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Abstract

Although econometricians have been using Bollerslev’s (1986) GARCH (r,
s) model for over a decade, the higher-order moment structure of the model
remains unresolved. The sufficient condition for the existence of the higher-
order moments of the GARCH (r, s) model was given by Ling (1999a). This
paper shows that Ling’s condition is also necessary. As an extension, the
necessary and sufficient moment conditions are established for Ding, Granger
and Engle’s (1993) asymmetric power GARCH (r, s) model.
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1 Introduction

A process εt is said to follow Bollerslev’s (1986) general autoregressive conditional

heteroskedasticity (GARCH (r, s)) model if it satisfies the equations:

εt = ηt
q
ht , (1.1)

ht = α0 +
rX
i=1

αiε
2
t−i +

sX
i=1

βiht−i, (1.2)

where α0 > 0,αi ≥ 0 (i = 1, · · · , r) with at least one αi > 0, and βi ≥ 0 (i = 1, · · · , s).
When s = 0, the GARCH(r,s) model (1.1)-(1.2) reduces to Engle’s (1982) autore-

gressive conditional heteroskedasticity (ARCH (r)) model. Both the ARCH and

GARCH models have been applied widely in the econometric and finance literature

to model volatility (see Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and

Nelson (1994), and Li, Ling and McAleer (1999) for recent reviews).

Bollerslev (1986) showed that the necessary and sufficient condition for the

second-order stationarity of model (1.1)-(1.2) is

rX
i=1

αi +
sX
i=1

βi < 1. (1.3)

Bougerol and Picard (1992) provided the necessary and sufficient condition for the

strict stationarity and ergodicity of model (1.1)-(1.2). Ling and Li (1997) proved

that, under (1.3), there exists a unique Ft−1-measurable and second-order stationary
solution to model (1.1)-(1.2), and that the solution is strictly stationary and ergodic,

where Ft is a σ−field generated by {ηt, ηt−1, · · ·}. Thus, the second-order moment
structure of model (1.1)-(1.2) is now complete.

However, the higher-order moment structure of model (1.1)-(1.2) remains unre-

solved. When s = 0, Milhφj (1985) gave the necessary and sufficient condition for

the existence of the 2m-th moment of the ARCH model. Bollerslev (1986) provided

the necessary and sufficient condition for the existence of the 2m-th moment of the

GARCH(1,1) model, and the necessary and sufficient condition for the fourth-order

moments of the GARCH(1,2) and GARCH(2,1) models. Karanasos (1999) and He
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and Terasvirta (1999b) gave conditions for the existence of the fourth moment of

model (1.1)-(1.2). He and Terasvirta (1999b) state that their condition is necessary

and sufficient. From the proof in Karanasos (1999), it can be seen that his condition

is necessary, but it is not clear whether the condition is also sufficient.

Based on Theorem 2.1 in Ling and Li (1997) and Theorem 2 in Tweedie (1988),

Ling (1999a) provided a sufficient condition for the existence of the 2m-th moment

of model (1.1)-(1.2). Ling’s result does not need to assume that the GARCH (r,

s) process starts infinitely far in the past with finite 2m-th moment, as is required

in Bollerslev (1986) and He and Terasvirta (1999b), and has a far simpler form as

compared with Milhφj (1985), Karanasos (1999), and He and Terasvirta (1999b).

In this paper, it is shown that the sufficient condition in Ling (1999a) is also

necessary. As an extension, the necessary and sufficient moment condition is estab-

lished for the asymmetric power GARCH (r, s) model proposed by Ding, Granger

and Engle (1993).

2 Main Results

Denote A⊗m = A⊗A⊗ · · ·⊗A (m factors), where ⊗ is the Kronecker product. Our
result for the GARCH (r,s) model is as follows.

Theorem 2.1. The necessary and sufficient condition for Eε2mt <∞ is ρ[E(A⊗mt )] <

1, where ρ(A) = min{|eigenvalues of a matrix A|}, and

At =


α1η

2
t · · · αr η

2
t β1 η

2
t · · · βsη

2
t

I(r−1)×(r−1) O(r−1)×1 O(r−1)×s

α1 · · · αr β1 · · · βs
O(s−1)×r I(s−1)×(s−1) O(s−1)×1

 ,

in which Ir×r is the r × r identity matrix.
The sufficiency comes from Theorem 6.1 of Ling (1999a). The proof of necessity

is given in Section 4. Ling (1999a) showed that, when r = s = 1, the condition in

Theorem 2.1 is equivalent to that in Bollerslev (1986).
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Recently, He and Terasvirta (1999b) investigated the necessary and sufficient

condition for the fourth moment of the GARCH (r, s) model. It is instructive to

examine their condition carefully. By assuming that Eh2t < ∞, He and Terasvirta
(1999b) derive their conditions by the following equation:

Eh2t = α20 + 2α0γ1Eht + γ2Eh
2
t + 2

X
l<m

E(cl,t−lcm,t−mht−lht−m), (2.1)

where γ1 and γ2 are some suitable constants and ci,t−i = αiη
2
t−i + βi. Because of

the assumption that Eh2t < ∞, their condition is clearly necessary rather than
sufficient1. Karanasos (1999) used an equation similar to (2.1), and hence his con-

dition is also necessary rather than sufficient.

As in Engle (1982) and Bollerslev (1986), He and Terasvirta (1999b) assumed

that the GARCH (r, s) process starts infinitely far in the past with finite 2m-th

moment. In fact, this assumption is unnecessary. It is interesting to clarify this

point. For simplicity, we consider only the case m = 2 and the ARCH(1) model, i.e.

εt = ηt
√
ht and ht = α0 + α1ε

2
t−1. (2.2)

Ling and Li (1997) proved that, when 0 < α1 < 1, there exists a unique second-order

stationary solution to model (2.2), and the solution has the following expansion in

mean square:

εt = ηt
√
ht and ht = α0 + α0

∞X
j=1

jY
i=1

(α1η
2
t−i). (2.3)

The structure of this solution actually is a transformation of a series of i.i.d. random

variables ηt, and does not involve the initial value. The sufficient condition in Ling
1Moreover, the proof of necessity in He and Terasvirta (1999b) is incomplete as some steps in

their proof, such as the one given below, do not hold in general, but require additional restrictions
which were not established by the authors. Note that it cannot be claimed that

P∞
i=1A

i < ∞
follows from

P∞
i=1A

iξ < ∞, where A and ξ are some suitable matrix and vector, respectively,
except for some special A and ξ as in Ling (1999b) and in this paper. It is not clear whether
He and Terasvirta’s (1999b) necessary condition for the existence of the fourth moment, namely
λ(Γ) < 1, holds generally because, for example, without other arguments, their (A.21) converging

does not ensure that
Pk−1
i=m−l+1 Γ

i−(m−l+1) converges and hence does not ensure that λ(Γ) < 1. A
possible solution is to find a vector with all elements positive and to use the ideas established in
this paper to prove that λ(Γ) < 1. However, in He and Terasvirta (1999b), ep−1 in (A.21) includes
some zero elements, and Γ is quite complicated. Thus, such a vector with all elements positive
would not be easy to establish, even if it were to exist.
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(1999a), i.e. the sufficient condition in Theorem 2.1, is the moment condition for

solution (2.3). Since the solution is unique, the εt from model (2.2) is almost surely

the same as (2.3) if Eε2t < ∞. The method of proof in Ling (1999a) used the drift
criterion in Tweedie (1988). This method has been a common tool in nonlinear time

series [see Chan and Tong (1985), Feigin and Tweedie (1985), and Ling (1999a)]. In

the next section, we will use this method to analyze the asymmetric power GARCH

(r,s) model proposed by Ding, Granger and Engle (1993).

3 Asymmetric GARCH (r,s) model

A special asymmetric power GARCH (r,s) model in Ding, Granger and Engle (1993)

[see also He and Terasvirta (1999a)] is given by:

εt = ηt
q
ht , (3.1)

h
δ/2
t = α0 +

rX
i=1

αi(|εt−i|− γεt−i)δ +
sX
i=1

βih
δ/2
t−i, (3.2)

where α0 > 0, αi ≥ 0 (i = 1, · · · , r) with at least one αi > 0, βi ≥ 0 (i = 1, · · · , s),
δ ≥ 0 and |γ| < 1. The primary feature of the asymmetric power GARCH (r,

s) model (3.1)-(3.2) is the presence of a Box-Cox power transformation of the

conditional variances and the asymmetric absolute errors. It can be seen that

model (3.1)-(3.2) is a general version of GARCH. Ding, Granger and Engle (1993)

showed that the asymmetric power GARCH model includes as special cases seven

other ARCH-type models, including ARCH, GARCH, Higgins and Bera’s (1990)

NARCH, Geweke’s (1986) and Pantula’s (1986) log-ARCH, and simple asymmetric

and threshold GARCH models. In the following, Theorem 3.1 gives the sufficient

condition for the stationarity, ergodicity and δ−order stationarity of model (3.1)-
(3.2). Theorem 3.2 provides the necessary and sufficient condition for the existence

of the higher-order moments.

Theorem 3.1. Suppose that α0 > 0, αi, βi ≥ 0, δ ≥ 0, and |γ| < 1. Denote

Zt = (|ηt| − γηt)
δ. Then

Pr
i=1 αiEZt +

Ps
j=1 βj < 1 is a necessary and sufficient
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condition for the existence of a unique Ft-measurable δ-order stationary solution

{εt} to model (3.1)-(3.2). The solution {εt} has the following causal representation:

εt = ηth
1/2
t and ht = [α0 +

∞X
j=1

c0 (
jY
i=1

Aδt−i) ξδt−j]
2
δ a.s., (3.3)

where ξδt = (α0Zt, 0, · · · , 0,α0, 0, · · · , 0)(r+s)×1, that is, the first component is α0Zt

and the (r + 1)-th component is α0, c = (α1, · · · ,αr, β1, · · · , βs)0, and

Aδt =


α1Zt · · · αr Zt β1 Zt · · · βsZt

I(r−1)×(r−1) O(r−1)×1 O(r−1)×s

α1 · · · αr β1 · · · βs
O(s−1)×r I(s−1)×(s−1) O(s−1)×1

 . (3.4)

Hence, {εt} is strictly stationary and ergodic.
For a more general asymmetric power GARCH (r,s) model, Ding, Granger and

Engle (1993) provided a condition for E|εt|δ < ∞, which is the same as that in
Theorem 3.1 for model (3.1)-(3.3). When r = s = 1, γ = 0 and δ = 1, the

condition in Theorem 3.1 is also the same as the condition for the absolute-value

GARCH model in Taylor (1986). The strict stationarity and ergodicity condition

for the asymmetric power model is a new result. The uniqueness of second-order

stationarity and the expansion in (3.3) are also useful results.

Theorem 3.2. The necessary and sufficient condition for E|εt|mδ <∞ in model

(3.1)-(3.2) is ρ[E(A⊗mδt )] < 1, where Aδt is defined by (3.4).

To establish the sufficient moment condition, usually there are two drift criteria

to be employed, the first being that in Tweedie (1983). The results derived from this

criterion will ensure that there is a unique strictly stationary and (geometric) ergodic

solution to the underlying model with finite moment, as in Chan and Tong (1985)

and Feigin and Tweedie (1985). However, this criterion usually needs to assume that

the density function of ηt is lower semi-continuous or positive in a neighbourhood

of the original point to prove the irreducibility condition.

The second criterion is that in Tweedie (1988), but does not need any irreducibil-

ity condition for the moment condition. However, the results from this criterion
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ensure only that there exists a strictly stationary solution for the underlying model

with finite moment. Such a result is not especially helpful in practice since, without

uniqueness, one cannot guarantee that the process from the underlying model has

finite moment. Our method here uses the criterion in Tweedie (1988) to avoid the

assumption on the density of ηt, and then uses Theorem 3.1 to establish uniqueness.

Thus, the result in Theorem 3.2 should be very useful in practice.

4 Proofs of the Main Results

Proof of Theorem 2.1. Multiplying (1.2) by η2t yields

ε2t = α0η
2
t +

rX
i=1

αiε
2
t−iη

2
t +

sX
i=1

βiht−iη2t . (4.1)

Now rewrite (1.2) and (4.1) in vector form as

Xt = AtXt−1 + ζt, (4.2)

where Xt = (ε
2
t , · · · , ε2t−r, ht, · · · , ht−s)0 and ζt = α0(η

2
t , 0, · · · , 0, 1, 0, · · · , 0)0, of which

the first element is η2t and the (r+1)-th element is 1. If E(ε
2m
t ) <∞, then E(X⊗m

t ) <

∞, where “a vector A <∞” means that all the elements of A are finite.
Note that all the elements of At,Xt and ξt are non-negative. We have

E(X⊗m
t ) ≥ E(AtXt−1)⊗m + E(ξ⊗mt )

= E(A⊗mt )E(X⊗m
t−1 ) + C1R

⊗m
1

≥ C1
kX
i=0

[E(A⊗mt )]iR⊗m1 , (4.3)

where C1 = min{all the positive elements of E(ξ⊗mt )}, R1 = (1, 0, · · · , 0, 1, 0, · · · , 0)0,
and “a vector A > a vector B” means that each element of A exceeds the corre-

sponding element of B. Similarly, define A ≥ B. If k tends to infinity, from (4.3)

we have

∞X
i=0

[E(A⊗mt )]iR⊗m1 <∞. (4.4)
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As discussed in Section 2, we cannot claim directly that ρ(E(A⊗mt )) < 1 from (4.4).

Our proof here makes full use of the advantage of the non-negativity of the elements

of E(A⊗mt ) and R⊗m1 .

Denote r? = max{r, s}. In the following, we first show that

[E(A⊗mt )]r
?

R⊗m1 > 0. (4.5)

We will prove (4.5) for the case α1 > 0. For other cases, (4.5) can be similarly

proved. First, E(A⊗mt )R⊗m1 = E(AtR1)
⊗m, where AtR1 = (α1η2t+β1, 1, 0, · · · , 0,α1+

β1, 1, 0, · · · , 0)0. Let C2 = min{all the positive elements of E(At R1)⊗m}, and R2 =
(1, 1, · · · , 0, 1, 1, 0, · · · , 0)0. It follows that

E(A⊗mt )R⊗m1 ≥ C2R⊗m2 . (4.6)

From (4.6), we have

[E(A⊗mt )]2R⊗m1 ≥ C2E(A⊗mt )R⊗m2 = C2E(AtR2)
⊗m. (4.7)

Now, AtR2 = (α1η
2
t +β1+α2η

2
t +β2, 1, 1, 0, · · · , 0,α1+β1+α2+β2, 1, 1, 0, · · · , 0). Let

C3 = min{all the positive elements of E(AtR2)⊗m}, and R3 = (1, 1, 1, 0, · · · , 0, 1,
1, 1, 0, · · · , 0)0. From (4.7), we have

[E(A⊗mt )]2R⊗m1 ≥ C2C3R⊗m3 . (4.8)

Repeating the above procedure r? times, we can show that

[E(A⊗mt )]r
?

R⊗m1 ≥ (
r?Y
i=2

Ci)R
⊗m
r? , (4.9)

where Ci > 0 and Rr? = (1, 1, · · · , 1)0(r+s)×1. Thus, (4.5) holds. From (4.4)-(4.5), we

have

∞X
i=0

[E(A⊗mt )]i[E(A⊗mt )]r
?

R⊗m1 <∞. (4.10)

Let a
(i)
kj be the (k, j)-th element of [E(A

⊗m
t )]i. From (4.10), we know that

P∞
i=0 a

(i)
kj <

∞ for all, k, j = 1, · · · , (r + s)m, that is,
∞X
i=0

[E(A⊗mt )]i <∞,
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and hence ρ[E(A⊗mt )] < 1. This completes the proof. 2

Proof of Theorem 3.1. Multiplying (3.2) by Zt yields

(|εt|− γεt)
δ = α0Zt +

rX
i=1

αi(|εt−i|− γεt−i)δZt +
sX
i=1

βih
δ/2
t−iZt. (4.11)

Rewrite (3.2) and (4.11) in vector form as

Xt = AδtXt−1 + ζδt, (4.12)

where Xt = [(|εt|−γεt)
δ, · · · , (|εt−r+1|−γεt−r+1)δ, h

δ/2
t , · · · , hδ/2t−s]0 and ζδt = α0(Zt, 0,

· · · , 0, 1, 0, · · · , 0), of which the first element is Zt and (r + 1)-th element is 1. By
(4.12), following exactly the steps of Theorem 2.1 in Ling and Li (1997), we can

prove that there is a δ−order solution to (3.1)-(3.2), and the solution has expansion
(3.4), and hence it is strictly stationary and ergodic.

For necessity, since E|εt|δ = Ehδ/2t = a constant <∞, we have

Eh
δ/2
t = α0 +

rX
i=1

αiEZiEh
δ/2
t +

sX
i=1

βiEh
δ/2
t ,

that is,

(1−
rX
i=1

αiEZi −
sX
i=1

βi)Eh
δ/2
t = α0.

Since 0 < Eh
δ/2
t <∞, we have Pr

i=1 αiEZi+
Ps
i=1 βi < 1. This completes the proof.

2

Proof of Theorem 3.2. Using (4.12), the drift criterion in Tweedie (1988), and

following the steps of Theorem 4.2 in Ling (1999a), we can show that there exists a

strictly stationary solution to model (3.1)-(3.2) with E|εt|mδ <∞.
By Hölder’s inequality, E|εt|δ ≤ (E|εt|mδ)1/m <∞, i.e. {εt} is δ−order station-

ary. By Theorem 3.1, the solution is unique ergodic. This means that a process εt

satisfying (3.1)-(3.2) has finite mδ−th moment if ρ(E(A⊗mδt )) < 1.
In a similar manner to the proof of Theorem 2.1, it can be proved that the

necessity of Theorem 3.2 holds. This completes the proof. 2
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