op(1).

Let c be a constant vector with the same dimension as δ. If c0E[∂H²0
0t/∂δD

−4
0t ∂

H²
0t/∂δ

0]c = 0, then c0(∂H²0
0t/∂δ)D

−2
0t = 0 and hence c

0∂H²0
0t/∂δ = 0. By Lemma 4.2,

c = 0. Thus, E[∂H²0
0t/∂δD

−4
0t ∂H

²
0t/∂δ

0] > 0.

Denote

Σδ0 = E

 1
2

∂H²0
0t

∂δ
D−20t 0
0 P 0

Ã C C1
C 01 Im2/2

!Ã
1
2
D−20t

∂H²
0t

∂δ0 0
0 P

! .
By the condition given, C ≥ 2Im. Thus, it is easy to show that

Ã
C C1
C 01 Im2/2

!
is

positive by Theorem 14.8.5 in Harville (1997). Since P 0P = K0(Γ−10 ⊗ Γ−10 )K and

E[∂H²0
0t/∂δD

−4
0t ∂H

²
0t/∂δ

0] are positive, we know that Σδ0 is positive.

−Σ0 =
Ã
E[

∂ε00t

∂ϕ
(D0tΓ0D0t)

−1 ∂ε0t

∂ϕ0 ] 0

0 0

!
+

Ã
Σϕ0 Σϕδσ0

Σ0ϕδσ0 Σδ0

!
,
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where Σϕ0 = E
h
(∂H²0

0t/∂ϕ)D
−2
0t CD

−2
0t (∂H

²
0t/∂ϕ

0)
i
/4, Σϕδσ0 = (Σϕδ0,Σϕσ0), Σϕδ0 =

E
h
(∂H²0

0t/∂ϕ)D
−2
0t CD

−2
0t (∂H

²
0t/∂δ

0)
i
/4, Σϕσ0 = E

h
(∂H²0

0t/∂ϕ)D
−2
0t

i
C1P/2. Let c =

(c01, c
0
2)
0 be any constant vector with the same dimension as λ, and let c1 have the

same dimension as ϕ, i.e. m + (p + q)m2 for models (2.4)-(2.5) and (2.8)-(2.9),

and m for models (2.10)-(2.11). If −c0Σ0c = 0, then c01E[(∂ε
0
0t/∂ϕ)(D0tΓ0D0t)

−1

(∂ε0t/∂ϕ
0)]c1 = 0. By Lemma 5.1, c1 = 0. Thus, c02Σδ0c2 = 0. As we have shown

that Σδ0 is positive definite, c2 = 0. Thus, −Σ0 is positive definite. This completes
the proof. 2

Proof of Lemma 5.6. We only present the proof for models (2.4)-(2.5). The

proofs for models (2.8)-(2.9) and models (2.10)-(2.11) are similar, except that (B.29)-

(B.30) are used to avoid the requirement of moments. In the following, ci and ρi are

some constants independent of λ, with 0 < ρi < 1. By (B.2), we can show that

||∂ε
²
t

∂ϕ
|| ≤ c2 + c3

∞X
i=1

ρi1||Yt−i|| ≡ X1t. (B.34)

Since X1t is a strictly stationary time series with EX
2
1t < ∞, we have (see Chung,

1968, p.93)

1√
n
max
1≤t≤n

sup
λ∈Θ

||∂ε
²
t

∂ϕ
|| = op(1). (B.35)

By (B.5), (B.7),(B.8) and (B.26), it follows that

sup
λ∈Θ

||∂H
²
t

∂λ̃
|| ≤ c4 + c5

∞X
i=1

ρi2||Yt−i||2 ≡ X2t. (B.36)

Since X2t is a strictly stationary time series with EX
2
2t <∞, we have

1√
n
max
1≤t≤n supλ∈Θ

||∂H
²
t

∂λ̃
|| = op(1). (B.37)

In the following, ζt is defined as in (B.27) and η̃²t and η²t are defined as in Lemma

5.3. Denote η²t , η̃
²
t , ζt and D

²
t by η²nt, η̃

²
nt, ζnt and D

²
nt, respectively, when λ = λn.

By (B.35) and (B.37),

|η²nit − η0it| ≤ |ε²nit − ε0it| 1
h
²1/2
nit

+ |h²1/2nit − h1/20it |
|ε0it|

h
1/2
0it h

²1/2
nit
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≤ ||√n(λ̃n − λ̃0)||[ 1

h
²1/2
nit

√
n
max
1≤t≤n

(||∂ε
²
t

∂λ̃
||
¯̄̄̄
¯
λ∗1n

)

+
|ε0it|

h
1/2
0it h

²1/2
nit

| 1√
n
max
1≤t≤n

( || 1
h
²1/2
it

∂h²it
∂λ̃
||
¯̄̄̄
¯
λ∗2n

)

= op(1) + op(1)|η0it|, (B.38)

where op(1) holds uniformly in all t, i = 1, · · · ,m, and λ∗1n and λ∗2n lie in between λ0

and λn. From (B.38), we have

||ζnt − ζ0t|| = ||η̃²ntΓ−1n η²nt − η̃0tΓ
−1
0 η0t||

≤ ||η̃²nt||||η̃0t||||Γ−1n − Γ−10 ||

+2||η̃²nt − η̃0t||||Γ−10 η0t||+ ||η̃²nt − η̃0t||2||Γ−10 ||

= op(1) + op(1)||η0t||2, (B.39)

where op(1) holds uniformly in all t. By (B.37),

max
1≤t≤n |h

²−1
nit − h−10it | = ||√n(λ̃n − λ̃0)|| 1√

n
max
1≤t≤n(||

1

h²2it

∂h²it
∂λ̃
||λ∗3n

)

= op(1), (B.40)

where λ∗3n lies in between λ0 and λn. By (B.39)-(B.40),

||D²−2
nt ζnt −D−20t ζ0t|| ≤ ||D²−2

nt −D−20t ||||ζ0t||+ ||D²−2
nt ||||ζnt − ξ0t||

= op(1) + op(1)||η0t||2. (B.41)

By (B.41),

||D²−2
nt ζntζ

0
ntD

²−2
nt −D−20t ζ0tζ 00tD−20t ||

≤ 2||D²−2
nt ζnt −D−20t ζt||||D−20t ζ0t||+ ||D²−2

nt ζnt −D−20t ζt||2

= op(1) + op(1)||η40t||. (B.42)

In a similar manner to (B.37), we can show that

sup
λ∈Θ

|| ∂
2h²it

∂λ̃∂λ̃
|| ≤ c6 + c7

∞X
j=1

ρj3||Yt−j||2 ≡ X3it, (B.43)
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where i = 1, · · · ,m. By (B.42)-(B.43), we can show that
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²0
nt

∂λ̃
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nt
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X3it)
2||ζ0t||2 +X2

2t(1 + ||η0t||4)op(1)
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||+ (

mX
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X3it)
2 +X2

2t](1 + ||η0t||4)

≡ op(1)X∗
t (1 + ||η0t||4), (B.44)

where Op(1) and op(1) hold uniformly in all t. Note that X
∗
t (1 + ||η0t||4) is strictly

stationary, with E[X∗
t (1 + ||η0t||4)] = EX∗

tE(1 + ||η0t||4) < ∞. By the ergodic
theorem, we have n−1

Pn
t=1X

∗
t (1 + ||η0t||4) = Op(1). Thus, by (B. 44), we have

1
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nX
t=1

||∂H
²0
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∂λ̃
D²−2
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0
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²−2
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∂H²0
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∂λ̃
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0t

∂λ̃
D−20t ζ0tζ

0
0tD

−2
0t

∂H0t

∂λ̃0
|| = op(1). (B.45)

Similarly, we can show that

1

n

nX
t=1

||∂ε
²0
nt

∂ϕ
(D²

ntΓD
²
nt)
−1ε²ntε

²0
nt(D

²
ntΓD

²
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−1∂ε

²0
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−1ε0tε00t(D0tΓD0t)
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|| = op(1), (B.46)

and

1

n

nX
t=1

||∂l
²
nt

∂σ

∂l²nt
∂σ0
− ∂l²0t

∂σ

∂l²0t
∂σ0

|| = op(1). (B.47)

Thus, by (B.45)-(B.47) and the triangle inequality, we can show that

1

n

nX
t=1

||∂l
²
nt

∂λ

∂l²nt
∂λ0
− ∂l²0t

∂λ

∂l²0t
∂λ0

|| = op(1). (B.48)

38



Thus, (a) holds. In a similar manner to the proof of Lemma 4.6, we can show that

1

n

nX
t=1

||∂l
²
nt

∂λ

∂l²nt
∂λ0
− ∂lnt

∂λ

∂lnt
∂λ0

|| = op(1). (B.49)

Note that (∂l²0t/∂λ)(∂l
²
0t/∂λ

0) is strictly stationary and ergodic with E||(∂l²0t/∂λ)
(∂l²0t/∂λ

0)|| < ∞. By the ergodic theorem, we have n−1Pn
t=1 ||(∂l²0t/∂λ)(∂l²0t/∂λ0)||

= Ω0 + op(1). Furthermore, by (B.48)-(B.49), (b) holds. This completes the proof.

2

Proof of Theorem 5.1. We need only to verify the conditions of Theorem

4.1.3 in Amemiya (1985). First, by Theorem 4.1, the QMLE λ̂n of λ0 is consistent.

Second, n−1
Pn
t=1(∂l

2
t /∂λ∂λ

0) exists and is continuous in Θ. Third, by Lemmas

5.4-5.5, we can immediately obtain that n−1
Pn
t=1(∂l

2
nt/∂λ∂λ

0) converges to Σ0 > 0

for any sequence λn, such that λn → λ0 in probability. Fourth, by Lemma 5.2,

n−1/2
Pn
t=1(∂l0t/∂λ) converges toN(0,Ω0) in distribution. Thus, we have established

all the conditions in Theorem 4.1.3 in Amemiya (1985), and hence n1/2(λ̂n−λ0) con-
verges to N(0,Σ−10 Ω0Σ

−1
0 ). Finally, by Lemmas 5.5-5.6, Σ0 and Ω0 can be estimated

consistently by Σ̂n and Ω̂n, respectively. This completes the proof. 2
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