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Abstract

This paper investigates several empirical issues regarding quasi-

maximum likelihood estimation of Smooth Transition Autoregressive

(STAR) models with GARCH errors, specifically STAR-GARCH and

STAR-STGARCH. Convergence, the choice of different algorithms for

maximising the likelihood function, and the sensitivity of the estimates

to outliers and extreme observations, are examined using daily data

for S&P 500, Heng Seng and Nikkei 225 for the period January 1986

to April 2000.
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1 Introduction

Interest in non-linear time series models has increased rapidly in recent years.

In particular, regime switching models have been rather popular in the class

of non-linear models. Given the substantial research activity in analysing

time-varying volatility through GARCH process (see Engle (1982) and Boller-

slev (1986)), it is also of interest to investigate regime switching models with

GARCH errors. Two of the most popular specifications in this class are the

Smooth Transition Autoregressive (STAR) - Generalised Autoregressive Con-

ditional Heteroscedasticity (STAR-GARCH) and STAR - Smooth Transition

GARCH (STAR-STGARCH) models.

Although STAR-GARCH and STAR-STGARCH are popular and have

been used widely in forecasting (Franses, Neele and van Dijk (1998), Lund-

bergh and Teräsvirta (1999, 2000)), the statistical and structural properties

of these models have not yet been fully established. Furthermore, the ex-

isting diagnostic tests for these models assume consistency and asymptotic

normality, but these assumed statistical properties cannot be examined in

detail because the regularity conditions are as yet unknown. Consequently,

inferences based on these assumptions may not be valid. Moreover, infor-

mation criteria such as the Akaike Information Criterion (AIC) and Schwarz

Bayesian Criterion (SBC) may not be useful for gauging the adequacy of these

models as the properties of the log-likelihood functions are also presently un-

known.

The lack of knowledge of the statistical properties of these models can

cause difficulties in selecting the most efficient optimization algorithm. As

noted by Lundbergh and Teräsvirta (1999) and van Dijk, Teräsvirta and

Franses (2000a), the convergence of the Quasi-Maximum Likelihood Esti-

mator (QMLE) is sensitive to the initial values. In fact, it is unclear as to

whether different algorithms would produce the same estimates even if the

initial values were sufficiently close to the optimised values.

This paper provides empirical evidence to show that different algorithms

produce substantially different estimates for the same model. Consequently,

the interpretation of the model can differ according to the choice of algorithm.
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Moreover, forecast performances may also be affected. This is contrary to

the common belief that different algorithms will produce similar estimates

(Lundbergh and Teräsvirta (2000)). This paper also shows that the conver-

gence of the QMLE for the STAR-STGARCH model depends on the choice

of transition functions.

The second part of the paper examines the effects of extreme observations

and outliers on the QMLE for the STAR-GARCH and STAR-STGARCH

models. This is of interest because STAR-type models were not designed

to accommodate extreme observations and outliers. However, these models

are often used to model financial time series, which frequently exhibit exces-

sive kurtosis. Therefore, it is important to investigate the robustness of the

QMLE for STAR-type models in the presence of extreme observations and

outliers in order to determine how best to accommodate such data.

This paper also provides empirical evidence to show that the effects of

extreme observations and outliers on the QMLE for the STAR component in

a STAR-GARCH model depend on the choice of transition functions. The

effects of such data on the QMLE for the GARCH component are similar

to those for ARMA-GARCH, as reported in Verhoeven and McAleer (1999).

This result has not previously been investigated. Moreover, empirical evi-

dence also suggests that the QMLE for STAR-STGARCH models is sensitive

to the presence of extreme observations and outliers.

The plan of the paper is as follows. Section 2 gives a brief outline of

recent developments for the GARCH, STAR, STAR-GARCH and STAR-

STGARCH models. Section 3 discusses the data. Section 4 presents a de-

tailed discussion on various optimisation algorithms and their effects on the

QMLE for STAR-GARCH models. Section 5 investigates the effects of ex-

treme observations and outliers on the estimates for both STAR-GARCH

and STAR-STGARCH models. Section 6 gives some concluding remarks.

2 Models

This section provides a brief discussion of recent developments in modeling

GARCH, STAR, STAR-GARCH and STAR-STGARCH. Model definitions,
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characterisitics and statistical properties will be discussed, with an emphasis

on the importance of deriving the structural and statistical properties of the

models.

2.1 ARCH/GARCH

Consider the ARMA(r, s) model:

yt =
rX
i=1

αiyt−i +
sX
i=1

βiεt−i + εt (2.1)

in which εt is said to follow an Autoregressive Conditional Heteroscedasticity,

ARCH(p), process if

εt = ηt
p
ht (2.2)

where

ηt ∼ i.i.d.(0, 1) (2.3)

ht = ω0 +

pX
i=1

αiε
2
t−i. (2.4)

This model was proposed by Engle (1982) to relax the traditional assumption

of a constant one-period forecast variance. Engle showed that this model has

a constant unconditional variance but a non-constant variance conditional

on the past.

Engle (1982) showed that εt is second-order stationary (that is, the sec-

ond moment of εt is finite) if and only if all the roots of the characteristic

polynomial

(1−
pX
i=1

αiz
i) = 0

lie outside the unit circle. It was assumed that the process εt starts infinitely

far in the past, with finite 2mth moment. This assumption is clearly not

possible to check in practice. However, Engle (1982) also derived the regu-

larity condition for the existence of the moments for ARCH(1), specifically

the 2mth moment exists if and only if

αm1

mY
j=1

(2j − 1) < 1.
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Milhøj (1985) avoided Engle’s assumption and showed that εt is second-

order stationary if and only if

pX
i=1

αi < 1. (2.5)

He also derived the regularity condition for the existence of moments without

the restrictive assumption. Milhøj’s result is identical to Engle’s in the case

of ARCH(1) with normal ηt, but cannot be given an explicit form in the case

of ARCH(p) and m > 2.

It is interesting to note that equation (2.5) is not a necessary condition for

the strict stationarity of the ARCH(p) model. The necessary and sufficient

condition for the strict stationarity of ARCH(p) was derived by Bougerol and

Picard (1992).

Engle (1982) suggested two possible methods for estimating the parame-

ters in equations (2.1) and (2.4) namely, the Least Squares Estimator (LSE)

and the Maximum Likelihood Estimator (MLE). The LSE is given as

δ̂ =

Pn
t=2 ε̃t−1ε̃tPn
t=2 ε̃t−1ε̃

0
t−1

(2.6)

where δ̂ = (ω0,α1, ....,αp) and ε̃t = (1, ε
2
t , ..., ε

2
t−p+1). Weiss (1986) and Pan-

tula (1989) showed that δ̂ is consistent and asymptotic normal if

E(ε8t ) <∞

which is a rather strong condition.

The conditional log-likelihood function of (2.1) given observations εt, t =

1, .., T , can be written as:

l(δ) =
1

T

TX
t=1

−1
2
lnht − 1

2

ε2t
ht

(2.7)

so that the MLE is given as

δ̂ = argmaxδ∈Θl(δ)

assuming that δ ∈ Θ, a compact subset of Rp+1. Engle (1982) showed that
the information matrix of this function is block-diagonal, which implies the
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parameters in the conditional mean and the conditional variance can be esti-

mated separately without loss of asymptotic efficiency. The estimated errors

given by the estimated conditional mean equation can be used to estimate

the equation of the conditional variance. However, it is important to note

that the restrictions ω0 > 0,αi > 0 for all i = 1, .., p, are required to ensure

that the conditional variance is positive.

Moreover, the MLE is referred to as the Quasi MLE (QMLE) when ηt

is not normal. Weiss (1986) and Pantula (1989) showed that the QMLE is

consistent and asymptotic normal if

E(ε4t ) <∞.

This result was extended by Ling and McAleer (1999b), who showed that

the QMLE is consistent and asymptotic normal if

E(ε2t ) <∞.

The Berndt, Hall, Hall, Hausman (1974) algorithm (BHHH) is often used to

determine δ̂ but, as suggested by Mak, Wong and Li (1997), this algorithm

has convergence problems if the initial values are not sufficiently close to the

final solutions. In such cases, a Newton-Raphson procedure should be used.

Bollerslev (1986) extended ARCH by including the lags of the conditional

variance to yield the GARCH(p, q) model, namely

ht = ω +

pX
i=1

αiε
2
t−i +

qX
i=1

βiht−i. (2.8)

If βi = 0, for all i, then GARCH(p, q) reduces to an ARCH(p) model. All

the mathematical and statistical properties of GARCH hold for ARCH, in

general, except for one case which will be discussed below.

The necessary and sufficient condition for the second-order stationarity

of (2.8) was established by Bollerslev (1986) as

pX
i=1

αi +

qX
i=1

βi < 1.

5



Nelson (1990) derived the necessary and sufficient condition for strict sta-

tionarity and ergodicity for GARCH(1,1) as

E(ln(α1η
2
t + β1)) < 0.

This condition allows α1 + β1 to be slightly larger than 1, in which case

the variance is not finite (i.e. E(ε2t ) = ∞). Note that this condition holds
for GARCH(1,1) but not for ARCH(1), that is, E(ln(α1η

2
t )) < 0 does not

ensure strict stationarity and ergodicity for ARCH(1), because the condition

is derived under the assumption that β1 6= 0. Moreover, this condition is not
easy to apply in practice as it is the mean of an unknown random variable,

and also involves unknown parameters.

For GARCH(p, q), the necessary and sufficient condition for strict sta-

tionarity and ergodicity was established by Bougeral and Picard (1992) and

Nelson (1990). The necessary and sufficient condition for the existence of the

2mth moment of the GARCH(1,1) model was provided by Bollerslev (1986),

who also provided the necessary and sufficient condition for the fourth-order

moments of the GARCH(1,2) and GARCH(2,1) models. He and Teräsvirta

(1999a) obtained the moment conditions of a family of GARCH(1,1) models

using a similar method as in Bollerslev (1986). Ling and McAleer (1999c)

derived the sufficient condition for the existence of the stationary solution of

this family of GARCH(1,1) models, showed that He and Terasvirta’s (1999a)

condition was necessary but not sufficient, and provided the sufficient con-

dition. He and Teräsvirta (1999b) examined the fourth moment structure of

the general GARCH(p, q) process. In the case of GARCH(1,1), the fourth

moment condition is given by

(α1 + β1)
2 + 2α21 < 1. (2.9)

Ling (1999) obtained a sufficient condition for the existence of the 2mth

moment for the GARCH(p, q) model, based on Theorem 2.1 in Ling and Li

(1997) and Theorem 2 in Tweedie (1988). The sufficient condition is given

as

ρ[E(A⊗mt )] < 1
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where ρ(A) = max{eigenvalues of a matrix A}, and At is given by:

At =


α1ηt ... αpηt β1ηt ... βqηt

I(p−1)×(p−1) O(p−1)×1 O(p−1)×q
α1 ... αp β1 ... βq

O(q−1)×p I(q−1)×(q−1) O(q−1)×1


Unlike Bollerslev (1986) and He and Teräsvirta (1999a,b), Ling’s method

does not assume that the GARCH(p, q) process starts infinitely far in the

past with finite 2mth moment, and has a far simpler form than Milhøj’s

(1985) result. This condition is also necessary for the existence of the 2mth

moment, as demonstrated by Ling and McAleer (1999a). Thus, the moment

structure of a general GARCH(p, q) has been completely established. As an

extension of the GARCH(p, q) process, Ling and McAleer (1999a) derived

the necessary and sufficient moment conditions of the asymmetric power

GARCH(p, q) model of Ding et al. (1993).

The parameters in a GARCH(p, q) model are often estimated by MLE,

or by QMLE when the normality of ηt is not assumed. The log-likelihood

function of GARCH(p,q) is identical to that of (2.7), except for the definition

of ht. Naturally, ht in this case follows the definition of (2.8) instead of (2.4).

For GARCH(1,1), Lee and Hansen (1994) and Lumsdaine (1996) showed that

the QMLE is consistent and asymptotic normal if

E[ln(α1η
2
t + β1)] <∞, β 6= 0.

Ling and Li (1997) showed that the local QMLE for GARCH(p, q) is consis-

tent and asymptotic normal if

E(ε4t ) <∞.

For the global QMLE, Ling and McAleer (1999a) showed that

E(ε2t ) <∞

is sufficient for consistency, and

E(ε6t ) <∞

7



is sufficient for asymptotic normality.

The QMLE is often more efficient than LSE for ARMA-GARCH(p, q)

models. This result was first observed by Engle (1982) through a simple

fixed design regression model with an ARCH(1) process. Pantula (1989)

also showed that the MLE is more efficient than LSE for an AR model with

ARCH(1) errors. The QMLE is efficient only if ηt is normal. When ηt is not

normal, adaptive estimation is useful to obtain efficient estimators. Some

useful references include Bickel (1982), Robinson (1988) and Stoker (1991).

This estimation method is not yet available in most econometric software

packages due to its computational complexity, which explains in part the

popularity of MLE in this literature.

It is important to note that the choice of lag length in the conditional

variance equation has not been well investigated in the literature. Engle

(1982) proposed an LM test for ARCH effects, and used the test to decide

the appropriate lag length. Bollerslev (1986) used a similar test to decide the

lag length of GARCH in an empirical example, but admitted that his choice

was arbitrary. Some researchers choose the lag length for their models based

on model adequacy, using criteria such as the AIC and SBC, while others

choose their models based on in-sample forecast performance.

A distinct characteristic of GARCH-type models is their ability to cap-

ture volatility clustering. If the shock from the previous period is high (low),

the large (small) value of ε2t−1 will then influence ht. The GARCH model

can also be fitted to leptokurtic financial data and can be adapted for con-

ditional Student t-distributed (GARCH-t) errors. The GARCH model also

offers computational advantages over extended versions thereof. For exam-

ple, the log-likelihood function of GARCH is relatively simple. However,

there are several deficiencies in the linear GARCH model, as observed by

Nelson (1991). First, it is an empirical regularity that the impact of a large

negative shock is greater than a large positive shock, but a small positive

shock has a larger impact than a small negative shock. This type of asym-

metric behaviour cannot be captured by the symmetric GARCH model as

the conditional variance is a function only of past squared errors and past

conditional variances.
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Moreover, it is important to impose a restriction on all of the parame-

ters in GARCH models to ensure the positivity of the conditional variances.

These restrictions can create difficulties in estimating GARCH, especially

when the data exhibit extreme observations and outliers.

2.2 STAR, STAR-GARCH

and STAR-STGARCH

Non-linear time series models have become very popular in recent years.

Regime switching models are very popular in the class of non-linear models,

so it is of interest to investigate regime switching models with GARCH errors.

Regime switching models will be discussed here, with emphasis on Smooth

Transition Autoregressive (STAR) models.

Tong (1978) and Tong and Lim (1980) proposed the Threshold Autore-

gressive (TAR) model. The TAR model assumes that the regimes switch

from one to another, as determined by the threshold variables, st, relative to

the threshold value, c. Consider the two regime case:

yt = (φ10+
rX
i=1

φ1iyt−i)(1−I(st−c))+(φ20+
rX
i=1

φ2iyt−i))I(st−c)+εt (2.10)

where

I(st − c) =
½
0, st < c

1, st ≥ c.
Model (2.10) can also be written as:

yt =

½
φ10 +

Pr
i=1 φ1iyt−i st < c

φ20 +
Pr

i=1 φ2iyt−i st ≥ c.
The threshold variable, st, is usually (but not always) defined as a linear

combination of the lagged values of yt, that is,

st =
kX
i=0

πiyt−i

which is often referred to as a Self Exciting TAR (SETAR). van Dijk, Teräsvirta

and Frances (2000a) relaxed this definition of threshold variables to include

non-linear combinations of the lags of yt and other exogenous variables.
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Equation (2.10) is similar to a standard model of structural change, apart

from the definition of threshold variable and threshold value, which assumes

that the regimes switch from one to another instantly. To allow for a smooth

transition, Teras̈virta (1994) proposed the Smooth Transition Autoregressive

(STAR) model:

yt = (φ10 +
rX
i=1

φ1iyt−i)(1−G(st; γ, c)) + (φ20 +
rX
i=1

φ2iyt−i))G(st; γ, c) + εt

(2.11)

in which G(st; γ, c) is the transition function, assumed to be twice differen-

tiable, ranging from 0 to 1, and γ is the rate of transition.

Although two regimes will suffice in many empirical cases, it is straight-

forward to extend (2.10) to more than two regimes. Denoting φi = (φi1, ...φir)

and xt = (yt−1, ..., yt−r)0, equation (2.10) can be rewritten as

yt = (φ1xt)(1− I(st − c) + (φ2xt)I(st − c) + εt.

Anm-regime TAR (or Multiple Regime TAR, MRTAR) model can be written

as

yt =
mX
i=1

φixt(I(st − ci−1)− I(st − ci)) + εt (2.12)

where c1 < c2 < .... < cm, and

I(st − ci) =
½
0, st < i or i = m

1, st ≥ i or i = 0.

For any st ∈ [ci−1, ci), yt = φixt for all i = 1...m. Therefore, the regime is

determined by the threshold variable, st, relative to the threshold value, ci.

To incorporate the idea of smooth transition in equation (2.10), replace the

function I(st − ci) in (2.12) with the transition function G(st; γ, ci) for all i,
yielding

yt =
mX
i=1

φixt(Gi−1(st; γi−1, ci−1)−Gi(st; γi, ci)) + εt (2.13)

where Gi(st; γi, ci) is assumed to be a twice differentiable function ranging

from 0 to 1, G0 = 1 and Gm = 0. Equation (2.13) is known as the Multiple

Regime Smooth Transition Autoregressive (MRSTAR) model.
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An extension of the basic model permits the parameter vector φi to change

over time, which is known as the Time Varying STAR (TV-STAR) model

(van Dijk, Teräsvirta and Franses (2000b)).

There are many choices of transition function, with the most popular

being the first-order logistic function:

G(st; γ, c) =
1

1 + exp(−γ(st − c))
with the following properties:

lim
st→−∞

G(st; γ, c)→ 0

lim
st→∞

G(st; γ, c)→ 1

G(st; 0, c) =
1

2

lim
γ→−∞

G(st; γ, c)→ 0

lim
γ→∞

G(st; γ, c)→ 1.

A STAR model with a logistic transition function is the Logistic STAR

(LSTAR). Although the logistic function is used frequently, other choices

include the Exponential STAR (ESTAR) model:

G(st; γ, c) = 1− exp(−γ(st − c)2), γ > 0

and the nth-order LSTAR:

G(st; γ, c) = (1 + exp(−γ
nY
i=1

(st − ci)))−1, γ > 0, ci < cj ∀i < j.

In order to use this model effectively, it is important to choose the appropriate

transition function and threshold variable. There exist many LM-type tests

to determine the appropriate choice of G(st; γ, c) and st (a comprehensive

survey of the modelling strategy under the STAR framework is given in van

Dijk, Teräsvirta and Franses (2000a)).

Generally, the modelling cycle starts with a test of parameter constancy,

such as testing whether STAR is more appropriate than a simple linear AR
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model. Assuming that LSTAR with two regimes is the preferred model, a

test of parameter constancy is given by

HA0 : φ11 = φ21, φ12 = φ22.

Parameters within the transition function, γ and c, are not involved in the

null hypothesis, yielding unidentified nuisance parameters. Consider the null

hypothesis of linearity as a test of

HB0 : γ = 0

in which

G(st; 0, c) =
1

2

so that the STAR model can be written as

yt =
φ11 + φ21

2
+

φ12 + φ22
2

yt−1 + εt

which is linear, regardless of the truth ofHA0. Thus, it is important to include

parameters in the transition function for purposes of testing. This problem

can be avoided by expressing the transition function by its Taylor expansion

around γ = 0, which is a simple but important technique for hypothesis

testing with STAR-type models.

When the transition function and the threshold variable have been de-

termined, the parameters in STAR can be estimated by Non-linear Least

Square (NLS). If

yt = F (xt;φ) + εt

the NLS estimator is given by

φ̂ = argminφ

TX
t=1

(yt − F (xt;φ))2 = argminφ
TX
t=1

ε2t .

If εt is normal, NLS is equivalent to MLE, otherwise NLS can be interpreted

as QMLE. Wooldridge (1994) and Pötscher and Prucha (1997) demonstrated

that the NLS is consistent and asymptotic normal under certain regularity

conditions.
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STAR models, especially LSTAR models, have been successfully applied

in a number of areas. Teräsvirta and Anderson (1992) and Teräsvirta,

Tjøstheim and Granger (1994) characterised the different dynamics of in-

dustrial production indexes for various OECD countries during expansions

and recessions using LSTAR models. Moreover, Lundbergh and Teräsvirta

(2000) examined the forecast performances of the LSTAR model for unem-

ployment rates in Denmark and Australia, arguing that many unemployment

rates exhibit asymmetries in that the rate of increase is often higher than

the rate of decrease. Their results showed that the STAR model is superior

to its AR counterpart.

A STAR-GARCH model allows εt in equation (2.13) to follow a GARCH

process, as defined in (2.8). This natural extension has not yet been in-

vestigated widely. Lundbergh and Teräsvirta (1999) give a comprehensive

exposition of this model, but do not provide any statistical properties or reg-

ularity conditions for the existence of its moments and for stationarity. These

important properties have not yet been established. However, as the informa-

tion matrix of the log-likelihood function of STAR-GARCH is block diagonal,

the parameters in the conditional mean and conditional variance equations

can be estimated separately, as in the case of ARMA-GARCH. Therefore,

the general GARCH properties described earlier are also expected to hold

for this model.

A further extension of the STAR-GARCH model is to incorporate the

concept of regime switching in the GARCH component, resulting in the

STAR-Smooth Transition GARCH (STAR-STGARCH) model. Let θi =

(θi0, ..., θi(p+q)), Γt = (1, ε2t−1, ε
2
t−2, ...ε

2
t−p, ht−1, ..., ht−q)

0 and Hi be a twice

differentiable function for all i > 0, with H0 = 1 and Hm = 0. Denote a new

threshold variable as

rt =
kX
i=1

ζiεt

with threshold values di ∈ R for all i. Then the STAR-STGARCH model is
the same as equation (2.13), with

εt = ηt
p
ht
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where

ht =
mX
i=1

(θiΓt)(Hi−1(rt; ξi−1, di−1)−Hi(rt; ξi, di). (2.14)

The choice of Hi is similar to that of Gi, but is not restricted to be like Gi

in the most general case.

STAR-STGARCH is novel and has a number of distinct characteristics.

First, it is non-linear, not only in the conditional mean, but also in the con-

ditional variance. The GARCH component is useful for capturing volatility

clustering, while the threshold variables and threshold values are useful if

the data exhibit regime switching behaviour for varying yt and εt. STAR-

STGARCH also exhibits asymmetries as it can be represented by setting the

threshold value to 0. Consider a simple two-regime case, with rt = εt, d = 0

and

H(εt; ξ, 0) =
1

1 + exp(−ξ(εt − 0))
so that equation (2.14) can be rewritten as

ht = (θ1Γt)(1−H(εt; ξ, 0)) + (θ2Γt)H(εt; ξ, 0)).

Thus, in the extreme cases where εt → −∞ and εt →∞,

ht = (θ1Γt)

ht = (θ2Γt)

respectively. Therefore, the first regime is associated with εt < 0 and the

second regime with εt ≥ 0.
Although this model is potentially useful for data that exhibit non-linearity

and threshold behaviour, there are as yet no results as to the moment struc-

ture or statistical properties of the MLE. Furthermore, as asymmetric be-

haviour is permitted, the information matrix for this model is no longer block

diagonal and the two stage estimation method is no longer valid. It is also im-

portant to note that, as observed in van Dijk, Teräsvirta and Franses (2000a),

the MLE for both STAR-GARCH and STAR-STGARCH is extremely sensi-

tive to initial values. The choice of algorithm in approximating the optimal
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solution is also crucial in terms of convergence. These problems may be re-

solved by understanding the statistical properties and moment structure of

the model.

There are several LM-type specification tests to analyse the most appro-

priate model. Lundbergh and Teräsvirta (1999) and van Dijk, Teräsvirta

and Frances (2000a) provide a list of such tests. However, these tests are

based on the assumption that the model is stationary and ergodic, an as-

sumption which cannot be checked, in general, as no regularity conditions

are as yet available. Therefore, any empirical examples using STAR-GARCH

and STAR-STGARCH remain questionable in terms of their reliability and

stability.

There is as yet no theoretical result regarding the stationarity of the

STAR, STAR-GARCH or STAR-STGARCH models. Consider a two regime

STAR model, as defined in (2.13), which can be rewritten as

yt =(φ11(1−G(st; γ, c)) + φ21G(st; γ, c)) + (φ12(1−G(st; γ, c))
+ φ22G(st; γ, c))yt−1 + εt.

Does the condition

φ12(1−G(st; γ, c)) + φ22G(st; γ, c) < 1

ensure stationarity? This is not at all obvious as the transition function

G(st; γ, c) is a function of the endogenous variable yt. More research in es-

tablishing the statistical properties and regularity conditions of these models

is required before these models can be used with confidence.

Evaluating forecast performance is also problematic. As noted by van

Dijk, Teräsvirta and Franses (2000a), even though non-linear time series often

capture certain characteristics of the data better than do linear models, the

forecast performance of the former is not always superior, and is sometimes

even worse. Clements and Hendry (1998) and Diebold and Nason (1990)

discuss various reasons for this phenomenon.
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3 Data

Following Lundbergh and Teräsvirta (1999), all regimes for each model es-

timated below are assumed to follow an AR(1) process, εt is assumed to be

GARCH(1,1), st is set equal to yt−1, and rt is set equal to εt−1.

All models are estimated using three different stock indices, namely Stan-

dard and Poor’s 500 Composite Index (S&P), Heng Seng Index and Nikkei

225 Index. The data were obtained through the DataStream database service

and the sample is from 1/1/1986 to 11/4/2000, giving a total of 3725 data

points for each index.

Of primary concern are stock returns, Rt, which are calculated as

Rt =
Yt − Yt−1
Yt−1

where Yt denotes the index at time t.

The returns for S&P 500, Heng Seng and Nikkei 225 are given in the

following figures:

Figure 1: S&P Returns
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Figure 2: Heng Seng Returns
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Figure 3: Nikkei 225 Returns
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S&P appears to be less volatile than either Nikkei 225 or Heng Seng, espe-

cially during the early to late 1990’s (observations 1500 to 3000) before the

Asian economic and financial crises. S&P also has fewer extreme observations

and outliers than Nikkei and Heng Seng.

Nikkei seems to have more positive shocks than S&P and Heng Seng. Al-

though Nikkei seems more volatile, the volatility is relatively low compared

with Heng Seng, which seems to be the most volatile. There are some obvi-

ous outliers and extreme observations for all three indices. Heng Seng also

appears to have the highest number of outliers.

An obvious similarity among the three indices is the enormous decrease

in returns at observation 474, which corresponds with the share market crash

in October 1987. This is also the most significant outlier in the three indices.

The second largest decrease in returns is observation 894 for Heng Seng,

which corresponds with the Tianenman Square incident in Beijing on 4 June

1989.

4 Optimisation Algorithms

Estimation for STAR-type models is problematic as their novelty means that

existing econometric software packages do not yet have appropriate algo-

rithms programmed. STAR can be estimated by Non-linear Least Squares

(NLS) (see van Dijk, Teräsvirta and Franses (2000a)). STAR-GARCH can

be estimated by a two-stage procedure, which involves estimating STAR

by NLS, then using the residuals to estimate GARCH by QMLE. However,

this procedure is not appropriate for STAR-STGARCH, for which the infor-

mation matrix is not block diagonal, so the estimates have to be obtained

simultaneously. It is worth noting that NLS is equivalent to MLE under

the assumption of normality. If this assumption does not hold, then NLS is

equivalent to QMLE.

In practice, estimation of STAR and STAR-GARCH models can be prob-

lematic. An attempt was made in EViews to estimate LSTAR by NLS with

st = Yt−1 for S&P 500, Heng Seng and Nikkei, but was unsuccessful because

of computational problems in calculating the near singular Hessian matrix.
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A GAUSS version 3 program was used to estimate various STAR-type

models by optimising the respective likelihood functions. Several attempts

were made to estimate LSTAR and ESTAR for S&P, Heng Seng and Nikkei,

for which the estimates of the variance did not converge. This suggests three

possibilities: (i) the variance is not constant, so that STAR-GARCH should

be used; (ii) the use of alternative optimisation algorithms (see for example,

Luenberger (1989)); and (iii) the use of alternative initial values.

In order to investigate the effects of different algorithms on the estimates

of STAR-GARCH models, two were chosen to maximise the log-likelihood

function of a LSTAR-GARCHmodel, as defined in equations (2.13) and (2.8),

using S&P, Heng Seng and Nikkei data. The two algorithms used are the

Newton method and Broyden-Fletcher-Goldfarb-Shanno method (BFGS), a

quasi-Newton method, with the same initial values, yielding the estimates in

Table 1 (one asterisk denotes significance at the 5% level and two asterisks

denote significance at 1%).
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Table 1: LSTAR-GARCH Estimates

S&P Heng Seng Nikkei

Newton BFGS Newton BFGS Newton BFGS

φ̂11 1.7833** -3.0150** -0.2238** 0.0142 -0.2796** -1.5166**

φ̂12 1.1204** -4.1005** 2.0523** -4.9601** -0.1930** 0.1396**

φ̂21 -0.2862** 3.0088** 0.2260** 0.0007 0.0013** 1.5131**

φ̂22 -1.3476** 3.8090** -1.8170** 0.3180** 0.0126 -0.2892**

γ̂ 2.4515** 1.4818** 4.3080** 3.9604** 1.6278** 1.0020**

ĉ 0.8634** -0.0402** -0.0162** -0.8311** -2.0104** -0.0586**

ω̂ 1.17e-6 1.17e-6** 7.08e-6** 7.10e-6** 3.2e-6** 3.21e-6**

α̂ 0.0753** 0.0754** 0.1488** 0.1486** 0.1475** 0.1465**

β̂ 0.9166** 0.9166** 0.8394** 0.8394** 0.8519** 0.8529**

As shown in Table 1, the two algorithms produce different estimates for

the conditional mean but not of the conditional variance. In fact, a similar

set of estimates for the conditional variance can be obtained by estimating

a simple AR(1)-GARCH(1,1) model using the Berndt-Hall-Hall-Hausman

(BHHH) algorithm. This suggests that only the estimates of the conditional

mean are sensitive to the choice of algorithm, which is contrary to the findings

in Lundbergh and Teräsvirta (2000).

In particular, the high threshold values for Heng Seng imply that the

first regime dominates the second. However, since BFGS gives substantially

different estimates from Newton, it is difficult to determine which set of

estimates will produce better forecasts. Moreover, the estimates from the

two algorithms are highly significant, which makes interpretation problem-

atic. As robustness to the choice of algorithm is not in evidence here, this

stresses the importance of establishing regularity conditions for consistency

and asymptotic normality.

A possible explanation of these differences is that the Hessian matrix of

the log-likelihood function of the LSTAR-GARCH model is not accurately

approximated by BFGS, in which case the covariance matrix will also be

unreliable. Another possibility is that there exists more than one optimum
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for the log-likelihood function, or that it is flat. This is supported by the

similar mean likelihood scores of the two algorithms, as shown in Table 2.

Table 2: Maximum Likelihood Score

Index Newton BFGS

S&P 4.24018 4.24018

Heng Seng 3.75686 3.75664

Nikkei 3.92471 3.92487

As the structural and statistical properties of the STAR-GARCHmodels have

not yet been established, it is difficult to provide a clear and unambiguous

explanation for this result.

5 Extreme Observations and Outliers

The technical definitions of extreme observations and outliers are somewhat

arbitrary. Extreme observations are often referred to as being 2 to 3 stan-

dard deviations from the mean. Outliers are often defined as being more

than 3 standard deviations from the mean. The difference between extreme

observations and outliers is that outliers can also be defined as observations

that were not generated from the same population as the other observations

in the sample.

Stock returns often contain more extreme observations and outliers as

compared with a normal distribution. Consequently, the distribution seems

to have fatter tails, or excessive kurtosis, than a normal distribution.

In order to examine the effects of extreme observations and outliers on the

estimates for LSTAR-GARCH, ESTAR-GARCH and ESTAR-LSTGARCH,

each of the data sets is adjusted using the following trimming algorithm:

1. Calculate the standard deviation for the sample;

2. If an observation is 4 times larger than the standard deviation, it is

reduced to 4 times the standard deviation;
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3. If an observation is between 3 and 4 times larger than the standard

deviation, it is reduced to 3 times the standard deviation;

4. If an observation is between 2.5 and 3 times larger than the standard

deviation, it is reduced to 2.5 times the standard deviation;

5. Repeat steps 1 to 4 above for every observation in the sample.

An LSTAR-GARCH model, as defined in equations (2.8) and (2.13), is es-

timated using both the adjusted and unadjusted S&P, Heng Seng and Nikkei

data. The Newton algorithm is used in each case. The estimates can be

found in the following Table 3.

Table 3: LSTAR-GARCH Estimates for Adjusted and Unadjusted Data

S&P Heng Seng Nikkei

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

φ̂11 1.7833** -1.7092** -0.2238** -0.5797** -0.2796** -0.6837**

φ̂12 1.1204** 2.1950** 2.0523** -4.4924** -0.1930** 0.8175**

φ̂21 -0.2862** 1.5478** 0.2260** 0.6832** 0.0013** 0.3890**

φ̂22 -1.3476** -0.2446** -1.8170** -4.9560** 0.0126 0.1554**

γ̂ 2.4515** 2.9175** 4.3080** 15.6068** 1.6278** 1.0431**

ĉ 0.8634** 0.1849** -0.0162 -0.1252** -2.0104** 0.7372**

ω̂ 1.17e-6 3.87e-7** 7.08e-6** 5.44e-6** 3.22e-6** 2.05e-6**

α̂ 0.0753** 0.0378** 0.1488** 0.1022** 0.1475** 0.1017**

β̂ 0.9166** 0.9579** 0.8394** 0.8750** 0.8519** 0.8909**

As shown in Table 3, φ12 exceeds 1 using both the adjusted and unad-

justed S&P data, which suggests that the first regime follows a non-stationary

process. The same is also true for Heng Seng. However, as no results on non-

stationary STAR-type models are available, it is difficult to interpret these

estimates.

In all three cases, the values of α̂ decreased and those of β̂ increased when

the data were adjusted, which agrees with other findings in the literature

22



(see, for example, Verhoeven and McAleer (1999)). However, the effects of

extreme observations and outliers on the estimates of STAR are not entirely

clear, though it appears that, if such data have a positive (negative) effect on

ĉ, they will have a negative (positive) effect on γ̂. This is an unusual result

as there is no obvious reason why the threshold value should be related to

the transition rate. However, for S&P and Heng Seng, the threshold values

are closer to 0 with the adjusted data, suggesting that the adjusted data

exhibit asymmetric behaviour. Moreover, it appears that if φ̂12 increases

(decreases) after the data are adjusted, then φ̂22 will also increase (decrease),

which suggests that extreme observations and outliers have the same effects

on the coefficients of yt−1 in both regimes.

A similar analysis is conducted to examine the effects of extreme obser-

vations and outliers for ESTAR-GARCH. The estimates are given in Table

4.

Table 4: ESTAR-GARCH Estimates for Adjusted and Unadjusted Data

S&P Heng Seng Nikkei

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

φ̂11 -0.7497** -0.5490** -0.9955** -0.4233** -0.4259** -0.2144**

φ̂12 0.0790 -2.3958** -0.9307** 0.0004 0.1168** 0.6474**

φ̂21 0.0008** 1.8336** 0.0013** 0.0013** 0.0011** 0.3901**

φ̂22 0.0360 0.9974** 0.1269** 0.1126** 0.0137 0.1911**

γ̂ 0.9474** 0.7736** 0.7997** 1.2412** 1.6688** 0.8317**

ĉ -3.0813** -0.5821** -4.3532** -2.5382** -2.1846** 0.7273**

ω̂ 1.22e-6** 3.87e-7** 7.27e-7** 6.07e-6** 3.22e-6** 2.05e-6**

α̂ 0.0767** 0.0378** 0.1506** 0.1076** 0.1475** 0.1017**

β̂ 0.9149** 0.9579** 0.8370** 0.8669** 0.8519** 0.8909**

The estimates of ESTAR-GARCH using the unadjusted data seem more

plausible than those for LSTAR-GARCH in Table 3. All the regimes fol-

low a stationary AR(1) process, but the low threshold values suggest that

the second regime would dominate the first for all three indices. Further-

more, the estimates for the GARCH component are very similar to those for
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LSTAR-GARCH and, for Nikkei, the GARCH estimates are identical! This

suggests that the choice of transition function for the conditional mean does

not affect the GARCH estimates, reflecting the block-diagonal nature of the

information matrix for STAR-GARCH models.

The effects of extreme observations and outliers on the transition rate,

γ̂, and the threshold value, ĉ, for ESTAR-GARCH seem to be different from

LSTAR-GARCH. In particular the inverse relationship between γ̂ and ĉ is

no longer valid. However, the estimated threshold values increased when the

adjusted data were used. For all three data sets, the estimated threshold

values using the adjusted data were closer to 0 than for the unadjusted data.

Furthermore, the sign of the estimated threshold value changed from negative

to positive for Nikkei.

However, the effects of extreme observations and outliers on the estimates

of the transition rates are unclear. The effects of such data on φ̂12 and φ̂22 for

ESTAR-GARCH are different from LSTAR-GARCH. In this case, if extreme

observations and outliers have positive (negative) effects on φ̂12, they have

negative (positive) effects on φ̂22 for both S&P and Heng Seng. However,

extreme observations and outliers have negative effects on both φ̂12 and φ̂22

for Nikkei.

There does not seem to be a clear pattern between the estimates using the

adjusted and unadjusted data. However, due to the increase in the threshold

value, the second regime no longer dominates the first, so that the adjusted

data exhibit regime switching behaviour. Empirical evidence suggests that

the estimate of the threshold value is sensitive to the sign and magnitude of

outliers. If the magnitude of positive outliers is greater (smaller) than their

negative counterparts, the threshold estimate will be greater (smaller) than

0. This result explains the low threshold estimates, because the magnitude

of the negative outliers is often larger than the positive outliers for all three

indices, and also the increase in the threshold estimates when the magnitude

of the outliers is reduced.

These results also show that the effects of outliers and extreme obser-

vations on the estimates of STAR-GARCH are sensitive to the choice of

transition function. Moreover, the convergence of the estimates also seems
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to be sensitive to the choice of transition function for STAR-STGARCH.

The choice of transition function, and their convergence of the algorithm,

are summarised in Table 5.

Table 5: Convergence with Different Transition Functions

Transition function Unadjusted data

mean variance S&P Heng Seng Nikkei

Logistic Logistic Yes Yes No

Logistic Exponential No Yes No

Exponential Logistic Yes Yes Yes

Exponential Exponential No No No

As Table 5 shows, the exponential/logistic combination converges for all

three indices. The estimates for the three data sets are given in Table 6.

The estimates of the extreme threshold values, which indicate that one

regime dominates the other, suggest that two regimes are unnecessary for

either the conditional mean or the conditional variance for S&P and Nikkei.

For the same reason, two regimes for the conditional variance are also un-

necessary for Heng Seng. However, the estimated threshold value of the

conditional mean, ĉ, for Heng Seng is close to 0, which indicates the data ex-

hibit asymmetric behaviour and two regimes are present for the conditional

mean.

Although all the estimates are highly significant, this is based on the as-

sumption of asymptotic normality, which cannot be checked as no regularity

conditions are available. Moreover, the estimates from a single regime are

similar to those using an AR(1)-GARCH(1,1) model for S&P and Nikkei,

which reinforces the conclusion that two regimes are not present.
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Table 6: ESTAR-LSTARGARCH Estimates for S&P, Heng Seng and Nikkei

S&P Heng Seng Nikkei

φ̂11 -0.4167** -0.1124** 1.5339**

φ̂12 0.0862** -0.6694** 0.0991**

φ̂21 0.0007** 0.8880** -0.7509**

φ̂22 0.0359** -1.8741** 1.2881**

γ̂ 1.5140** 2.3182** 0.3103**

ĉ -2.3757** -0.2280** -1.8928**

ω̂1 1.184e-06** 6.88e-6** 3.15e-06**

α̂1 0.7662** 0.1488** 0.1465**

β̂1 0.9149** 0.8394** 0.8529**

ω̂2 4.362e-03** 1.24e-3** 3.896e-03**

α̂2 0.1186** 0.0170** 0.0331**

β̂2 0.00008464 0.0096 0.035**

ξ̂ 3.1153** 2.7183** 3.1029**

d̂ 2.9595** 2.5338** 2.9643**

Estimates for ESTAR-LSTGARCH for two sets of adjusted data are given

in Table 7, because the Newton method did not converge using the adjusted

Heng Seng data. However, the estimates did converge using the BFGS al-

gorithm, which supports the findings in Section 3 that the estimates are

sensitive to the choice of algorithm.

It appears that extreme observations and outliers have little impact on

d̂, which suggests there is no regime switching behaviour in the GARCH

component for either adjusted or unadjusted data. For each data set, only

the first regime is required. Interestingly, α̂1 decreased and β̂1 increased after

the data were adjusted. The same outcome holds for α̂2 and β̂2 for S&P, but

not for Nikkei.

Furthermore, the effects of extreme observations and outliers on γ̂ and

ĉ are also unclear. Both φ̂12 and φ̂22 decreased for S&P and Nikkei when

the adjusted data were used, which is surprising as the effects of extreme

observations and outliers for ESTAR-STGARCH are expected to be similar
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to those for ESTAR-GARCH. This result may arise because the information

matrix of STAR-STGARCH is no longer block diagonal with regard to the

parameters of the conditional mean and the conditional variance.

For S&P, two regimes were required before the data were adjusted, but

only the second regime is significant for the adjusted data. The estimated

threshold value increased for Nikkei when the adjusted data were used, but

the second regime was still insignificant.

Table 7: ESTAR-LSTGARCH Estimates for the Adjusted S&P and Nikkei

S&P Nikkei

φ̂11 -0.0590** -0.7316**

φ̂12 -0.8052** -0.2209**

φ̂21 1.5970** 0.0013**

φ̂22 0.0017 0.0108

γ̂ 1.7790** 1.5160**

ĉ -0.1433** -2.1709**

ω̂1 3.75e-7** 2.00e-6**

α̂1 0.0378** 0.1021**

β̂1 0.9579** 0.8906**

ω̂2 1.10e-3** 2.38e-3**

α̂2 0.0363** 0.0687**

β̂2 0.0154** 0.0080**

ξ̂ 2.9537** 2.9638**

d̂ 2.7692** 2.8433**

6 Conclusion

This paper provided a survey of recent developments for analysing the GARCH,

STAR, STAR-GARCH and STAR-STGARCH models. The difficulties in

evaluating these models because of the absence of structural and statistical

properties, particularly, the regularity conditions for consistency and asymp-

totic normality, were emphasized.
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Empirical evidence using the S&P, Heng Seng and Nikkei indexes showed

that the QMLE for STAR-GARCH models are sensitive to the choice of

optimisation algorithm. This does not agree with previous results in the

literature. It was also shown that the estimates for STAR-GARCH and

STAR-STGARCH are also highly sensitive to extreme observations and out-

liers. Furthermore, the effects of extreme observations and outliers on the

estimates of STAR-GARCH depend on the choice of transition function.

The effects of extreme observations and outliers on the estimates for

STAR-STGARCH are unclear, but the effects are not the same as for STAR-

GARCH, which may arise because the information matrix is no longer block

diagonal. Furthermore, the convergence of the estimates is sensitive to the

choice of algorithm. This sensitivity could arise through model misspecifica-

tion, as well as through the properties of the log-likelihood functions.
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