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Abstract. Empirical factor demand analysis typically involves making a choice from among several 

competing non-nested functional forms. Each of the commonly used factor demand systems, such as 

Translog, Generalized Leontief, Quadratic, and Generalized McFadden, can provide a valid and 

useful empirical description of the underlying production structure of the firm. As there is no 

theoretical guidance on selecting the model which is best able to capture the relevant features of the 

data, formal testing procedures can provide additional information. Paired and joint univariate non-

nested tests of a null model against both single and multiple alternatives have been discussed at 

length in the literature, whereas virtually no attention has been paid to either paired or joint 

multivariate non-nested tests. This paper shows how some multivariate non-nested tests can be 

derived from their univariate counterparts, and examines how to use these tests empirically to 

compare alternative factor demand systems. The empirical application involves the classical Berndt-

Khaled annual data set for the U.S. manufacturing sector over the period 1947-1971. A statistically 

adequate empirical specification is determined for each competing factor demand system. The 

empirical results are interpreted for each system, and the models are compared on the basis of 

multivariate paired and joint non-nested procedures. 
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1. Introduction 

 

Empirical factor demand analysis typically involves making a choice from among several competing 

non-nested functional forms. Each of the commonly used factor demand systems, such as Translog, 

Generalized Leontief, Quadratic and Symmetric Generalized McFadden, can provide a valid and 

useful empirical description of the underlying production structure of the multi-input neoclassical 

firm. A common feature of flexible functional forms is that they are non-nested (or separate). Thus, 

given two or more systems of factor demands, it is not possible to obtain one system by imposing 

suitable parametric restrictions on the other(s). Moreover, as there is no a priori theory suggesting 

that the specification of one system should be preferred over another, it is necessary to choose from 

among the competing models using empirical considerations. 

 

The important task of model determination can be accomplished using a formal non-nested 

testing procedure. Paired and joint univariate non-nested tests of a null model against both single 

and multiple alternatives have been discussed at length in the literature. However, virtually no 

attention has been paid to either paired or joint multivariate non-nested tests. This paper shows how 

some multivariate non-nested tests can be derived from their univariate counterparts, and examines 

how to use these tests empirically to compare alternative factor demand systems. 

 

As the outcome of a non-nested test is influenced by the type of misspecification affecting the 

competing models, it is essential to investigate the performance of each factor demand system 

against real data. The empirical application presented is very popular in the applied production 

literature, and contains annual data on aggregate output of U.S. manufacturing industries, and prices 

and quantities for a capital-labour-energy-materials (KLEM) technology over the period 1947-1971 

(see Berndt and Khaled, 1979). A statistically adequate empirical specification is determined for 

each competing factor demand system. Estimation results and some diagnostic statistics are 

presented for each factor demand system, and each is used to calculate some classical indicators of 

the production structure of an economic sector, such as price and output elasticities. The systems are 

then compared on the basis of multivariate paired and joint non-nested testing procedures. Finally, 

the empirical results are interpreted for each system, and some practical issues regarding model 

selection and testing of systems of equations in applied research are discussed. 
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This paper is organized as follows. In Section 2, alternative factor demand systems are presented 

using some of the most popular flexible functional forms, namely Translog, Quadratic, Generalized 

Leontief and Symmetric Generalized McFadden (for further details, see Diewert and Wales, 1987). 

In Section 3, multivariate extensions of some well-known and pedagogically appealing univariate 

paired non-nested tests (namely, the J, P0 and P1 tests of Davidson and MacKinnon, 1981; the PE 

statistic of MacKinnon, White and Davidson, 1983; and the Bera and McAleer (1989) test, hereafter 

the BEM test), and  the multivariate joint non-nested test of Barten and McAleer (1997), hereafter 

the BAM test, are described. Section 4 reports the main empirical results from estimation and 

diagnostic testing of the competing factor demand systems. Estimated price and output elasticities 

from each model are also presented. In Section 5, multivariate paired and joint non-nested tests are 

applied to compare the alternative factor demand systems. The empirical results are interpreted for 

each system. Section 6 provides some concluding comments. 

 

 

2. Alternative factor demand systems 

 

In this section attention is focused on the four most widely used flexible functional forms in the 

context of cost function estimation: Translog, Quadratic, Symmetric Generalized McFadden and 

Generalized Leontief. As is customary in applied factor demand analysis, the cross-equation 

symmetry restrictions are maintained for each model. Several techniques are available for imposing 

the appropriate curvature conditions on the cost function (see Morey, 1986). In this paper, we have 

left unconstrained the matrix of second-order partial derivatives of the cost function with respect to 

factor prices in each model, and have checked ex post if the negative semi-definiteness of the 

Hessian of the cost function is satisfied over the sample period. 

  

Consider the following specification for the logarithm of the firm's cost function C(·): 
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where Pi indicates the price of the i-th input (i,j=1,...,n), Y is output, t=1,...,T is a time trend, and the 

symmetry condition αij=αji for all i,j, is imposed. Necessary and sufficient conditions for C(·) to be 

linearly homogeneous in input prices are given by: 
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By using the Translog specification (2.1) and Shephard’s lemma, the following expressions for 

the input shares are obtained (see Berndt and Christensen, 1973, p. 85): 
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with αij=αji for all i,j=1,…,n. 

 

The Quadratic second-order approximation to the firm's true cost function can be defined as 

follows: 
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with αij=αji for all i,j=1,...,n. A direct application of Shephard’s lemma yields the system of factor 

demands: 
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The major drawback of the Quadratic functional form is that linear homogeneity restrictions in 

prices cannot be imposed parametrically, which means that the cost function under linear 

homogeneity in factor prices has to be respecified and a new separate demand system obtained. 
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When linear homogeneity in prices is imposed, the cost function and the related factor demands 

have the following forms: 
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Consider the following functional form for a cost function, with the usual symmetry conditions 

imposed: 
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The cost function defined by expression (2.8) is a generalization of the functional form due to 

McFadden (1978, p. 279), as suggested by Diewert and Wales (1987, p. 53). It should be noted that 

the σij parameters have to sum to zero in order to identify all the coefficients in expression (2.8). 

The related system of Symmetric Generalized McFadden factor demands can be derived: 
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The traditional Generalized Leontief cost function is a functional form in the square roots of input 

prices. In this paper, we consider the following version: 
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where αij=αji for all i,j is a maintained hypothesis. The system of factor demands is derived from 

(2.10), as follows: 
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3. Alternative non-nested testing procedures 

 

This section presents some alternative non-nested testing procedures for competing systems of 

equations. In particular, modifications of the paired J, P0, P1, PE and BEM tests are presented as 

extensions of the corresponding univariate statistics.  

 

3.1. Multivariate paired non-nested tests 

 

Some variants of both the J and the P tests (see Davidson and MacKinnon, 1981; MacKinnon, 

White and Davidson, 1983) may be applied to the case of multivariate regression models. For this 

purpose, the null and the alternative hypotheses are given as: 

 

H0: yi = fi(Xi,ai) + u0i                                                                                                                  (3.1) 

 

and 

 

H1: yi = gi(Zi,bi) + u1i                                                                                                                 (3.2) 
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where i denotes equation i=1,...,n, in a system of equations, u0 and u1 are distributed as N(0,Ω0) and 

N(0,Ω1), respectively, and Ωj is the contemporaneous covariance matrix of the error term 

corresponding to hypothesis Hj, j=0,1. Equations (3.1) and (3.2) are multivariate, non-simultaneous 

models, such as factor demand systems or systems of cost share equations. 

 

A straightforward extension of the J test to a multivariate context is based on the following 

auxiliary equation: 

 

iiiiic ugfyH +⋅+⋅= )(ˆ)(: λ   (i=1,...,n)                                                                                         (3.3) 

 

which is obtained by combining linearly equations (3.19) and (3.20) and replacing gi(·) with the 

fitted values )(ˆ ⋅ig . Alternatively, Hc in (3.3), which is a composite model, is equivalent to H0 in 

(3.1) with the addition of )(ˆ ⋅ig . The null hypothesis H0 is not rejected if the parameters λi are zero 

for all i. A Wald-type statistic enables testing of the null hypothesis H0 against the alternative H1 

that the λi are all jointly zero. If the roles of H0 and H1 are reversed, it is possible to test the validity 

of H1 against H0. 

 

Davidson and MacKinnon (1982, p. 555) discuss two multivariate versions of the P test. The first 

test is based on the following composite model: 

 

[ ] iiiiiiiic udFfgfyH +⋅+⋅−⋅=⋅− )(ˆ)(ˆ)(ˆ)(ˆ: λ                                                                               (3.4) 

 

where )(ˆ ⋅iF  is the row vector of derivatives of fi(·) with respect to ai evaluated at iâ  and 

iii aad ˆ−= . Under H0 the vector ui is distributed as N(0,Ω0), so that model (3.4) must be estimated 

by a systems generalized least squares procedure using a covariance matrix which is proportional to 

0Ω̂ . The Wald test of λ1=…=λn=0 is the multivariate extension of Davidson and MacKinnon’s P0 

test. They also propose the following auxiliary regression equation: 

 

( )[ ] iiiiiiiic ufgdFfyH +⋅−⋅ΩΩ+⋅=⋅− − )(ˆ)(ˆˆˆ)(ˆ)(ˆ: 1
10λ                                                                  (3.5) 
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where the variables are defined using the same notation as above. The Wald test of λ1=…=λn=0 is 

the multivariate extension of Davidson and MacKinnon’s P1 test.  

 

The multivariate analogue of the PE test for models with dependent variables subject to different 

transformations is given by the following auxiliary regression equation: 

 

[ ] iiiiiiiiic udFfhgfyH ++−⋅=⋅− ˆ)ˆ()(ˆ)(ˆ: λ                                                                                 (3.6) 

 

where the variables are defined as in the extension of the P test. 

 

The BEM approach (see Bera and McAleer, 1989) can be readily adapted to the multivariate case. 

Let the null and the alternative hypotheses be given by expressions (3.1) and  

 

H1: hi(yi) = gi(Zi,bi) + u1i                                                                                                            (3.2') 

 

where hi(·) is a known transformation of yi, and u0i and u1i are NID(0,σ2
0IT) and NID(0,σ2

1IT),  

respectively. Combining the disturbances u0i and u1i linearly, with weights (1-λi) and λi, yields: 

 

 (1-λi)[yi-fi(·)] + λi[hi(yi)-gi(·)] = ui                                                                                             (3.7) 

 

where ui is NID under both H0: λi=0 and H1: λi=1. Dividing expression (3.7) by (1-λi) gives: 

 

yi = fi(·) + θ0iu1i + ui/(1-λi)                                                                                                         (3.8) 

 

where θ0i = -λi/(1-λi), while dividing (3.7) by λi gives: 

 

hi(yi) = gi(·) + θ1iu0i + ui/λi                                                                                                        (3.9) 

 

where θ1i = -(1-λi)/λi. A test of θ0i=0 (i=1,…,n) in (3.8) corresponds to a test of λi=0 in (3.7), so that 

if θ0i=0 is not rejected, λi=0 is not rejected. In a similar manner, a test of θ1i=0 in (3.9) is equivalent 

to a test of λi=1 in (3.7), so that if θ1i=0 is not rejected, λi=1 is not rejected. A serious problem is 

that H0 and H1 are not testable because u0i and u1i in (3.8) and (3.9) are not observable. It is possible 

to replace the disturbances from H0 and H1 in (3.8) and (3.9), respectively, with some estimated 
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residuals as follows. First, systems (3.1) and (3.2') are estimated to obtain the fitted values iŷ  and 

)(ˆ
ii yh , respectively. Second, iŷ  and )(ˆ

ii yh  are transformed as )ˆ( ii yh  and [ ])(ˆ1
iii yhh − , respectively. 

Third, the models given by: 

 

iiiiii bZgyh 1),()ˆ( η+=                                                                                                                (3.10) 

 

and 

 

[ ] iiiiiii aXfyhh 0
1 ),()(ˆ η+=−                                                                                                        (3.11) 

 

are estimated to obtain the residuals i1η̂  and i0η̂ , respectively. Finally, the models given by: 

 

iiiiiii aXfy εηθ ++= 10 ˆ),(                                                                                                          (3.12) 

 

and 

 

iiiiiiii bZgyh εηθ ++= 01 ˆ),()(                                                                                                    (3.13) 

 

are estimated. The BEM test is a Wald-type test of 0... 001 === nθθ  for H0 in (3.12) and 

0... 111 === nθθ  for H1 in (3.13), respectively. 

 

3.2. Multivariate joint non-nested tests 

 

The test procedures considered so far belong to the class of multivariate paired non-nested tests, 

whose common feature is that the null hypothesis is tested against a specific non-nested alternative, 

after which the roles of null and alternative are reversed. Recently, some univariate tests have been 

proposed in the literature in which the null hypothesis is tested against several alternatives 

simultaneously, leading to joint tests. This section concentrates on the multivariate version of one of 

these procedures, namely the BAM test of Barten and McAleer (1997). 

 

Consider m non-nested non-linear systems of equations with different non-linear data 

transformations on the dependent variable yi, i=1,…n, as follows: 
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          H1: h1i(yi) = g1i(X1i,b1i) + u1i                                                                                         (3.14) 

          H2: h2i(yi) = g2i(X2i,b2i) + u2i 

           • 

           • 

           • 

         Hm: hmi(yi) = gmi(Xmi,bmi) + umi 

 

where uji is NID(0,σ2
ji) for j=1,…m. Suppose that H1 is, in the first instance, chosen as the null 

hypothesis. It is then possible to combine the disturbances in (3.14) as follows: 
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m

j
jiii uv

2
1 λ . Testing the null hypothesis (3.16) involves verifying if the µji are 

jointly zero. Unfortunately, a problem with this procedure is that the parameters  µji are not 

identified. It is possible to resolve the problem by extending McAleer’s (1983) univariate joint 

testing procedure in the following manner. First, since h1i(yi) = g1i(X1i,b1i) + u1i under the null 

hypothesis H1, replace yi in hji(yi), j=2,...,m, with: 

 

( )[ ]iiiii bXghy 111
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where ib1̂  is the generalized least squares estimate of b1i under the null hypothesis H1. It is worth 

noting that iy1ˆ  under H1 is asymptotically uncorrelated with u1i, and hence with vi. Second, estimate 

the auxiliary system: 

 

jijijijiiji bXgyh 11 ),()ˆ( η+=   (j=2,...m, i=1,…,n)                                                                        (3.18) 

 

to obtain the residuals 

 

( )jijijiijiji bXgyh 111
ˆ,)ˆ(ˆ −=η                                                                                                         (3.19) 

 

where jib1̂  are the generalized least squares estimates of bji from (3.18) and gji(·) includes an 

intercept term. Third, use the residuals in (3.19) to compute the following modification of (3.16): 

 

11
2

1111 ˆ),()( iji

m

j
jiiiiii vbXgyh ++= ∑

=

ηµ .                                                                                       (3.20) 

 

Finally, upon estimating the parameters in (3.20), test the extent to which the residuals ji1η̂  in 

(3.20) contribute to the empirical performance of H1 through a standard Wald-type test.  

 

 

4. Empirical evidence on factor demand systems 

 

In order to illustrate the usefulness of the non-nested tests presented above, the systems of factor 

demands introduced in Section 2 are estimated using Berndt and Khaled's (1979) classical annual 

data set for the U.S. manufacturing sector over the period 1947-1971. It is assumed that U.S. 

manufacturing can be described by a regular aggregate production function relating the flows of 

gross output Y to the services of four inputs, namely capital (K), labour (L), energy (E) and 

materials (M). Corresponding to such a production function, there exists a dual cost function 

summarizing all the characteristics of the representative firm's technology. 

 

When output quantity and input prices are exogenous, the dual cost function can be written as: 
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( )tPPPPYCC melk ,,,,,=                                                                                                                (4.1) 

 

where C(·) represents total input costs, Pi, i=K,L,E,M, are the factor prices, and t is an index of 

technical progress. 

 

For purposes of empirical implementation, the existence of random errors in the cost minimizing 

behaviour of the firm is such that each equation in each demand system has an additive disturbance 

term which reflects the firm’s errors in deciding the optimal level of inputs. First-order serial 

correlation for each system is accommodated using a Cochrane-Orcutt transformation for each 

equation (see, e.g., Berndt, 1991, pp. 476-9). The estimated single-equation serial correlation 

coefficients have been used to estimate the system. 

     

The Translog system (TLG) comprises the cost equation (4.1) specified by the functional form 

(2.1), and the three share equations (2.3) for labour, energy and materials, in addition to the linear 

homogeneity restrictions (2.2) and symmetry conditions. It is well known that only n-1 share 

equations are estimated because the four cost shares (2.3) sum to unity, so that the sum of the 

disturbances across the four equations is zero for each observation. Consequently, the covariance 

matrix is singular and non-diagonal (Berndt and Wood, 1975, p. 261). The disturbance from the Shk 

equation is omitted and the vector u comprising the disturbances of the remaining share equations 

and the cost function is specified as a multivariate normal distribution with E(u)=0 and E(uu')=Ω, 

where Ω is constant over time (Diewert and Wales, 1987, p. 58). 

 

The Quadratic demand system is given by the cost equation (4.1), specified by equation (2.6) and 

the three demand equations (2.7) for labour, energy and materials. As already noted, the reason for 

excluding the capital equation is that, since linear homogeneity in prices cannot be imposed 

parametrically, a normalization with respect to an arbitrarily chosen factor price is required. QDR 

denotes the Quadratic demand system with linear homogeneity in prices imposed, NHQDR1 

denotes the same system with non-homogeneity, that is, when linear homogeneity in prices is not 

imposed, and NHQDR denotes the Quadratic demand system formed from the four demand 

equations for capital, labour, energy and materials without imposing linear homogeneity in prices. 

 

Finally, the Symmetric Generalized McFadden demand system (SGM) is formed from the four 

equations (2.9), and the Generalized Leontief model (GLT) is given by equation (2.11). In both the 
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SGM and GLT specifications, the dependent variables are input levels divided by output, as this 

makes the assumption of homoskedasticity of the disturbances more plausible. The cost function is 

not estimated since it does not contain any additional information. 

 

The main characteristics of the factor demand systems used in the empirical application are 

summarized in Table 1. All systems are estimated with the multivariate least squares routine Lsq 

implemented in Tsp 4.4 (for details, see Hall, Cummins and Schnake, 1997). Linear disembodied 

technical change is accommodated by the presence of linear and quadratic trends in the estimated 

equations. The estimated parameters are reported in Appendix 1, and Appendix 2 shows the results 

of some diagnostic statistics for the estimated models. 

 

[Table 1, Appendix 1 and Appendix 2] 

 

In particular, Appendix 2 indicates the absence of both first-order serial correlation and 

heteroskedasticity, and that the curvature properties of the firm’s cost function are satisfied for each 

functional form. 

 

Factor demand systems are typically used to calculate indicators which can be useful for 

describing the production structure of an economic sector. For each estimated model, Appendix 3 

reports the mean values of input demand elasticities with respect to input prices and output over the 

period 1948-1971. 

 

[Appendix 3] 

 

The magnitudes and signs of these elasticities depend crucially on the selected model. This is 

particularly true for the price elasticities of capital, which are roughly comparable for GLT, SGM, 

NHQDR and TLG, but appear quite different for NHQDR1 and QDR, that is, for the Quadratic 

functional form where the demand for capital is not directly estimated. In general, direct price 

elasticities are negative and output elasticities are positive, as suggested by theory, and the cross-

price elasticities are all below one in absolute value. From their signs, it is possible to obtain 

information about factor substitution and complementarity, which is also not independent of the 

functional form. For example, capital and energy are complements, according to GLT, NHQDR1, 

SGM and TLG, but substitutes on the basis of NHQDR and QDR. Capital and labour are substitutes 
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for all models, except for NHQDR and NHQDR1. Labour and materials are complements according 

to only GLT, SGM and NHQDR1. Energy and materials are substitutes in all systems, with the 

exception of NHQDR1. Finally, materials and labour are complements for GLT, NHQDR1, SGM 

and TLG, whereas they are substitutes for NHQDR and QDR. In summary, all estimated systems 

seem to offer plausible interpretations of the production structure of the US manufacturing sector 

over the period 1948-1971, but the interpretations depend on the chosen specification. Systems 

QDR and NHQDR suggest the existence of substitution and complementarity relationships among 

the factors, which do not agree, in general, with the indications of the other models. 

 

 

 

 

5. Empirical evidence on multivariate non-nested tests 

 

Alternative factor demand systems based on competing non-nested flexible functional forms were 

estimated in Section 4. Each model was shown to be statistically adequate and to capture the 

relevant features of the data. In addition, the conclusions drawn in terms of price and output 

elasticities were not unique, and depended crucially on the chosen model. Thus, economic theory is 

of little assistance in discriminating among the competing models, and the empirical evidence 

suggests that the in-sample performance of each model is acceptable. Moreover, the choice of model 

has important implications for economic analysis. In this case, non-nested testing procedures can 

provide useful additional information. The factor demand systems of Sections 2 and 4 are compared 

in this section on the basis of the multivariate paired and joint non-nested tests illustrated in Section 

3. 

In Table 2 the results of preliminary systems RESET tests for each competing model are reported. 

These tests are calculated by adding the corresponding squared fitted values to each equation of the 

system and by testing their joint significance using a Wald statistic. Two versions of the systems 

RESET test are presented. The first test is calculated under the condition that the coefficients of the 

squared fitted values in each equation are different, leading to a Wald statistic with a χ2(n) 

distribution, where n is the number of equations in the system (in our case, n=4). The second 

version of the test is based on the condition that the coefficients of the squared fitted values in each 

equation are identical, and is a Wald test with a χ2(1) distribution. Rejection of the null hypothesis 

of correct model specification by the χ2(n)-RESET test is interpreted as misspecification of at least 
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one equation of the system, but not necessarily of the whole system, whereas rejection of the null 

hypothesis by the χ2(1)-RESET test indicates that the system itself is misspecified. 

 

[Table 2] 

 

The results show that NHQDR and NHQDR1 are rejected at the 1% significance level by both 

the χ2(4)- and χ2(1)-RESET tests, and QDR is rejected by both versions of the test, but at different 

levels of significance. Specification TLG is rejected at the 1% significance level by the χ2(4)-

RESET test, but is not rejected by the χ2(1)-RESET test. This is a contradiction, since the test 

indicates that functional form misspecification affects a sub-set of the system, but that the system 

itself does not suffer from misspecification. Finally, GLT and SGM are rejected only at the 5% 

significance level and only by the χ2(4)-RESET test. Thus, the systems RESET tests are incapable 

of determining a single model which performs best, although NHQDR and NHQDR1 appear to be 

more problematic than the others. This last evidence is in line with the empirical results of Section 4.  

Table 3a shows the results obtained by comparing non-nested systems of equations with the same 

dependent variables, namely SGM and GLT on the one hand, and QDR and NHQDR1 on the other. 

The three different paired non-nested tests used in the empirical application are the J, P0 and P1 

tests, as discussed in Section 3, which are implemented according to equations (3.3), (3.4) and (3.5), 

respectively. Each test is presented in two versions, with the χ2(4)-version being based on the 

condition that the coefficients λi (i=1,…,4) are different from each other, whereas the χ2(1)-version 

imposes the condition that λ1=…=λ4=λ. The interpretation of the non-nested tests is analogous to 

those of the systems RESET tests. Rejection of the null hypothesis of correct specification by the 

χ2(4)-test is interpreted as misspecification of at least one equation of the system, but not necessarily 

of the whole system, against the chosen non-nested alternative. Conversely, a rejection of the null 

hypothesis by the χ2(1)- test indicates that the system itself is rejected against its non-nested 

counterpart. 

 

[Table 3a] 

 

The SGM system is rejected against GLT at the 1% significance level by the χ2(4)-version of 

each of the J, P0 and P1 tests. Each non-nested test suggests that there is a problem in at least one 

equation of the SGM system when compared with its GLT counterpart. The empirical evidence is 

mixed when the χ2(1)-version of the test is considered as, in this case, SGM is rejected at the 1% 
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level only by the P0 test, whereas the J test rejects SGM at the 5% level, and the P1 test suggests 

non-rejection of SGM. In particular, the P1 test denotes an inconsistency as the χ2(1)-version 

implies that SGM as a whole is correctly specified as compared with its GLT counterpart. When the 

roles of the null and alternative are reversed, GLT is rejected at the 5% level by the χ2(4)-version of 

the J and P0 tests, whereas the P1 test rejects GLT at the 1% level. The behaviour of the J and P1 

tests is contradictory, as the χ2(1)-version of these tests suggests that there are no problems with the 

specification of the GLT system as a whole, whereas the χ2(1)-version of the P0 test rejects the null 

at the 5% level. In summary, the multivariate paired non-nested tests suggest that both the SGM and 

GLT specifications suffer from problems of misspecification. 

 

In Table 3a, the second pair of competing models is given by QDR and NHQDR1. When QDR is 

the null hypothesis, it is strongly rejected by all three non-nested tests, under both the χ2(4)- and 

χ2(1) versions. However, when NHQDR1 is the null, only the P1 test strongly rejects NHQDR1, 

regardless of  which version of the test is used. The J test marginally rejects NHQDR1 with the 

χ2(4)-version, whereas it does not reject the null with the χ2(1)-version. The P0 test does not reject 

NHQDR1 at all. In this case, the results from these multivariate paired non-nested tests are 

interpreted as indirect evidence against the hypothesis of linear homogeneity in input prices. 

 

Table 3b reports the results from the comparison of pairs of systems of equations with different 

dependent variables, where the competing pairs of systems are TLG and QDR, SGM and NHQDR, 

GLT and NHQDR, and TLG and NHQDR1. The multivariate non-nested tests used are the PE test 

(see equation (3.6)) and the BEM test (see equations (3.12) and (3.13)). 

 

[Table 3b] 

  

Both the χ2(4)- and χ2(1)-versions of the tests are presented. In general, all competing models are 

rejected by all tests, although there are a few interesting cases. When TLG and QDR are compared 

using the χ2(1)-version of the PE test neither is rejected. Moreover, the χ2(1)-version of both the PE 

and BEM tests is unable to reject TLG against the alternative system NHQDR1. One possible 

interpretation is that the χ2(1)-version of the test is too restrictive to detect specification problems 

which are likely to affect only a sub-set of each system. A similar comment applies in testing TLG 

against NHQDR1 using the χ2(1)-version of both the PE and BEM tests.  
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Tables 4a-4b present the empirical results obtained by using the multivariate joint BAM test (see 

equation (3.20)). The three competing systems are NHQDR, SGM and GLT, and each null model is 

tested jointly against two alternatives. Four versions of the BAM test are available, according to the 

restrictions placed on the λji (j=1,2; i=1,…,4) in equation (3.20). If the λij are unrestricted, this 

yields the χ2(8)-version of the BAM test, with four parameters across each of  two alternative 

systems. The χ2(4)-version is obtained when the following restrictions hold: λ11=λ21, λ12=λ22, 

λ13=λ23, λ14=λ24, with the same coefficient for the two non-nested alternatives across each of the 

four equations. The χ2(2)-version is given by the following restrictions: λ11=λ12=λ13=λ14, 

λ21=λ22=λ23=λ24, with the same coefficient for each equation across each of two non-nested 

alternatives. Finally, the χ2(1)-version of the BAM test is obtained by imposing the following 

restrictions: λ11=λ21=λ12=λ22=λ13=λ23=λ14=λ24=λ, with the same coefficient across four equations 

and two alternatives. Notice that the χ2(8)- and χ2(2)-versions do not impose restrictions across the 

alternative models, whereas the χ2(4)- and χ2(1)-versions do impose cross-alternative restrictions. 

 

[Tables 4a and 4b] 

  

In general, all three models are strongly rejected, regardless of which version of the test is used. As 

before, there are a few cases worth highlighting. When the χ2(2)-version of the BAM test is used, 

TLG is not rejected against NHQDR1 and QDR jointly. Thus, the two alternative systems, each 

considered as a whole, do not add useful information to the TLG null model as a whole. When the 

χ2(1)-version of the test is used, neither QDR nor TLG is rejected against the other two models 

jointly. In this case, the added information given by a linear combination of both equations and 

alternatives is empirically irrelevant. Finally, if the χ2(4)-version of the test is considered, the TLG 

system is rejected only at the 5% significance level, whereas all other models are rejected at the 1% 

level. In summary, these results suggest that the information contained in a linear combination of 

the corresponding equations across the two alternatives is statistically important in rejecting each 

model against two non-nested alternatives jointly, at least at the 5% level. 

 

 

6. Conclusion 

 

The key points of this paper can be summarized as follows. Alternative factor demand systems have 

been presented using some of the most popular flexible functional forms, namely Translog, 
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Quadratic, Generalized Leontief and Symmetric Generalized McFadden. Each system has been 

estimated using Berndt and Khaled's (1979) classical annual data set for the U.S. manufacturing 

sector over the period 1947-1971. The important task of model determination has been 

accomplished using a formal non-nested testing procedure. Multivariate extensions of some well-

known and pedagogically appealing univariate paired non-nested tests (namely, the J, P0 and P1 

tests of Davidson and MacKinnon, 1981; the PE statistic of MacKinnon, White and Davidson, 

1983; and the Bera and McAleer (1989)), and the multivariate joint non-nested test of Barten and 

McAleer (1997), have been applied to compare alternative factor demand systems. Preliminary 

systems RESET tests for each competing model have also been  reported. Systems RESET tests and 

multivariate paired non-nested tests were each presented in two versions, namely χ2(4) and χ2(1). 

Four versions of the multivariate joint non-nested test were developed, namely χ2(8), χ2(4), χ2(2) 

and χ2(1). 

 

The main results are as follows. Each model has been shown to be statistically adequate and to 

capture the relevant features of the data. In addition, the conclusions drawn in terms of price and 

output elasticities were not unique, and depended crucially on the chosen model. Systems RESET 

tests were incapable of determining a single model which performs best, although NHQDR and 

NHQDR1 appeared to be more problematic than the others. The multivariate paired extensions of 

the J, P0 and P1 tests suggested that both the SGM and GLT specifications suffered from problems 

of misspecification. When the same tests were used to compare QDR and NHQDR1, the results 

were interpreted as indirect evidence against the hypothesis of linear homogeneity in input prices. 

Systems involving different dependent variables were compared using the multivariate non-nested 

PE and BEM tests. In general, all competing models were rejected by all tests, although there were a 

few interesting cases. When TLG and QDR were compared using the χ2(1)-version of the PE test, 

neither was rejected. Moreover, the χ2(1)-version of both the PE and BEM tests was unable to reject 

TLG against the alternative system NHQDR1. Finally, the multivariate joint BAM test was used to 

compare systems NHQDR, SGM and GLT. In general, the results suggested that the information 

contained in a linear combination of the corresponding equations across the two alternatives was 

statistically important in rejecting each model against two non-nested alternatives jointly. 
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Table 1. Factor demand systems 
 

System Equations Transformations on the dependent variables 
 

GLT 4 factor demands (K,L,E,M) Ratios of levels (K/Y,L/Y,E/Y,M/Y) 
 

NHQDR 4 factor demands (K,L,E,M) Levels (K,L,E,M) 
 

NHQDR1 1 cost function (C)  
3 factor demands (L,E,M) 

Levels (C) 
Levels (L,E,M) 

 
QDR 1 cost function (C) 

3 factor demands (L,E,M) 
Levels (C) 

Levels (L,E,M) 
 

SGM 4 factor demands (K,L,E,M) Ratios of levels (K/Y,L/Y,E/Y,M/Y) 
 

TLG 1 cost function (C)  
3 factor demands (L,E,M) 

Logarithms (C) 
 Shares (PlL/C,PeE/C,PmM/C) 
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Table 2. Systems RESET tests 
 

System χ2(4) χ2(1) 
GLT 11.427* 

(0.022) 
3.395 

(0.065) 
NHQDR 85.996** 

(0.000) 
32.553** 
(0.000) 

NHQDR1 160.788** 
(0.000) 

116.171** 
(0.000) 

QDR 20.202** 
(0.000) 

5.915* 
(0.015) 

SGM 11.647* 
(0.020) 

3.425 
(0.064) 

TLG 15.676** 
(0.003) 

0.915 
(0.339) 

Notes: The systems RESET test is calculated by adding the squared fitted values to each equation of the system and by 
testing their joint significance under the assumptions that each coefficient attached to the fitted values is different (χ2(4)) 
or identical (χ2(1)) across all equations; * denotes rejection of the null hypothesis of correct functional form at the 5% 
significance level; ** denotes rejection of the null hypothesis of correct functional form at the 1% significance level; P-
values are given in parentheses. 
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Table 3a. Multivariate paired non-nested tests: J, P0 and P1 
 

Test H0 H1 χ2(4) χ2(1) 
J SGM GLT 16.103** 

(0.003) 
6.157* 
(0.013) 

 GLT SGM 12.818* 
(0.012) 

3.0005 
(0.083) 

 QDR NHQDR1 254.161** 
(0.000) 

250.495** 
(0.000) 

 NHQDR1 QDR 9.802* 
(0.044) 

1.452 
(0.228) 

P0 SGM GLT 25.140** 
(0.000) 

7.089** 
(0.008) 

 GLT SGM 11.843* 
(0.019) 

3.904* 
(0.048) 

 QDR NHQDR1 201.006** 
(0.000) 

196.511** 
(0.000) 

 NHQDR1 QDR 8.223 
(0.084) 

1.513 
(0.219) 

P1 SGM GLT 34.884** 
(0.000) 

3.167 
(0.075) 

 GLT SGM 23.564** 
(0.000) 

1.457 
(0.227) 

 QDR NHQDR1 2191.842** 
(0.000) 

2172.844** 
(0.000) 

 NHQDR1 QDR 207.978** 
(0.000) 

203.181** 
(0.000) 

Notes: * denotes rejection of the null hypothesis H0 against the paired alternative H1 at the 5% significance level; ** 
denotes rejection of the null hypothesis H0 against the paired alternative H1 at the 1% significance level; P-values are 
given in parentheses. 
 



 

 

22 
 
 
 

 
Table 3b. Multivariate paired non-nested tests: PE and BEM 
 

Test H0 H1 χ2(4) χ2(1) 
PE TLG QDR 43.533** 

(0.000) 
0.134 

(0.714) 
 
 

QDR TLG 22.394** 
(0.000) 

1.486 
(0.223) 

 SGM NHQDR 114.973** 
(0.000) 

103.424** 
(0.000) 

 NHQDR SGM 21.583** 
(0.000) 

9.397* 
(0.002) 

 NHQDR GLT 40.532** 
(0.000) 

13.489** 
(0.000) 

 GLT NHQDR 130.980** 
(0.000) 

112.255** 
(0.000) 

 TLG NHQDR1 23.299** 
(0.000) 

0.488 
(0.485) 

 NHQDR1 TLG 34.810** 
(0.000) 

8.908** 
(0.003) 

BEM TLG QDR 10.419* 
(0.034) 

2.880 
(0.090) 

 
 

QDR TLG 44.825** 
(0.000) 

43.371** 
(0.000) 

 SGM NHQDR 74.299** 
(0.000) 

71.625** 
(0.000) 

 NHQDR SGM 30.161** 
(0.000) 

14.297** 
(0.000) 

 NHQDR GLT 45.783** 
(0.000) 

17.621** 
(0.000) 

 GLT NHQDR 61.417** 
(0.000) 

52.231** 
(0.000) 

 TLG NHQDR1 51.168** 
(0.000) 

0.144 
(0.705) 

 NHQDR1 TLG 307.541** 
(0.000) 

50.291** 
(0.000) 

Notes: * denotes rejection of the null hypothesis H0 against the paired alternative H1 at the 5% significance level; ** 
denotes rejection of the null hypothesis H0 against the paired alternative H1 at the 1% significance level; P-values are 
given in parentheses. 
 



 

 

23 
 
 
 

 
Table 4a. Multivariate joint non-nested test: BAM 
 

H0 H1 H2 χ2(8) χ2(2) 
NHQDR SGM GLT 136.063** 

(0.000) 
22.387** 
(0.000) 

SGM NHQDR GLT 102.234** 
(0.000) 

71.896** 
(0.000) 

GLT NHQDR SGM 74.306** 
(0.000) 

52.565** 
(0.000) 

QDR NHQDR1 TLG 52.809** 
(0.000) 

42.687** 
(0.000) 

TLG NHQDR1 QDR 72.120** 
(0.000) 

3.712 
(0.156) 

NHQDR1 TLG QDR 377.083** 
(0.000) 

51.890** 
(0.000) 

Notes: * denotes rejection of the null hypothesis H0 against the multiple alternatives H1 and H2 at the 5% significance 
level; ** denotes rejection of the null hypothesis H0 against the multiple alternatives H1 and H2 at the 1% significance 
level; P-values are given in parentheses. 
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Table 4b. Multivariate joint non-nested test: BAM 
 

H0 H1 H2 χ2(4) χ2(1) 
NHQDR SGM GLT 37.245** 

(0.000) 
15.928** 
(0.000) 

SGM NHQDR GLT 74.236** 
(0.000) 

71.601** 
(0.000) 

GLT NHQDR SGM 61.389** 
(0.000) 

52.239** 
(0.000) 

QDR NHQDR1 TLG 26.982** 
(0.000) 

0.365 
(0.546) 

TLG NHQDR1 QDR 11.393* 
(0.022) 

1.121 
(0.290) 

NHQDR1 TLG QDR 23.186** 
(0.000) 

9.582** 
(0.002) 

Notes: * denotes rejection of the null hypothesis H0 against the multiple alternatives H1 and H2 at the 5% significance 
level; ** denotes rejection of the null hypothesis H0 against the multiple alternatives H1 and H2 at the 1% significance 
level; P-values are given in parentheses. 
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Appendix 1. Factor demand systems: Estimation 
 
Parameters GLT NHQDR NHQDR1 QDR SGM TLG 

α0 - - 
 

45.882 
(29.815) 

-18.090 
(59.415) 

- 0.748** 
(0.088) 

αk 0.619** 
(0.110) 

-0.288 
(0.353) 

241.786** 
(62.258) 

- 0.652** 
(0.111) 

- 

αl 0.196* 
(0.077) 

 0.983** 
(0.157) 

0.575** 
(0.125) 

0.209** 
(0.078) 

0.411** 
(0.078) 

αe 0.761** 
(0.093) 

-0.033 
(0.140) 

1.893** 
(0.218) 

1.014** 
(0.129) 

0.790** 
(0.092) 

0.198** 
(0.016) 

αm 0.012 
(0.043) 

-0.058 
(0.104) 

1.150** 
(0.130) 

-0.008 
(0.058) 

-0.007 
(0.04) 

0.127 
(0.098) 

αy - - 0.045 
(0.168) 

0.960** 
(0.147) 

- 0.840** 
(0.015) 

αt - - 
 

- - - - 

αkk 0.003** 
(0.0007) 

-0.037 
(0.075) 

-566.152** 
(86.485) 

- 0.003** 
(0.0004) 

- 

αkl 0.002** 
(0.0003) 

0.211** 
(0.047) 

-0.063 
(0.073) 

- - - 

αke -0.0007 
(0.0004) 

0.088 
(0.050) 

-0.382** 
(0.106) 

- - - 

αkm -0.0007** 
(0.0002) 

-0.075* 
(0.034) 

-0.251** 
(0.071) 

- - - 

αky - 0.001** 
(0.0003) 

0.777** 
(0.183) 

- - - 

αkt - -0.038* 
(0.017) 

8.055** 
(1.379) 

- - - 

αll -0.00002 
(0.0007) 

-0.391** 
(0.058) 

-0.635** 
(0.091) 

-0.739** 
(0.073) 

0.004** 
(0.0004) 

0.116* 
(0.046) 

αle 0.003** 
(0.0008) 

0.662** 
(0.063) 

0.195* 
(0.079) 

0.303** 
(0.064) 

- 0.007 
(0.010) 

αlm -0.0006 
(0.0004) 

0.026 
(0.050) 

-0.162** 
(0.054) 

0.242** 
(0.052) 

- -0.126* 
(0.050) 

αly - 0.003** 
(0.0003) 

0.003** 
(0.0004) 

0.003** 
(0.0004) 

- -0.030* 
(0.015) 

αlt -0.003 
(0.004) 

- 0.030** 
(0.008) 

0.012* 
(0.005) 

-0.005 
(0.004) 

0.0002 
(0.001) 

αee -0.003** 
(0.001) 

-0.195 
(0.120) 

-0.770** 
(0.114) 

-0.625** 
(0.118) 

0.001* 
(0.0005) 

0.011* 
(0.005) 

αem 0.002** 
(0.0006) 

0.236** 
(0.083) 

-0.110* 
(0.055) 

0.104 
(0.089) 

- -0.013 
(0.008) 

αey - 0.0009** 
(0.0003) 

0.0008 
(0.0005) 

0.001* 
(0.0005) 

- -0.029** 
(0.003) 
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Appendix 1. Factor demand systems: Estimation (continued) 
 
Parameters GLT NHQDR NHQDR1 QDR SGM TLG 

αet 0.023** 
(0.006) 

- 0.054** 
(0.008) 

0.026** 
(0.006) 

0.021** 
(0.006) 

0.0007** 
(0.0002) 

αmm 0.004** 
(0.0006) 

-0.046 
(0.106) 

-0.533** 
(0.083) 

-0.235* 
(0.099) 

0.005** 
(0.0002) 

0.180** 
(0.057) 

αmy 
 

- 0.004** 
(0.0002) 

0.005** 
(0.0004) 

0.004** 
(0.0001) 

- 0.098** 
(0.019) 

αmt 0.002 
(0.002) 

- 0.025** 
(0.005) 

-0.004 
(0.002) 

0.003 
(0.002) 

-0.002 
(0.001) 

αyy - - 
 

- - - - 

αyt - - 
 

- - - - 

αtt - - 
 

- - - - 

σll - - 
 

- - -0.009** 
(0.002) 

- 

σle - - 
 

- - 0.008** 
(0.002) 

- 

σlm - - 
 

- - -0.004** 
(0.001) 

- 

σee - - 
 

- - -0.015** 
(0.002) 

- 

σem - - 
 

- - 0.008** 
(0.002) 

- 

σmm - - 
 

- - -0.001 
(0.002) 

- 

ρc - - 
 

0.471 0.855 - 0.537 

ρk 0.468 0.728 - - 0.486 - 
ρl 0.405 0.092 0.492 0.717 0.458 -0.097 
ρe 0.464 -0.140 0.227 0.405 0.456 0.203 
ρm -0.134 -0.149 0.260 -0.162 -0.112 0.014 

Notes: * denotes rejection of the null hypothesis of a zero coefficient at the 5% significance level; ** denotes rejection 
of the null hypothesis of a zero coefficient at the 1% significance level; ρi (i=c,k,l,e,m) are the single-equation serial 
correlation coefficients; standard errors are given in parentheses. 
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Appendix 2. Factor demand systems: Diagnostic statistics 
 

Statistic GLT NHQDR NHQDR1 QDR SGM TLG 
R2

c - - 0.993 0.955 - 0.999 
R2

k 0.676 0.994 - - 0.691 - 
R2

l 0.963 0.977 0.972 0.956 0.961 0.832 
R2

e 0.820 0.992 0.985 0.984 0.830 0.947 
R2

m 0.806 0.998 0.991 0.996 0.793 0.815 
HETc - - 

 
0.012 

[0.914] 
5.989 

[0.014] 
- 0.746 

[0.388] 
HETk 1.029 

[0.310] 
0.029 

[0.864] 
- - 1.078 

[0.299] 
- 

HETl 0.350 
[0.554] 

1.175 
[0.278] 

0.424 
[0.515] 

0.632 
[0.427] 

0.070 
[0.791] 

0.283 
[0.594] 

HETe 0.004 
[0.952] 

3.034 
[0.082] 

0.012 
[0.914] 

2.420 
[0.120] 

0.007 
[0.934] 

0.613 
[0.433] 

HETm 0.166 
[0.684] 

1.055 
[0.304] 

0.127 
[0.721] 

2.034 
[0.154] 

0.023 
[0.880] 

0.142 
[0.706] 

ARc - - 
 

0.182 
[0.435] 

0.419 
[0.091] 

- 0.182 
[0.410] 

ARk 0.354 
[0.095] 

0.326 
[0.111] 

- - 0.354 
[0.096] 

- 

ARl 0.084 
[0.697] 

-0.122 
[0.571] 

0.182 
[0.388] 

0.281 
[0.210] 

0.068 
[0.753] 

0.068 
[0.749] 

ARe -0.006 
[0.977] 

-0.204 
[0.337] 

0.092 
[0.660] 

0.280 
[0.190] 

-0.019 
[0.928] 

0.078 
[0.719] 

ARm 0.062 
[0.771] 

-0.160 
[0.449] 

0.164 
[0.505] 

0.371 
[0.089] 

0.022 
[0.918] 

0.220 
[0.314] 

NOB 24 24 24 24 24 24 
Concavity 
violations 

0 0 0 0 0 0 

Notes: R2
i (i=c,k,l,e,m) values are computed as the squared correlation coefficients of actual and fitted values of the 

dependent variables for each equation;  HETi are LM-type heteroskedasticity tests calculated by regressing the squared 
residuals on a constant term and the squared fitted values of the dependent variables for each equation; ARi are the serial 
correlation coefficients for each equation, namely the estimated coefficients of the regression of the residuals from each 
equation on their one-period lagged counterparts; NOB indicates the total number of observations; Concavity violations 
refer to the number of principal minors which do not satisfy the conditions for the Hessian matrix of the cost function to 
be negative semi-definite; P-values are given in parentheses.   
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Appendix 3. Factor demand systems: Price and output elasticities (mean values) 
 
Elasticities GLT NHQDR NHQDR1 QDR SGM TLG 

εkk -0.071 
(0.018) 

-0.025 
(0.003) 

-2.222 
(0.434) 

-0.002 
(0.0006) 

-0.062 
(0.017) 

-0.120 
(0.067) 

εkl 0.196 
(0.022) 

0.207 
(0.005) 

-0.0004 
(0.00004) 

0.002 
(0.0007) 

0.219 
(0.043) 

0.331 
(0.010) 

εke -0.064 
(0.003) 

0.068 
(0.013) 

-0.002 
(0.0003) 

0.0008 
(0.0008) 

-0.068 
(0.025) 

-0.062 
(0.009) 

εkm -0.062 
(0.003) 

-0.055 
(0.008) 

-0.001 
(0.0002) 

-0.0008 
(0.0002) 

-0.090 
(0.005) 

-0.148 
(0.060) 

εlk 0.184 
(0.015) 

0.195 
(0.015) 

-0.059 
(0.005) 

0.374 
(0.091) 

0.195 
(0.036) 

0.064 
(0.004) 

εll -0.441 
(0.019) 

-0.541 
(0.060) 

-0.879 
(0.101) 

-0.882 
(0.135) 

-0.389 
(0.055) 

-0.301 
(0.006) 

εle 0.317 
(0.009) 

0.713 
(0.079) 

0.210 
(0.025) 

0.289 
(0.085) 

0.315 
(0.018) 

0.069 
(0.004) 

εlm -0.060 
(0.003) 

0.027 
(0.002) 

-0.167 
(0.013) 

0.219 
(0.054) 

-0.122 
(0.012) 

0.167 
(0.009) 

εek -0.064 
(0.006) 

0.067 
(0.009) 

-0.293 
(0.046) 

0.125 
(0.115) 

-0.054 
(0.025) 

-0.074 
(0.009) 

εel 0.337 
(0.040) 

0.748 
(0.014) 

0.221 
(0.011) 

0.299 
(0.064) 

0.361 
(0.045) 

0.427 
(0.019) 

εee -0.495 
(0.047) 

-0.175 
(0.036) 

-0.692 
(0.152) 

-0.504 
(0.202) 

-0.523 
(0.024) 

-0.696 
(0.014) 

εem 0.222 
(0.013) 

0.201 
(0.031) 

-0.094 
(0.016) 

0.079 
(0.028) 

0.215 
(0.018) 

0.343 
(0.025) 

εmk -0.068 
(0.005) 

-0.061 
(0.008) 

-0.205 
(0.031) 

-0.151 
(0.020) 

-0.078 
(0.003) 

-0.012 
(0.004) 

εml -0.070 
(0.007) 

0.032 
(0.001) 

-0.196 
(0.012) 

0.250 
(0.045) 

-0.110 
(0.011) 

0.074 
(0.008) 

εme 0.246 
(0.003) 

0.225 
(0.045) 

-0.105 
(0.022) 

0.088 
(0.032) 

0.246 
(0.027) 

0.025 
(0.003) 

εmm -0.107 
(0.011) 

-0.042 
(0.006) 

-0.485 
(0.077) 

-0.188 
(0.059) 

-0.058 
(0.016) 

-0.086 
(0.006) 

εky 0.656 
(0.065) 

0.220 
(0.015) 

0.787 
(0.088) 

0.994 
(0.075) 

0.638 
(0.067) 

0.100 
(0.061) 

εly 0.877 
(0.038) 

0.796 
(0.096) 

0.816 
(0.099) 

0.783 
(0.101) 

0.884 
(0.046) 

0.724 
(0.003) 

εey 0.314 
(0.075) 

0.181 
(0.009) 

0.168 
(0.010) 

0.236 
(0.012) 

0.306 
(0.081) 

0.186 
(0.048) 

εmy 0.977 
(0.005) 

0.887 
(0.024) 

0.967 
(0.031) 

0.886 
(0.028) 

0.980 
(0.011) 

0.991 
(0.004) 

Notes: εsw denotes the demand elasticity of input s to the price of input w; εsy indicates the demand elasticity of input s 
with respect to output y; mean values are calculated over the period 1948-1971; standard deviations are reported in 
parentheses. 
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