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ered for unit root processes with GARCH (1, 1) errors. The asymptotic dis-
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1 Introduction

Consider two unit root processes,

yt = φyt−1 + εt (1.1)

and

yt = µ + φyt−1 + εt, (1.2)

where φ = 1, µ = 0 and εt follows the first-order generalized autoregressive condi-

tional heteroscedasticity model, denoted as GARCH (1, 1),

εt = ηt

√
ht, ht = ω + αε2

t−1 + βht−1, (1.3)

where ω > 0, α ≥ 0, β ≥ 0, and the ηt are a sequence of independently and

identically distributed (i.i.d.) random variables with zero mean and unit variance.

For model (1.3), we make the following assumptions:

Assumption 1. α + β < 1;

Assumption 2. The parameter vector δ = (ω, α, β)′ ∈ Θ, where Θ = {(ω, α, β)|
ω > 0, ᾱ ≤ α ≤ 1− ᾱ, β̄ ≤ β ≤ 1− β̄, for some ᾱ, β̄ > 0}.

Assumption 3. ηt has a symmetric distribution and Eη4
t < ∞.

The GARCH model was proposed by Bollerslev (1986) and has had many im-

portant applications in financial and econometric time series. Some recent reviews

can be found in Bollerslev et al. (1992), Bollerslev et al. (1994) and Li et al. (1999).

When α = β = 0, the εt defined by model (1.3) reduce to i.i.d. white noise and,

for this case, the unit root process has been investigated extensively. Motivated by

practical applications, in recent decades many statisticians and econometricians have

considered various unit root processes with non-i.i.d. errors. Some related results
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on estimating and testing unit roots can be found in Phillips and Durlauf (1986),

Phillips (1987), Chan and Wei (1988), Lucas (1995), and Herce (1996), and the

references cited therein. When the error term follows a GARCH process, estimation

and testing for a unit root involves intrinsic problems, an issue that was first raised

by Pantula (1989). He derived the asymptotic distribution of least squares (LS)

estimators for a unit root process with a first-order ARCH error (i.e. model (1.3)

with β = 0), and showed that Dickey-Fuller tests could still be employed in this

case. Pantula (1986, p.73) also stated without proof that Dickey-Fuller tests could

be used for unit root processes with GARCH errors.

Peters and Veloce (1988) and Kim and Schmidt (1993) provided simulation re-

sults to show that Dickey-Fuller tests based on LS estimators are often sensitive

and, when α + β is close to 1, the problem can be very serious. It seems that this

phenomenon can be explained partly by the loss of efficiency of the LS estimator.

Ling and Li (1998) derived the limiting distribution of the maximum likelihood

(ML) estimator for a general nonstationary autoregressive moving average time se-

ries process with higher-order GARCH errors, and demonstrated that it is more

efficient than the LS estimator. As for stationary time series with GARCH errors

(see Weiss, 1986, and Ling and Li, 1997a), Ling and Li’s (1998) results are obtained

under the assumption that the fourth moment is finite. However, for the GARCH

(1, 1) process, the condition for strict stationarity is E(ln(αη2
t +β)) < 0 (see Nelson,

1990), the condition for a finite variance is α + β < 1, and the condition for a finite

fourth moment under normality is 3α2+2αβ+β2 < 1. The fourth moment condition

is clearly the most stringent.

For the pure GARCH (1, 1) model, Lee and Hansen (1994) and Lumsdaine

(1996) proved that ML estimators are consistent and asymptotically normal under
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the condition that E(ln(αη2
t +β)) < 0. A challenging problem is whether the limiting

distribution of ML estimators can be derived under weaker conditions for the unit

root process with GARCH errors.

Ling and Li (1997b) obtained the asymptotic distributions of the ML estimators

for models (1.1) and (1.2) under Assumptions 1-3. The limiting distribution of the

estimated unit root is a functional of a bivariate Brownian motion and is the same

as that obtained in Ling and Li (1998). Based on these asymptotic results, we can

construct several new unit root tests. Simulation results reported in the paper show

that tests based on mixing LS and ML estimators perform better than those based

on LS estimators alone.

This paper proceeds as follows. Section 2 considers LS estimation and its asymp-

totic properties. Section 3 considers ML estimation and its asymptotic properties.

Section 4 constructs some unit root tests. Section 5 reports some simulation results.

The proofs of the theorems are given in section 6.

Throughout the paper, we use the following notation. U ′ denotes the transpose of

the vector U ; o(1) (op(1)) denotes a series of numbers (random numbers) converging

to zero (in probability); O(1) (Op(1)) denotes a series of numbers (random numbers)

that are bounded (in probability);
p−→ and

L−→ denote convergence in probability

and in distribution, respectively. D = D[0, 1] denotes the space of functions f(s)

on [0, 1], which is defined and equipped with the Skorokhod topology (Billingsley,

1968). || · || denotes the Euclidean norm.

2 Preliminary Estimation

The observations y1, · · · , yn, with initial value y0 = 0, are generated by model (1.1)

or (1.2). Denote φ̂LS as the LS estimator of φ in model (1.1) and (µ̃LS, φ̃LS) as the
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LS estimator of (µ, φ) in model (1.2). Then

φ̂LS =

(
n∑

t=1

y2
t−1

)−1( n∑

t=1

ytyt−1

)
(2.1)

and (
µ̃LS

φ̃LS

)
=

(
n

∑n
t=1 yt−1∑n

t=1 yt−1
∑n

t=1 y2
t−1

)−1( ∑n
t=1 yt∑n
t=1 ytyt−1

)
. (2.2)

Theorem 2.1. Suppose that assumptions 1-3 hold. Then

(a) n(φ̂LS − 1)
L−→

∫ 1
0 B1(t)dB1(t)∫ 1

0 B2
1(t)dt

;

(b) Nn

(
µ̃LS

φ̃LS − 1

)
L−→

( 1
∫ 1
0 B1(t)dt

∫ 1
0 B1(t)dt

∫ 1
0 B2

1(t)dt

)−1( B1(1)

∫ 1
0 B1(t)dB1(t)

)
,

where Nn = diag(
√

n, n) and B1(t) is a standard Brownian motion.

Let ε̂t = yt − φ̂LSyt−1 or ε̂t = yt − µ̃LS − φ̃LSyt−1. Then {ε̂1, ε̂2, · · · , ε̂n} is a

sequence of artificial observations of model (1.3). Denote

lt(εt|δ) = −1

2
ln ht − ε2

t

2ht

(2.3)

and

lt(ε̂t|δ) = −1

2
ln ĥt − ε̂2

t

2ĥt

, (2.4)

where ĥt = ω + αε̂2
t + βĥt−1 with ĥ0 = 1, and δ = (ω, α, β)

′
.

Lemma 2.1. Under assumptions 1-3

(a) sup
δ∈Θ

| 1
n

n∑

t=1

lt(ε̂t|δ)− 1

n

n∑

t=1

lt(εt|δ)| = op(1),

(b) sup
δ∈Θ

| 1√
n

n∑

t=1

∂lt(ε̂t|δ)
∂δ

− 1√
n

n∑

t=1

∂lt(εt|δ)
∂δ

| = op(1),

(c) sup
δ∈Θ

| 1
n

n∑

t=1

∂2lt(ε̂t|δ)
∂δ∂δ′

− 1

n

n∑

t=1

∂2lt(εt|δ)
∂δ∂δ′

| = op(1).

Suppose that δ0 is the true value of δ in Θ and let

δ̂n = arg max
δ∈Θ

[
1

n

n∑

t=1

lt(ε̂t|δ)
]
.
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The following shows the asymptotic properties of δ̂n.

Theorem 2.2. Under assumptions 1-3

(a) δ̂n − δ0
p−→ 0,

(b)
√

n(δ̂n − δ0)
L−→ N(O, V0),

where V0 = B−1
0 A0B

−1
0 ,

B0 = −E

[
∂2lt(εt|δ0)

∂δ∂δ′

]
and A0 = E

[
∂lt(εt|δ0)

∂δ

∂lt(εt|δ0)

∂δ′

]
.

From Theorems 2.1 and 2.2, we see that φ or (µ, φ) and δ can be estimated

separately with φ̂LS − φ = O(n−1) or (µ̃LS, φ̃LS) − (µ, φ) = O(N−1
n ) and δ̂ − δ0 =

O(n−1/2). However, under GARCH errors the LS estimator of φ or (µ, φ) loses

some efficiency (see the next section), which will result in a loss of efficiency for the

‘ML’ estimator of δ above in finite samples. A more efficient estimation procedure

will be given in the next section, and all estimators in this section can be used as

preliminary estimators.

3 ML Estimation

To simplify notation, in this section the true parameter δ0 is denoted as δ. Let

λ = (φ, δ
′
)
′
, λµ = (φ

′
µ, δ

′
)
′
and φµ = (µ, φ)

′
. The ML estimators of λ and λµ are the

estimators denoted by λ̂ = (φ̂ML, δ̂
′
ML)

′
and λ̃µ = (φ̃

′
µ,ML, δ̃

′
µ,ML)

′
, respectively, with

φ̃µ,ML = (µ̃ML, φ̃ML)
′
, that maximize the log-likelihood

L =
1

n

n∑

t=1

lt, (3.1)

where lt is defined as in (2.3).

Since the likelihood equation ∂lt/∂λ = 0 and ∂lt/∂λµ = 0 are nonlinear in λ and

λµ, respectively, an iterative numerical procedure is required to obtain the solutions
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to these equations. By Lemma 6.6, φ (or φµ) and δ can be estimated separately

without loss of efficiency. Thus, we can define an algorithm scheme by the iterative

approximate Newton-Raphson relation for φ̂ML and δ̂ML:

φ̂(i+1) = φ̂(i) +

[
n∑

t=1

∂2lt
∂φ2

]−1

λ̂(i)

[
n∑

t=1

∂lt
∂φ

]

λ̂(i)

δ̂(i+1) = δ̂(i) +

[
n∑

t=1

∂2lt
∂δ∂δ′

]−1

λ̂(i)

[
n∑

t=1

∂lt
∂δ

]

λ̂(i)

, (3.2)

where λ̂(i) = (φ̂(i), δ̂
′(i))

′
is the estimated value at the i-th iteration. Similarly,

define a scheme for φ̃µ,ML and δ̃µ,ML. To derive our asymptotic results, we need the

following theorem.

Theorem 3.1. Let Θn = {λ̃ : ||Gn(λ̃− λ)|| ≤ M} and Θµ,n = {λ̃µ : ||Gµ,n(λ̃µ −
λµ)|| ≤ M}, where M is an positive constant, G−1

n = diag {n,
√

n,
√

n,
√

n} and

G−1
µ,n =diag {√n, n,

√
n,
√

n,
√

n} . Then

(a) Gn

n∑

t=1

(
∂2lt

∂λ∂λ′
∣∣∣
λ=λ̃

− ∂2lt
∂λ∂λ′

)
Gn = op(1),

(b) Gn

n∑

t=1

(
∂lt
∂λ

∣∣∣
λ=λ̃

− ∂lt
∂λ

)
= Gn

n∑

t=1

(
∂2lt

∂λ∂λ′

)
(λ̃− λ) + op(1),

(c) Gµ,n

n∑

t=1

(
∂2lt

∂λµ∂λ′µ

∣∣∣
λµ=λ̃µ

− ∂2lt
∂λµ∂λ′µ

)
Gµ,n = op(1)

(d) Gµ,n

n∑

t=1

(
∂lt
∂λµ

∣∣∣
λµ=λ̃µ

− ∂lt
∂λµ

)
= Gµ,n

n∑

t=1

(
∂2lt

∂λµ∂λ′µ

)
(λ̃µ − λµ) + op(1),

where op(1) holds uniformly in Θn and Θµ,n.

By Theorems 2.1 and 2.2 in section 2, we can obtain the initial estimator of λ

(or λµ) such that φ̂− φ = Op(n
−1) (or φ̂µ − φµ = Op(N

−1
n )) and δ̂ − δ = Op(n

−1/2).

With these consistent initial estimators, we can obtain the following asymptotic

representations by Theorem 3.1:

n(φ̂ML − φ) =

[
1

n2

n∑

t=1

∂2lt
∂φ2

]−1[ n∑

t=1

1

n

∂lt
∂φ

]
+ op(1), (3.3)

√
n(δ̂ML − δ) =

[
1

n

n∑

t=1

∂2lt
∂δ∂δ′

]−1[
1√
n

n∑

t=1

∂lt
∂δ

]
+ op(1). (3.4)
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The asymptotic representations of n(φ̃µ,ML−φ) and
√

n(δ̃µ,ML− δ) can be obtained

from (3.3)-(3.4) with φ̂ML and δ̂ML replaced by φ̃µ,ML and δ̃µ,ML, respectively. The

following theorem gives the asymptotic distributions of (φ̃ML, δ̂
′
)
′
and (φ̃

′
µ,ML, δ̃

′
ML)

′
.

Theorem 3.2. Let (φ̂ML, δ̂
′
ML)

′
and (φ̃

′
µ,ML, δ̃

′
µ,ML)

′
be the estimators of (φ, δ

′
)
′

and (φ
′
µ, δ

′
)
′

obtained from (3.2) by using initial estimators φ̂ or φ̂µ and δ̂ with

φ̂− φ = Op(n
−1) or φ̂µ − φµ = Op(N

−1
n ) and δ̂ − δ = Op(n

−1/2), respectively. Then

under assumptions 1-3,

(a) n(φ̂ML − 1)
L−→

∫ 1
0 w1(t)dw2(t)

F
∫ 1
0 w2

1(t)dt
;

(b) Nn

(
µ̃ML

φ̃µ,ML − 1

)
L−→ F−1

( 1
∫ 1
0 w1(t)dt

∫ 1
0 w1(t)dt

∫ 1
0 w2

1(t)dt

)−1(
w2(1)∫ 1

0 w1(t)dw2(t)

)
,

where Nn is defined in Theorem 2.1 and (w1(t), w2(t)) is a bivariate Brownian motion

with covariance

tΩ = t

(
Eht 1
1 E(1/ht) + κα2 ∑∞

k=1 β2(k−1)E(ε2
t−k/h

2
t )

)
, (3.5)

κ = Eη4
t − 1 and, when ηt is normal, κ = 2. For

√
n(δ̂ML − δ) and

√
n(δ̃µ,ML − δ),

their asymptotic distributions are the same as those given by Theorem 2.2(b).

Let

B1(t) =
1

σ
w1(t) and B2(t) = − 1

σ2

√
σ2

σ2K − 1
w1(t) +

√
σ2

σ2K − 1
w2(t),

where σ2 = Eht and K is the (2,2)-th element of Ω in (3.5). Denote K by F when

κ = 2. Then B1(t) and B2(t) are two independent standard Brownian motions. As

shown in Ling and Li (2000),

n(φ̃ML − 1)
L−→

∫ 1
0 B1(t)dB1(t)

σ2F
∫ 1
0 B2

1(t)dt
+

√
σ2K − 1

σ2F

∫ 1
0 B1(t)dB2(t)∫ 1

0 B2
1(t)dt

. (3.6)

The second term of (3.6) can be simplified as [
√

σ2K − 1/Fσ2] (
∫ 1
0 B2

1(t) dt)−1/2ξ,

where ξ is a standard normal random variable independent of
∫ 1
0 B2

1(t)dt (see Phillips,
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1989). Thus,

n(φ̂ML − 1)
L−→

∫ 1
0 B1(t)dB1(t)

σ2F
∫ 1
0 B2

1(t)dt
+

√
σ2K − 1

σ2F
(
∫ 1

0
B2

1(t)dt)−1/2ξ. (3.7)

Similarly, we can simplify the limiting distribution of n(φ̃µ,ML − 1) as

n(φ̃µ,ML − 1)
L−→

∫ 1
0 B1(t)dB1(t)−B1(1)

∫ 1
0 B1(t)dt

σ2F [
∫ 1
0 B2

1(t)dt− (
∫ 1
0 B1(t)dt)2]

+

√
σ2K − 1

σ2F
[
∫ 1

0
B2

1(t)dt− (
∫ 1

0
B1(t)dt)2]−1/2ξ. (3.8)

From (3.7)-(3.8), we see that the asymptotic distributions of φ̂ML and φ̃µ,ML can

be represented, respectively, as combinations of those of φ̂LS and φ̃µ,LS and a scale

mixture of normals. These properties are similar to those of the least absolute

deviation estimators of unit roots given by Herce (1996). The ML estimator of φ or

φµ is more efficient than the LS estimator given in the last section (see the work by

Ling and Li (1998)).

4 Unit Root Tests

4.1 Method A

Based on the asymptotic results in section 2, we can construct some unit root tests

for the nonstationary model (1.1) with GARCH error (1.3) and model (1.2) with

GARCH error (1.3). First we define the test statistics based on LS estimators:

Lφ = n(φ̂LS − 1);

Lt =

(
1

n2

n∑

t=1

y2
t−1

)1/2

Lφ;

Lµ,φ = n(φ̂µ,LS − 1);

Lµ,t =

[
1

n2

n∑

t=1

(yt−1 − ȳ)2

]1/2

Lµ,φ,

where ȳ = n−1 ∑n
t=1 yt−1. The following theorem comes from Theorem 2.1.
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Theorem 4.1. Under assumptions 1-3,

(a) Lφ
L−→

∫ 1
0 B1(t)dB1(t)∫ 1

0 B2
1(t)

;

(b) Lt
L−→

∫ 1
0 B1(t)dB1(t)√∫ 1

0 B2
1(t)

;

(c) Lµ,φ
L−→

∫ 1
0 B1(t)dB1(t)−B1(1)

∫ 1
0 B1(t)dt

∫ 1
0 B2

1(t)− (
∫ 1
0 B1(t)dt)2 ;

(d) Lµ,t
L−→

∫ 1
0 B1(t)dB1(t)−B1(1)

∫ 1
0 B1(t)dt

[
∫ 1
0 B2

1(t)− (
∫ 1
0 B1(t)dt)2]1/2

.

These limiting distributions of the LS-based tests, i.e. Lφ, Lt, Lµ,φ and Lµ,t, are

the same as those given by Dickey and Fuller (1979). The critical values of these

distributions can be found in Tables 8.5.2 and 8.5.3 of Fuller (1976).

4.2 Method B

In order to apply ML estimators for unit root tests, we need to modify n(φ̂ML −
1) and n(φ̃µ,ML − 1) in Theorem 3.2 because these limiting distributions depend

on nuisance parameters. These nuisance parameters should be replaced by their

consistent estimators, an approach that was first used by Phillips (1987). Recently

a similar approach was employed by Lucas (1995) and Herce (1996). By (3.7)-(3.8),

we can define test statistics by mixing LS estimators and ML estimators as follows:

Mφ =
σ̂2F̂√

σ̂2K̂ − 1

{
n(φ̂ML − 1)− (F̂ σ̂2)−1[n(φ̂LS − 1)]

}
;

Mt =

(
1

n2

n∑

t=1

y2
t−1

)1/2

Mφ;

Mµ =
σ̃2F̃√

σ̃2K̃ − 1

{
n(φ̃µ,ML − 1)− (F̃ σ̃2)−1[n(φ̃µ,LS − 1)]

}
;

Mµ,t =

(
1

n2

n∑

t=1

(yt−1 − ȳ)2

)1/2

Mµ.
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We call these ML-based tests. When ηt ∼ i.i.d.N(0, 1), F = K and hence F̂ = K̂

and F̃ = K̃. The following theorem comes from Theorems 2.1 and 3.2.

Theorem 4.2. Under assumptions 1-3,

(a) Mφ
L−→

[ ∫ 1

0
B2

1(t)dt

]−1/2

ξ;

(b) Mt
L−→ ξ;

(c) Mµ
L−→

[ ∫ 1

0
B2

1(t)dt− (
∫ 1

0
B1(t))

2

]−1/2

ξ;

(d) Mµ,t
L−→ ξ,

where ξ is a standard normal random variable independent of
∫ 1
0 B1(t)dt.

The limiting distributions of the ML-based tests, Mφ, Mt, Mµ and Mµ,t, are the

same as those based on the least absolute deviations estimators by Herce (1996),

but the test statistics are quite different. When α = 0, ht is a constant and hence

Kσ2 = 1. In this case, assumption 2 is violated and obviously the above tests cannot

be used. Therefore, it is necessary to check if the coefficient α is equal to zero

before using the ML-based test statistics. This can be done easily by applying the

diagnostic checking method in Li and Mak (1994) for the pure GARCH model (1.3)

with the artificial observations, ε̂t, in Section 2.

Using the 20,000 simulated values, the α−quantiles of the distributions of the

ML-based tests are estimated. For n = 200, 300 and 5000, some of the empirical

quantiles are summarized in Table 5 in Appendix A.

4.3 Method C

The unit root tests in the last method may not be very powerful since LS is employed.

The asymptotic distributions (3.7)-(3.8) can be used to construct the unit root test
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without using LS estimation. First, we can write (3.7) and (3.8) as

nc1(φ̃ML − 1)
L−→ ρ

∫ 1
0 B1(t)dB1(t)∫ 1

0 B2
1(t)dt

+
√

1− ρ2

∫ 1
0 B1(t)dB2(t)∫ 1

0 B2
1(t)dt

, (4.1)

nc1(φ̃µ,ML − 1)
L−→ ρ

∫ 1
0 B1(t)dB1(t)−B1(1)

∫ 1
0 B1(t)dt

[
∫ 1
0 B2

1(t)dt− (
∫ 1
0 B1(t)dt)2]

(4.2)

+
√

1− ρ2[
∫ 1

0
B2

1(t)dt− (
∫ 1

0
B1(t)dt)2]−1/2ξ.

where c1 = σF/K1/2 and ρ2 = 1/σ2K ∈ (0, 1). Let c2 = c1/σ,

M̃φ = nc1(φ̃ML − 1), M̃t = nc2(
1

n2

n∑

t=1

y2
t−1)

1/2(φ̃ML − 1),

M̃µ = nc1(φ̃µ,ML − 1) and M̃µ,t = nc2(
1

n2

n∑

t=1

(yt−1 − ȳ)2)1/2(φ̃µ,ML − 1).

Then, we have the following theorem:

Theorem 4.3. Under assumptions 1-3, M̃t and M̃µ,t have asymptotic distribu-

tions (4.1)-(4.2), and

M̃t
L−→ ρ

∫ 1
0 B1(t)dB1(t)

(
∫ 1
0 B2

1(t)dt)1/2
+

√
1− ρ2

∫ 1
0 B1(t)dB2(t)

(
∫ 1
0 B2

1(t)dt)1/2
, (4.3)

M̃µ,t
L−→ ρ

∫ 1
0 B1(t)dB1(t)−B1(1)

∫ 1
0 B1(t)dt

[
∫ 1
0 B2

1(t)dt− (
∫ 1
0 B1(t)dt)2]1/2

+
√

1− ρ2ξ. (4.4)

The asymptotic distribution of τ̂AEn depends on a nuisance parameter ρ. Its

critical values can be obtained through the simulation method, with the estimated ρ̂

as given in Hansen (1995), Seo (1999) and Shin and So (1999). Some critical values

of M̃t and M̃µ,t were given by Seo (1999). In Appendix B, Table 6, we give the

critical values of M̃φ and M̃µ. All these critical values are generated through 40,000

replications of an i.i.d. bivariate N(0, I2) process.
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5 Simulation Study

5.1 Methods A versus B

In order to investigate the empirical sizes and powers of the test statistics in Theo-

rems 4.1 and 4.2, we generate data sets from the following model:

yt = φyt−1 + εt, εt = ηt

√
ht, ht = ω + αε2

t−1 + βht−1, ηt ∼ i.i.d.N(0, 1)

with φ = 0.9, 0.95, 0.99, 1.0, ω = 1 − α − β and (α, β) = (0.2, 0.7), (0.3, 0.6) and

(0.4, 0.5). Each data set is estimated by model (1.1) with GARCH error (1.3) and

model (1.2) with GARCH error (1.3). For model (1.1) with GARCH error (1.3),

we first estimate φ by LS and then obtain a series of artificial observations of εt

which are used to estimate (ω, α, β) by the IMSL subroutine DBCOAH. Using these

estimators as the initial values, we obtain the ML estimator of (φ, ω, α, β) by the

estimation procedure in Section 3. A similar estimation procedure is employed

for model (1.2) with GARCH error (1.3). For each parameter vector (φ, α, β) or

(µ, φ, α, β), we use 1000 independent replications. The empirical sizes and powers

of eight test statistics, Lφ, Lt, Lµ,φ, Lµ,t, Mφ, Mt, Mµ and Mµ,t, are summarized for

n = 200 and 300 in Tables 1 and 2, respectively, at the 5% significance level.

When n = 200, the empirical sizes of the LS-based tests, especially Lt and Lµ,t,

tend to overreject. For the ML-based tests, the sizes are closer to the nominal 5%

level and powers are also acceptable as compared with those reported in other studies

under i.i.d. errors (see, for example, Dickey and Fuller (1979)). When n = 300, all

test statistics for the fitted model (1.1) with GARCH error (1.3) have similar sizes

and powers. However, for the fitted model (1.2) with GARCH (1.3), the LS-based

tests still tend to overreject, which is consistent with the findings in Kim and Schmidt

(1993). In this case, the ML-based tests basically solve the overrejection problem.

From Tables 1-2, we see that when α increases, the LS-based tests became more

12



sensitive, which results in rising sizes and decreasing powers. This phenomenon can

be explained by the fact that when α increases, the unit root process, yt, has more

and more heavy-tailed innovations. Meanwhile, when α increases, the power of the

ML-based tests improves. This is because, in this case, σ̂2K̂ − 1 (or σ̃2K̃ − 1 in the

ML-based tests) can be evaluated more accurately. All these results clearly suggest

that the ML-based tests are more robust and perform better than the LS-based

tests.

TABLE 1

Powers and Sizes for Unit Root Processes with GARCH(1,1) error.
n=200, 1000 Replications, ω = 1− α− β.

φ φ

α β Test 0.90 0.95 0.99 1.0 Test 0.90 0.95 0.99 1.0
0.2 0.7 Lφ .996 .848 .132 .064 Lµ,φ .901 .466 .104 .064

Lt .994 .747 .129 .065 Lµ,t .830 .325 .073 .066
Mφ .799 .556 .133 .061 Mµ .648 .335 .064 .037
Mt .460 .283 .132 .057 Mµ,t .356 .215 .070 .041

0.3 0.6 Lφ .992 .739 .134 .074 Lµ,φ .892 .470 .113 .077
Lt .987 .748 .135 .069 Lµ,t .819 .328 .083 .079

Mφ .890 .700 .168 .055 Mµ .786 .483 .089 .058
Mt .626 .470 .170 .057 Mµ,t .543 .330 .097 .049

0.4 0.5 Lφ .986 .737 .138 .075 Lµ,φ .891 .487 .122 .083
Lt .981 .743 .144 .070 Lµ,t .810 .355 .093 .084

Mφ .934 .777 .211 .048 Mµ .863 .578 .111 .063
Mt .741 .528 .212 .049 Mµ,t .653 .440 .119 .059
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TABLE 2

Powers and Sizes for Unit Root Processes with GARCH(1,1) error.
n=300, 1000 Replications, ω = 1− α− β.

φ φ

α β Test 0.90 0.95 0.99 1.0 Test 0.90 0.95 0.99 1.0
0.2 0.7 Lφ .999 .949 .191 .062 Lµ,φ .998 .771 .142 .067

Lt .999 .945 .185 .063 Lµ,t .988 .604 .101 .073
Mφ .921 .739 .205 .052 Mµ .843 .538 .094 .052
Mt .615 .381 .164 .057 Mµ,t .521 .306 .083 .043

0.3 0.6 Lφ .999 .944 .192 .070 Lµ,φ .993 .776 .161 .076
Lt .999 .937 .202 .070 Lµ,t .981 .627 .109 .073

Mφ .917 .715 .277 .042 Mµ .947 .693 .126 .054
Mt .866 .472 .226 .056 Mµ,t .723 .465 .115 .050

0.4 0.5 Lφ .999 .943 .223 .069 Lµ,φ .988 .770 .171 .083
Lt .999 .933 .210 .068 Lµ,t .973 .624 .118 .079

Mφ .989 .925 .337 .043 Mµ .975 .866 .156 .056
Mt .899 .673 .282 .058 Mµ,t .838 .582 .153 .064

5.2 Methods A versus C

We now examine the sizes and powers of the test statistics M̃φ and M̃t. The simu-

lation experiments are similar to those in the previous section, and the results are

summarized in Tables 3 and 4. The empirical sizes are slightly larger than those

of method B, but comparable to those of method A. Overall, the empirical size im-

proves quickly at n = 300. The powers are much better than those of method B for

both n = 200 and 300, at the upper 10% and 5% levels, and also dominate those of

method A uniformly. Such dominance is also rather substantial at the 5% and 1%

levels when the sample size is only 200. This clearly suggests the usefulness of the

proposed testing procedures in empirical applications. Based on these simulations,

we would recommend method C if the sample size is 300 or larger and method B if

the sample size is smaller than 300.
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TABLE 3

Powers and sizes for Unit Root Processes with GARCH(1,1) error.

n = 200, 1000 Replications, ω = 1− α− β.

φ
α β Test 0.90 0.95 0.99 1.00

0.2 0.7 Lφ 0.996 0.848 0.132 0.064
Lt 0.994 0.747 0.129 0.065

M̃φ 1.000 0.869 0.162 0.071

M̃t 0.999 0.865 0.200 0.080
0.3 0.6 Lφ 0.992 0.739 0.134 0.074

Lt 0.987 0.748 0.135 0.069

M̃φ 0.999 0.926 0.208 0.071

M̃t 0.998 0.910 0.262 0.080
0.4 0.5 Lφ 0.986 0.737 0.138 0.075

Lt 0.981 0.743 0.144 0.070

M̃φ 0.999 0.948 0.241 0.079

M̃t 0.999 0.937 0.291 0.078

TABLE 4

Powers and sizes for Unit Root Processes with GARCH(1,1) error.

n = 300, 1000 Replications, ω = 1− α− β.

φ
α β Test 0.90 0.95 0.99 1.00

0.2 0.7 Lφ 0.999 0.949 0.191 0.062
Lt 0.999 0.945 0.185 0.063

M̃φ 1.000 1.000 0.236 0.065

M̃t 1.000 0.986 0.270 0.064
0.3 0.6 Lφ 0.999 0.944 0.192 0.070

Lt 0.999 0.937 0.202 0.070

M̃φ 1.000 1.000 0.291 0.068

M̃t 1.000 0.994 0.355 0.065
0.4 0.5 Lφ 0.999 0.943 0.223 0.069

Lt 0.999 0.933 0.210 0.068

M̃φ 1.000 1.000 0.363 0.063

M̃t 1.000 1.000 0.449 0.062
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6 Technical Proofs

Lemma 6.1. Under assumption 1, the process ht and εt defined by model (1.3)

are strictly stationary and ergodic, and have the expansions

ht = w

[
1 +

∞∑

k=1

k∏

i=1

(αη2
t−i + β)

]
a.s. (6.1)

and

εt = w1/2ηt

[
1 +

∞∑

k=1

k∏

i=1

(αη2
t−i + β)

]1/2

a.s.. (6.2)

Denote Ft as the σ-field generated by {ηt, ηt−1, · · ·}. Then εt−1 and ht are mea-

surable with respect to Ft−1.

Proof of Lemma 6.1. It comes straightforwardly from Theorem 2 in Nelson

(1990) (for another expansion, see also Ling and Li, 1997). 2

Lemma 6.2. Suppose that the process εt is generated by model (1.3) and

assumptions 1-3 are satisfied. Then

1√
n

[nτ ]∑

t=1

(
εt,

εt

ht

− 1

ht

(
ε2

t

ht

− 1

)
t−1∑

k=1

βk−1εt−k

)
L−→ (w1(τ), w2(τ)) in D ×D,

where (w1(τ), w2(τ)) is a bivariate Brownian motion with mean zero and covariance

τΩ, and Ω is defined in Theorem 3.2.

Proof. See Lemma 3.2 in Ling and Li (2000). 2

Proof of Theorem 2.1. By Lemma 6.1 and the continuous mapping theorem,

it is easy to show

n(φ̂LS − 1) =

(
1

n2

n∑

t=1

y2
t−1

)−1(
1

n

n∑

t=1

yt−1εt

)

L−→
∫ 1
0 w1(t)dw1(t)∫ 1

0 w2
1(t)dt

,
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where w1(t) is defined by Lemma 6.2. Let B1(t) = w1(t)/σ, then

n(φ̂LS − 1)
L−→

∫ 1
0 B1(t)dB1(t)∫ 1

0 B2
1(t)dt

.

Similarly, we can show that part (b) of Theorem 2.1 holds. 2

Proof of Lemma 2.1. First we note that, by Theorem 2.1,

ε̂t = yt − φ̂LSyt−1

= εt − [n(φ̂LS − 1)]

[
1√
n

yt−1

]
1√
n

= εt + Op

(
1√
n

)
.

ĥt = ω + αε̂t−1 + βĥt−1 = ω + α
t∑

i=1

βi−1ε̂2
t−i + βtĥ0

= ω + α
t∑

i=1

βi−1

[
εt−i + Op(

1√
n

)

]2

+ βtĥ0

= ht + Op

(
1√
n

)
+ ξ0β

t,

where ξ0 = 1− h0 and Op(·) holds uniformly in t. Thus,

sup
δ∈Θ

| 1
n

n∑

t=1

lt(ε̂t|δ)− 1

n

n∑

t=1

lt(εt|δ)| ≤ sup
δ∈Θ

1

n

n∑

t=1

|lt(ε̂t|δ)− lt(εt|δ)|

= sup
δ∈Θ

1

n

n∑

t=1

| − 1

2
ln

ht + Op(
1√
n
) + ξ0β

t

ht

− 1

2
[
ε2

t

ht

−
ε2

t + Op(
1√
n
)

ht + Op(
1√
n
) + ξ0βt

]|

≤ sup
δ∈Θ

1

2n

n∑

t=1

∣∣∣ ln
[
1 + Op(

1√
n

) +
ξ0β

t

ht

]∣∣∣

+ sup
δ∈Θ

1

2n

n∑

t=1

∣∣∣
[Op(

1√
n
) + ξ0β

t]ε2
t + Op(

1√
n
)ht

ht[ht + Op(
1√
n
) + ξ0βt]

∣∣∣

= Op

(
1√
n

)
= op(1),

where op(·) holds uniformly in t. Similarly, we can show that (b) and (c) hold. When

ε̂t = yt − µ̃LS − φ̃LSyt−1, the proofs are similar and hence the details are omitted.

2
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Proof of Theorem 2.2. By Lemma 2.1, (a) and (b) come directly from Theo-

rems 2 and 3 in Lee and Hansen (1994) (see also Lumsdaine, 1996). 2

The following lemma is obvious and hence the detials are omitted (see also Ling

and Li (2000)).

Lemma 6.3. Let ht−k,l = w[1+
∑l−k

j=1

∏j
i=1(αη2

t−i−k+β)] and εt−k,l = ηt−k

√
ht−k,l.

If assumption 1 holds, then (1) for any k,

(a) ht =
ω

1− β
+ α

∞∑

k=1

βk−1ε2
t−k a.s.;

(b)
|εt−k|√

ht

= O(β−(k−1)/2) a.s.;

(c)
ht−k

ht

≤ [
k∏

i=1

(αη2
t−i + β)]−1 a.s.,

(2) for k = 0, 1, · · · , l − 1,

(a)
|εt−k,l|√

ht,l

= O(β−(k−1)/2);

(b)
ht−k,l

ht,l

≤ [
k∏

i=1

(αη2
t−i + β)]−1;

(c) E|ht−k − ht−k,l| = O(ρl−k+1) with 0 < ρ < 1.

Lemma 6.4 (Ling and Li, Theorem 2.1, 1998) Let {Sn(t), 0 ≤ t ≤ 1} and

{ξk, k = 1, 2, · · ·} be two sequences of random processes such that

(a) Sn(t)
L−→ S(t) in D;

(b)
1√
n

[nt]∑

k=1

ξk
L−→ ξ(t) in D;

(c) max
1≤k≤n

|ξk|/
√

n
p−→ 0;

(d)
1

n

n∑

t=1

|ξt| is bounded in probability,
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and almost all trajectories of S(t) and ξ(t) are continuous. Then

sup
0≤t≤1

| 1
n

[nt]∑

k=1

Sn(
k

n
)ξk| p−→ 0 as n →∞.

Lemma 6.5. Under assumptions 1-3,

(a)
1

n3/2

n∑

t=1

∂2lt
∂φ∂δ

p−→ 0;

(b) (n1/2Nn)−1
n∑

t=1

∂2lt
∂φµ∂δ′

p−→ 0;

(c)
1

n

n∑

t=1

∂2lt
∂δ∂δ′

p−→ −E[
∂2lt

∂δ∂δ′
],

where w1(t) is a Brownian motion with covariance tσ2, Nn is defined in Theorem 2.1,

and F is defined in Theorem 3.2.

Proof of Lemma 6.5. Note that

∂2lt
∂φ∂δ

= −yt−1εt

h2
t

∂ht

∂δ
+

1

2ht

(
ε2

t

ht

− 1)
∂2ht

∂φ∂δ

− 1

2h2
t

(1− 2ε2
t

ht

)(
t−1∑

i=1

βi−1yt−i−1εt−i)
∂ht

∂δ

= I1t + I2t − I3t. (6.3)

Let ξt = [εt, εt(∂ht/∂δ)/h2
t ]
′. Then S[nτ ] =

∑[nτ ]
t=1 ξt is a martingale. By Lemma 6.3,

it is not difficult to show that

E(
1

h3
t

∂ht

∂δ

∂ht

∂δ′
) ≤ 1

ω
E(

1

h2
t

∂ht

∂δ

∂ht

∂δ′
) < ∞

and hence we can show that Ω = E(ξtξ
′
t) < ∞. In a similar manner to the proof of

Lemma 6.2 in Ling and Li (2000), we can show that

1√
n

S[nτ ]
L−→ W (t) in D2, (6.4)

where W (t) is a bivariate Brownian motion. Since ξt is a martingale difference, we

can use Theorem 2.1 in Kurtz and Protter (1991) such that n−1 ∑n
t=1 yt−1(εt(∂ht/∂δ)/
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h2
t ) = Op(1). Thus,

1

n3/2

n∑

t=1

I1t =
1

n3/2

n∑

t=1

yt−1[εt(∂ht/∂δ)/h2
t ]

p−→ 0. (6.5)

Now we consider the last term I3t:

I3t =
1

2h2
t

(1− 2ε2
t

ht

)(
t−1∑

i=1

βi−1εt−i)
∂ht

∂δ
yt−1 − 1

2h2
t

(1− 2ε2
t

ht

)(
t−1∑

i=1

βi−1rt,iεt−i)
∂ht

∂δ

= T1t + T2t. (6.6)

Let T1t = ξ∗t yt−1 and S∗[nτ ] =
∑[nτ ]

t=1 ξ∗t . In a similar manner to the proof of Lemma

3.4 in Ling and Li (2000), we can show that

1√
n

S∗[nτ ]
L−→ W ∗(t) in D, (6.7)

where W ∗(t) is a Brownian motion. By Theorem 2.1 in Ling and Li (1998) and

Lemma 6.2, we have n−3/2 ∑n
t=1 T1t = op(1). By Lemma 6.3.(1).(b),

1

n3/2

n∑

t=1

E||T2t||

≤ c

n3/2

n∑

t=1

E[|| 1
ht

(
t−1∑

i=1

βi−1rt,iεt−i)
∂ht

∂δ
||]

≤ c

n3/2

n∑

t=1

[
t−1∑

i=1

βi−1

√√√√E(
r2
t,iε

2
t−i

ht

)(E||∂ht

∂δ
||2)1/2

= O(
1

n3/2

n∑

t=1

[
t−1∑

i=1

β(i−1)/2
√

Er2
t,i](E||

∂ht

∂δ
||2)1/2

= O(
1√
n

) = o(1), (6.8)

where c is a constant and the last equation holds by E||∂ht/∂δ||2 < ∞. Thus,

1

n3/2

n∑

t=1

I3t = op(1). (6.9)

Similar to (6.10), we can show that

1

n3/2

n∑

t=1

I2t = op(1). (6.10)
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By (6.3), (6.6) and (6.9)-(6.10), we complete the proof of (a). The proof of (b)

is similar to (a) and hence the details are omitted. Part (c) comes directly from

Lemma 11 in Lee and Hansen (1992). This completes the proof. 2

Proof of Theorem 3.2. (a) and (b) come directly from Ling and Li (2000).

For
√

n(δ̂ML − δ) and
√

n(δ̃µ,ML − δ), their asymptotic distributions come directly

from Lemma 9 in Lee and Hansen (1996), Theorem 3.1(e) and (3.4). 2

Proof of Theorem 3.1. We first show that

sup
λ∈Θn

∣∣∣ 1

n2

n∑

t=1

(∂2lt
∂φ2

∣∣∣
λ=λ̃

− ∂2lt
∂φ2

)∣∣∣ = op(1). (6.11)

By direct differentiation,

∂2lt
∂φ2

= − 1

ht

(∂εt

∂φ

)2 − ε2
t

2h3
t

(∂ht

∂φ
)2

+
[
(
ε2

t

ht

− 1)
∂

∂φ
[

1

2ht

∂ht

∂φ
] +

2εt

h2
t

∂εt

∂φ

∂ht

∂φ
− εt

ht

∂2εt

∂φ2

]

= −I1t − I2t + I3t. (6.12)

In the following, all Op(1) and op(1) hold uniformly in Θn.

As in the proof of Lemma 2.1, we can show that

εt(φ̃) = εt + Op(
1√
n

), (6.13)

ht(λ̃) = ht + Op(
1√
n

)ht + Op(
1√
n

) + ξ0β
t, (6.14)

1

ht(λ̃)
− 1

ht

= Op(
1√
n

) + ξ0β
t, (6.15)

1

ht(λ̃)

∂ht(λ)

∂φ
− 1

ht

∂ht

∂φ
= Op(1)

(∂ht(λ)

∂φ
− ∂ht

∂φ

)
+ [Op(

1√
n

) + ξ0β
t]

∂ht

∂φ
. (6.16)

By Lemma 6.3 (1)-(b),

∣∣∣ 1

ht(λ̃)

∂ht(λ)

∂φ

∣∣∣ ≤
t−1∑

i=1

ρi|yt−i−1| (6.17)
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∣∣∣∂ht(λ)

∂φ
− ∂ht

∂φ

∣∣∣ ≤ O(
1√
n

)
t−1∑

i=1

ρi|εt−iyt−i−1|+ O(
1

n
)

t−1∑

i=1

ρiy2
t−i−1

= A1t + A2t (6.18)

where ρ ∈ (0, 1) and ρ is independent of λ. Since n−1/2 max1≤t≤n |yt| = Op(1),

1

n2

n∑

t=1

η2
t

t−1∑

i=1

ρi|yt−i−1|A1t =
Op(1)

n
√

n

n∑

t=1

(η2
t

t−1∑

i=1

ρi|εt−i|) = op(1) (6.19)

1

n2

n∑

t=1

η2
t

t−1∑

i=1

ρi|yt−i−1|A2t =
Op(1)

n3/2

n∑

t=1

η2
t = op(1). (6.20)

Thus, by (6.18)-(6.20),

1

n2

n∑

t=1

η2
t

∂ht(λ)

∂φ

[∂ht(λ)

∂φ
− ∂ht

∂φ

]
= op(1) (6.21)

1

n5/2

n∑

t=1

η2
t

t−1∑

i=1

ρi|yt−i−1|
t−1∑

i=1

ρi|εt−iyt−i−1| = Op(1)

n3/2

n∑

t=1

η2
t

t−1∑

i=1

ρi|εt−i| = op(1) (6.22)

1

n2

n∑

t=1

βtη2
t

t−1∑

i=1

ρi|yt−i−1|
t−1∑

i=1

ρi|εt−iyt−i−1| = Op(1)

n

n∑

t=1

βtη2
t

t−1∑

i=1

ρi|εt−i| = op(1) (6.23)

because E(
∑∞

t=1 βtη2
t

∑∞
i=1 ρi|εt−i|)2 < ∞. By (6.22)-(6.23),

1

n2

n∑

t=1

η2
t [Op(

1√
n

) + ξ0β
t]

∂ht(λ)

∂φ

∂ht

∂φ
= op(1). (6.24)

By (6.21)-(6.24), we have

1

n2
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( 1

ht(λ̃)

∂ht(λ̃)

∂φ
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( 1

ht

∂ht

∂φ

)2∣∣∣
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∣∣∣ 1

ht(λ̃)

∂ht(λ)

∂φ
− 1

ht

∂ht

∂φ

∣∣∣ = op(1). (6.25)

By (6.13)- (6.15), it is straightforward to show that

1

n2

n∑
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[ε2
t (φ̃)

ht(λ̃)
− ε2

t

ht

]( 1

ht(λ̃)

∂ht(λ)
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≤ Op(1)[
1

n
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n

n∑
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ε2
t

∣∣∣ 1

ht(λ̃)
− 1

ht

∣∣∣

= op(1). (6.26)
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Thus, by (6.25)-(6.26), we have n−2 ∑n
t=1 I2t = op(1). Similarly, we can prove that

n−2 ∑n
t=1 I1t = op(1) and n−2 ∑n

t=1 I3t = op(1). Thus, (6.11) holds. Using the same

method, we can show

sup
λ∈Θn

∣∣∣ 1

n2

n∑

t=1

( ∂2lt
∂φ∂δ

∣∣∣
λ=λ̃

− ∂2lt
∂φ∂δ

)∣∣∣ = op(1) (6.27)

and

sup
λ∈Θn

∣∣∣ 1

n2

n∑

t=1

( ∂2lt
∂δ∂δ

∣∣∣
λ=λ̃

− ∂2lt
∂δ∂δ

)∣∣∣ = op(1) (6.28)

By (6.27) and (6.28), we complete the proof of (a). (b) comes directly from (a). The

proofs of (c)-(d) are similar and hence the details are omitted. This completes the

proof. 2
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Appendix A: Critical Values of Mφ, Mt, Mµ and Mµ,t

TABLE 5

Empirical Critical Values for Mφ, Mt, Mµ and Mµ,t

empirical quantiles
Statistic n .010 .025 .050 .100 .900 .950 .975 .990

Mφ 200 -9.78 -6.71 -4.77 -3.09 2.42 3.43 4.40 5.59
300 -8.96 -6.17 -4.36 -2.92 2.47 3.49 4.52 5.87

5000 -6.53 -4.98 -3.68 -2.60 2.56 3.73 5.01 6.70

Mt 200 -2.37 -2.00 -1.66 -1.28 1.20 1.56 1.90 2.27
300 -2.39 -1.98 -1.64 -1.28 1.24 1.60 1.91 2.28

5000 -2.31 -1.96 -1.64 -1.28 1.24 1.60 1.92 2.31

Mµ 200 -16.41 -11.93 -9.03 -6.25 2.96 4.20 5.30 6.83
300 -15.04 -11.08 -8.43 -5.73 3.12 4.36 5.56 7.09

5000 -8.79 -6.90 -5.44 -3.95 3.86 5.31 6.69 8.74

Mµ,t 200 -3.54 -2.88 -2.33 -1.81 1.05 1.42 1.75 2.18
300 -3.38 -2.69 -2.22 -1.70 1.10 1.46 1.80 2.24

5000 -2.31 -1.95 -1.67 -1.29 1.28 1.64 1.94 2.31

Note that these critical values are different from those in Herce (1996). When

n = 5000, the critical values of Mφ and Mµ are almost the same as those in Herce

(1996) and for Mt and Mµ,t, the critical values are very close to those of the standard

normal distribution.
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Appendix B: Critical Values of M̃φ and M̃µ

TABLE 6
Empirical Critical Values for M̃φ and M̃µ

empirical quantiles
M̃φ Significance ρ

level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01 -7.2048 -7.7703 -8.4536 -9.1138 -9.8088 -10.4791 -11.2213 -12.0237 -12.6903

n = 200 0.05 -4.1400 -4.5243 -4.9235 -5.3093 -5.7489 -6.1933 -6.6477 -7.0860 -7.5276
0.10 -2.8947 -3.1637 -3.4493 -3.7311 -4.0221 -4.3391 -4.6455 -4.9472 -5.3329
0.01 -7.1767 -7.8657 -8.5276 -9.2474 -9.9391 -10.6458 -11.4435 -12.1834 -12.7046

n = 300 0.05 -4.1873 -4.5845 -4.9897 -5.3982 -5.8291 -6.2552 -6.6822 -7.1470 -7.6011
0.10 -2.9175 -3.1909 -3.4847 -3.7530 -4.0877 -4.3808 -4.7071 -5.0605 -5.3862
0.01 -7.1858 -7.8878 -8.6966 -9.3821 -10.1568 -10.9151 -11.6742 -12.4343 -13.3237

n = 500 0.05 -4.1353 -4.4981 -4.9380 -5.3618 -5.7809 -6.2036 -6.6221 -7.0833 -7.5942
0.10 -2.8689 -3.1488 -3.4230 -3.7228 -4.0261 -4.3353 -4.6831 -5.0267 -5.3624
0.01 -7.2306 -7.8792 -8.5188 -9.1402 -9.9170 -10.6027 -11.2109 -11.9214 -12.6366

n = 1000 0.05 -4.1777 -4.5854 -4.9991 -5.4000 -5.8436 -6.3073 -6.7436 -7.1699 -7.5716
0.10 -2.8998 -3.1848 -3.4805 -3.7769 -4.0834 -4.4002 -4.7277 -5.0657 -5.4198
0.01 -7.1929 -7.8418 -8.6367 -9.2195 -9.9625 -10.6262 -11.2750 -12.0096 -12.7079

n = 2000 0.05 -4.1432 -4.5507 -4.9300 -5.3355 -5.7320 -6.1619 -6.6188 -7.0367 -7.5155
0.10 -2.8486 -3.1393 -3.4129 -3.7170 -3.9937 -4.3191 -4.6449 -4.9544 -5.3103

M̃µ Significance ρ
level 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01 -11.5202 -11.3406 -11.3849 -11.7817 -12.5982 -13.6858 -15.0089 -16.6388 -18.2212

n = 200 0.05 -8.0208 -7.9747 -8.1686 -8.5588 -9.1045 -9.8264 -10.7116 -11.6695 -12.7012
0.10 -6.4842 -6.4935 -6.6774 -7.0174 -7.5152 -8.0952 -8.7411 -9.4588 -10.2230
0.01 -11.7107 -11.5681 -11.7253 -12.2209 -13.0345 -14.1097 -15.4398 -17.0025 -18.6410

n = 300 0.05 -8.1237 -8.0775 -8.2456 -8.6434 -9.1668 -9.8984 -10.7341 -11.7156 -12.7288
0.10 -6.5140 -6.5484 -6.7104 -7.0366 -7.5086 -8.0909 -8.7602 -9.4833 -10.2556
0.01 -11.9368 -11.8154 -11.9275 -12.3257 -13.1836 -14.4093 -15.8985 -17.4551 -18.9715

n = 500 0.05 -8.1980 -8.1506 -8.3142 -8.7487 -9.3397 -10.1524 -11.0065 -11.9671 -13.0069
0.10 -6.5390 -6.5833 -6.7855 -7.1287 -7.6290 -8.2365 -8.8857 -9.6247 -10.3914
0.01 -11.9275 -11.8197 -11.9128 -12.2675 -13.0854 -14.1518 -15.4855 -16.9825 -18.4980

n = 1000 0.05 -8.2414 -8.1764 -8.3328 -8.7073 -9.2618 -10.0293 -10.9329 -11.8729 -12.9321
0.10 -6.5710 -6.5899 -6.7825 -7.1243 -7.6151 -8.1727 -8.8065 -9.5302 -10.3156
0.01 -12.2837 -12.0579 -12.0785 -12.3478 -13.1710 -14.2054 -15.6072 -17.1130 -18.6337

n = 2000 0.05 -8.3099 -8.2566 -8.3617 -8.7794 -9.3596 -10.0190 -10.8896 -11.8102 -12.7995
0.10 -6.6327 -6.6435 -6.8519 -7.1941 -7.6634 -8.2416 -8.9093 -9.6205 -10.3788
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