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Abstract
SUBSET, written in the matrix language Gauss, is a program that identifies optimal
subsets of means or proportions based on independent groups. All possible configurations
of ordered subsets of groups are identified and the best model is selected using either the
AIC or BIC information criterion. For means, both homogeneous and heterogeneous
variance cases are considered. SUBSET offers an alternative approach to traditional post-
hoc multiple-comparison procedures such as the Tukey test for pairwise comparisons.
Major advantages of SUBSET over traditional pairwise comparison procedures include
the fact that intransitive decisions are avoided and that issues related to type I error
control, sample size and heterogeneity of variance do not arise.

1 Introduction

Researchers often use analysis of variance to investigate mean differences among several
response groups. If the null hypothesis based on equality of means is rejected, it is
common practice to employ multiple comparison techniques to study the patterns of
differences among the means. For example, Kirk (1995) describes 22 multiple
comparison procedures including pairwise comparisons such as the Tukey test. In
general, these procedures depend upon interpreting multiple tests of significance. As
detailed in Section 3, below, Dayton (1998) advocated replacing these procedures by a
wholistic model selection approach based on information criteria. The program,
SUBSET, implements this information theoretic approach for comparisons among means
or among proportions from independent samples.

Section 2 presents a summary of the theory underlying the use of information
criteria for model selection while Sections 3 and 4 consider applications of this theory to
sample means and sample proportions, respectively. Section 5 describes how to use the
SUBSET program and exemplary applications are presented in Section 6.

2 Information Criteria

Akaike (1973, 1974) developed a decision-making strategy based on the Kullback-
Leibler (1951) information measure arguing that this measure provides a natural criterion
for ordering alternate statistical models for data. Adapting the notation of Akaike (1987)
for the case of univariate data, the Kullback-Leibler information for the true distribution,
gt(x), of random variable x, relative to some other distribution, go(x), can be written as:

(1) I(gt; go) = E(Loge[gt(x)]) - E(Loge[go(x)])

where expectations are taken with respect to gt(x). In the context of maximum likelihood
estimation, let x = {xi} be N values of an iid random variable, x, with true density

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6305148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


function g(· | θθθθ) based on the parameter vector, θθθθ. Also, let θθθθx represent the usual
maximum likelihood estimator (MLE) of θθθθ found as a result of maximizing the density,
g(x | θθθθ), over the sample by treating θθθθ as variable. Then, assuming p independent
parameters in θθθθ, a large-sample result for the distribution of likelihood ratios is:

(2) L1 = 2{Loge[g(x | θθθθx)] - Loge[g(x | θθθθt)]}= χp
2

where χp
2 is central chi-square with p degrees of freedom.

Again, following Akaike let y be an additional observation from the same
distribution as x. Akaike (1974) shows that, asymptotically:

(3) L2 = 2{EyLoge[g(y | θθθθx)] - EyLoge[g(y | θθθθt)]} =  - χp
2

Then:

(4) E(L1 - L2) = 2Loge[g(x | θθθθx)] - 2EyLoge[g(y |  θθθθx)] ≅  2p.

One-half of the second term in Equation (4), EyLoge[g(y |  θθθθx)], corresponds to the
second term in the definition of Kullback-Leibler information, E(Loge[go(x)]). Also, note
that the first term in Kullback-Leibler information is constant for any model. Akaike
defines his AIC estimator of Kullback-Leibler information as:

(5) Constant - EyLoge[g(y |  θθθθx)] ≅  -2Loge[g(x | θθθθx)] + 2p = AIC

When selecting among M competing models, Akaike uses Equation (5) to
calculate AICm, m = 1,…,M, for the models and, then, selects the model with min(AICm)
as the preferred model. The conventional interpretation of AIC is as an estimate of the
loss of precision (or, increase in information) that results when θθθθx, the MLE, is
substituted for the true parametric value, θθθθt, in the likelihood function. Thus, by selecting
the model with min(AICm), the (estimated) loss of precision is minimized.

As noted by Sclove (1987), AIC represents a penalized log-likelihood function
that can be written in the general form:

(6) -2Loge[g(x | θθθθx)] + a(N)p

where a(N) is a function that may depend upon the total sample size, N. Various
adaptations of AIC have been suggested that, unlike AIC, make the statistic dependent
upon sample size. In particular, the Schwarz (1978) BIC (or, SIC) statistic and the
Bozdogan (1987) CAIC statistic use penalty terms equal to Loge(N) and Loge(N) + 1,
respectively. As noted by Bozdogan (1987), these latter procedures are asymptotically
consistent in the sense that, when the null case is the true model, the probability of
selecting the true model approaches one, rather than an arbitrary significance level, as is
true for conventional hypothesis testing procedures.



3 Application of Information Criteria to the Paired-Comparisons of
Means

Conventional pairwise-comparison procedures for means involve conducting a set of
statistical tests. Often this is done subsequent to testing the omnibus hypothesis of
equality of means for K independent groups (i.e., µk = µ for k = 1,…,K) using analysis of
variance techniques although this is not technically required for many procedures. One
popular approach, the Tukey HSD procedure, sets up q statistics for the K(K – 1)/2
different pairs of means and refers these statistics to the appropriate null distribution of
the studentized range statistic for a span of K means. Thus, K(K – 1)/2 hypotheses of the
form µk = µk′ for k ≠ k′ are tested. Among the problems with such procedures cited by
Dayton (1998) are:

(1) Some arbitrary technique is utilized to control the family-wise type I error rate
for the set of correlated pairwise tests;

(2) The issues of homogeneity of variance and differential sample size pose
problems for many paired-comparison procedures;

(3) Intransitive decisions (e.g., outcomes suggesting mean 1 = mean 2, mean 2 =
mean 3, but mean 1 < mean 3) are the rule rather than the exception with
typical paired comparison procedures since they entail a series of discrete,
pairwise significance tests.

(4) There exists a large variety of competing procedures that differ in how type I
error is controlled and, consequently, in power (e.g., SPSS for Windows offers
seven distinct procedures to choose among).

For means based on K independent groups, there is a total of 2K-1 patterns of
ordered subsets with equal means within subsets. For example, with three groups for
which the means are ranked and labeled 1, 2, 3, the 22 = 4 distinct ordered subsets are
{123}, {1,23}, {12,3} and {1,2,3}, where a comma is used to separate subsets that are
unequal in mean value. Dayton  (1998) proposed using model-selection criteria such as
the AIC or BIC statistic for selecting the most appropriate ordering of subsets of means
for purposes of interpretation. In particular, this approach was advocated as avoiding
many of the objections were raised to conventional pairwise comparison procedures. The
program, SUBSET, computes both the Akaike AIC and the Schwarz BIC statistics for all
2K-1 distinct ordered subsets. Since the number of ordered subsets can be quite large for
practical problems (e.g., 512 for K = 10 groups but 524,288 for K = 20 groups), only the
ordered subsets corresponding to the smallest AIC and BIC values, as specified by the
user, are printed out.

Creating the patterns of ordered subsets of means within SUBSET is based on the
recognition that digit inversions in the first 2K-1 binary equivalents of the integers from 0
through 2K uniquely define these patterns. For example, for K=4 these eight binary
equivalents are 0000, 0001, 0010, 0011, 0100, 0101, 0110 and 0111 and they correspond
to the ordered subsets {1234}, {123,4}, {12,3,4}, {12,34}, {1,2,34}, {1,2,3,4}, {1,23,4}
and {1,234}. In the program, SUBSET, once these binary equivalents are generated, the
sub-matrix extraction and substitution features of the Gauss language are used to create
the actual patterns of equivalent means (and variances, for the heterogeneous case). There
is no limit to the number of groups that can be analyzed since the program only stores
results for the S (specified by user) smallest AIC and BIC values at each iteration. Of



course, execution time can become relatively long for large K. Typical execution times
on a 266mz notebook computer are:

K = 4 groups, 23 = 8 patterns: .06 seconds
K = 12 groups, 211 = 2,048 patterns: 6.97 seconds
K = 20 groups: 219 = 524,288 patterns 3049.74 seconds, or 50.83 minutes
Information criteria such as AIC or BIC are based on the log-likelihood of the

data. In SUBSET, it is assumed that the observations arise from normal densities. Since
the log-likelihood is maximized for any given model when variance estimates are
computed using the sample size, n, rather than n-1, in the denominator, this conversion is
made within the program. SUBSET calculates AIC and BIC based on the usual
assumption of homogeneity of variance as well as based on a restricted heterogeneous
variance model for which it is assumed that there is a unique population variance for each
of the distinct subsets of means. For the homogeneous case, the conventional analysis of
variance within-groups sum of squares, SSw, is converted to a variance estimate, SSw/N,
where N is the total sample size. For the restricted, heterogeneous variance case, an
estimated variance for a subset of means can be obtained (a) by pooling the estimates
from the separate groups or (b) by computing the sample variance for the combined
sample. The latter approach is illustrated in Dayton (1998) and is the procedure
incorporated into SUBSET. For any given model, AIC is given by the expression
–2Loge(likelihood) + 2p, where p is the number of independent parameters estimated in
calculating the likelihood for the observed data. Similarly, BIC is given by
–2Loge(likelihood) + Loge(N)p. For a model with T subsets of means, p equals T+1 for
the homogeneous case and 2T for the restricted heterogeneous case. For example, for the
ordered subset {1,2,34} the values of T are 4 and 6, respectively, for AIC and BIC. Since
Loge(N) > 2 for N > 7, AIC and BIC may, and often do, result in different orderings of
subsets of means with, predictably, simpler models being favored by BIC. In Dayton
(1998), results of a limited simulation with AIC and CAIC (the slightly different criterion
than BIC suggested by Bozdogan (1987) with penalty term Loge(N+1)p), it was found
that: “Overall…the accuracy of CAIC is always approximately equal to or superior to
Tukey HSD but tends to be lower than AIC when there are relatively many clusters of
means, especially with smaller sample sizes.” Accuracy, in this study, was stringently
defined in terms of all-pairs power following Ramsey (1978).

4 Application of Information Criteria to the Paired-Comparisons of
Proportions

A simple extension of the approach presented above for sample means allows the
identification of optimal subsets for data in the form of proportions. Consider K groups of
sizes n1,…,nK with sample proportions, p1,…,pK, respectively. Assuming independent
Bernoulli trials, the log-likelihood for the kth (ordered) sample outcome is nkpkLoge(pk) +
nk(1-pk)Loge(1 - pk) and the log-likelihood for all samples is found by summing across
the K groups. Note that the sample proportion, pk, is the MLE for the corresponding
population proportion and that omitting the combinatorial constant to take into account
unordered samples only omits a constant term from the log-likelihood. Unlike the
situation for sample means, there is no need to consider homogeneous and heterogeneous
cases since each Bernoulli process is based on a single parameter, πk, say.  Otherwise,



model selection can be based on the same reasoning as for sample means. That is, there is
a total of 2K-1 distinct patterns of subsets of proportions to evaluate. For each pattern, the
log-likelihood is converted to AIC by the formula –2Loge(likelihood) + 2p and to BIC by
the formula –2Loge(likelihood) + Loge(N)p, where p = T for a model with T subsets of
proportions.

5 Using the SUBSET Program

SUBSET is written in the microcomputer matrix programming language, Gauss for
Windows NT/95 Version 3.2.32 (Aptech Systems, 1997). SUBSET is run in interpretive
mode, which means that the Gauss system must be installed on the microcomputer.
However, extensive knowledge of Gauss syntax is not required to run the program. The
source code, SUBSET.E, as well as a compiled version, SUBSET.GCG, of the program
are available but note that the Gauss system is required to run either version. For general-
purpose analysis, there is no other program that computes AIC and/or BIC for the models
available in SUBSET. For a small number of groups (e.g., 5 or less), it is reasonably easy
to program the computations in a spreadsheet as was reported by Dayton (1998).

Data for analysis is imported into SUBSET from a spreadsheet or database
program. The import routine in the Gauss program determines the nature of the
spreadsheet/database from the file extension (e.g., file.XLS denotes a Microsoft Excel
file whereas file.DB2 denotes a dBase II file). The general format for the
spreadsheet/database file is:

Row 1, Columns A - D Labels such as Group, Count, Mean, and Variance

Rows 2,..,K+1 Column A Arbitrary group label

Rows 2,..,K+1 Column B Group sample size (n)

Rows 2,..,K+1 Column C Group sample mean {or sample proportion}

Rows 2,..,K+1 Column D Group sample variance (unbiased estimate using n -1 in
denominator); omit for case of proportions

It is conventional to code the groups with names, or 1, 2, etc., or A, B, etc. but
SUBSET rearranges the groups in rank order of means {proportions}, from smallest to
largest, and presents groups in ranked order, 1, 2, etc., in the output. Thus, in practice, it
is most convenient to order the means {proportions} in this same manner in the
spreadsheet/database prior to analysis. A sample data set for five groups clipped from a
Microsoft Excel spreadsheet is shown in the Exemplary Output section, below.

The Gauss program can import data from spreadsheet formats such as Microsoft
Excel, Lotus 123 or Quattro-Pro or from database programs such as dBase IV, Paradox or
FoxPro or from a Gauss dataset. There are restrictions on the nature of the spreadsheet or
database that can be imported. These restrictions can be found by referring to the
description of the Gauss “import” command in Gauss Help. For example, for GAUSS for
Windows NT/95 version 3.2.32 when using a Microsoft Excel spreadsheet, it must be



saved as version 7.0 or earlier (but no earlier than 2.1). In particular, spreadsheets created
by later versions of Excel such as that found in Office 97 cannot be directly imported but
must be saved as an earlier version (e.g., version 4.0). Actually, data can also be input
from a character-delimited ASCII file but this is typically less convenient than using, for
example, a spreadsheet.

To run the compiled version of SUBSET, follow these steps (assume
SUBSET.GCG is located in the directory C:\Program):

Open the Gauss program to the Command Window;
At the command line, (gauss), enter:  run c:\program\subset.gcg
The program prints the following queries:
Name of spreadsheet file? {provide a directory and file name (e.g.,

 c:\drink.xls)}

Range in spreadsheet? {provide the spreadsheet cell locations (e.g.,
 A1:D6 or A1..D6)}

Number of AIC/BIC values to display (5 is recommended)? {provide an
appropriate number}

Output is directed to the screen and to a default file named Subset.out in the
directory in which the Gauss system is started. The output file can be changed by editing
the appropriate line in the Gauss program. Note that only output from the current analysis
is saved to the file.

6 Exemplary Output

Example 1: Assume the data below in cells A1:D6 of an Excel 4.0 spreadsheet (note that
the groups have been sorted in ascending magnitude of means). The data are taken from
the SPSS/PC+ manual (Norusis, 1986). The dependent variable is annual consumption of
alcohol in pints by adult males as reported by Greeley et al. (1980) for the named ethnic
groups.

Group Count Mean Var(unbiased)
Jewish 41 9.250 467.641

Swedish 74 16.563 715.563
English 90 21.875 464.963

Irish 119 24.250 653.416
Italian 84 24.312 585.059

The input to SUBSET and the output generated by SUBSET are:

(gauss) run c:\program\subset.gcg
Default file for all printed output is Subset.out in the current directory
Program SUBSET for Ordered Subsets of Means or Proportions
Prepared by: C. Mitchell Dayton
Department of Measurement & Statistics



University of Maryland
E-Mail: CD4@UMAIL.UMD.EDU
Enter 1 for means or 2 for proportions ? 1
Number of AIC/BIC values to display (5 is recommended)  ? 5
Name of spreadsheet file? c:\drink.xls
Range in spreadsheet? a1:d6

************************************************************************
                          GAUSS Data Import Facility
************************************************************************

Begin import...
Import completed
Number of AIC/BIC values to display (5 is recommended)?  5

NOTE: Means have been sorted from smallest to largest

Sorted means are:
    9.250    16.563    21.875    24.250    24.312

Best models assuming Homogeneity of Variance

Smallest AIC values and ordered subsets:

  3764.900      1.000      2.000      3.000      3.000      3.000
  3765.319      1.000      1.000      2.000      2.000      2.000
  3766.249      1.000      2.000      2.000      3.000      3.000
  3766.284      1.000      2.000      3.000      4.000      4.000
  3766.703      1.000      1.000      2.000      3.000      3.000

Smallest BIC values and ordered subsets:

  3777.353      1.000      1.000      2.000      2.000      2.000
  3779.862      1.000      2.000      2.000      2.000      2.000
  3780.946      1.000      2.000      3.000      3.000      3.000
  3782.165      1.000      1.000      1.000      2.000      2.000
  3782.294      1.000      2.000      2.000      3.000      3.000

Best models assuming Heterogeneity of Variance

Smallest AIC values and ordered subsets:

  3766.260      1.000      2.000      3.000      3.000      3.000
  3766.919      1.000      1.000      2.000      2.000      2.000
  3766.983      1.000      2.000      3.000      4.000      4.000
  3767.643      1.000      1.000      2.000      3.000      3.000



  3768.408      1.000      2.000      2.000      2.000      2.000

Smallest BIC values and ordered subsets:

  3782.964      1.000      1.000      2.000      2.000      2.000
  3784.036      1.000      1.000      1.000      1.000      1.000
  3784.453      1.000      2.000      2.000      2.000      2.000
  3787.759      1.000      1.000      1.000      2.000      2.000
  3790.327      1.000      2.000      3.000      3.000      3.000
Execution time in seconds =            0.0600

Interpretation: For AIC, the first three homogeneous models have smaller values
than the best heterogeneous model and for BIC all five reported values for homogeneous
models have smaller values than for the heterogeneous models. Thus, we can focus on the
relatively simpler models that assume all populations have the same variance. Based on
AIC, the preferred model, 1,2,3,3,3, corresponds to the pattern {1,2,345}. That is, there
are three distinct subsets of means for population 1, population 2 and a combination of
populations 3, 4 and 5. However, BIC favors the somewhat simpler model {12,345}. In
terms of the group labels, based on AIC there are three distinct clusters with Jewish lower
than Swedish who are, in turn, lower than the cluster {English, Irish, Italian} that are
indistinguishable given the present data. Based on BIC, the {Jewish, Swedish} pair is
indistinguishable but is lower than the {English, Irish, Italian} cluster.

Example 2: The table below, clipped from an Excel 4.0 spreadsheet, contains fictional
proportion data for 6 groups:

Group Number Proportion
1 30 0.60
2 30 0.65
3 40 0.70
4 40 0.80
5 50 0.81
6 50 0.82

The input to SUBSET and the output generated by SUBSET are:

(gauss) run c:\program\subset.gcg
Default file for all printed output is Subset.out in the current directory
Program SUBSET for Ordered Subsets of Means or Proportions
Prepared by: C. Mitchell Dayton
Department of Measurement & Statistics
University of Maryland
E-Mail: CD4@UMAIL.UMD.EDU



Enter 1 for means or 2 for proportions ? 2
Number of AIC/BIC values to display (5 is recommended)  ? 5
Name of spreadsheet file?  c:\prop6.xls
Range in spreadsheet?  a1:c7

************************************************************************
                          GAUSS Data Import Facility
************************************************************************

Begin import...
Import completed

NOTE: Proportions have been sorted from smallest to largest

Sorted proportions are:
     0.600      0.650      0.700      0.800      0.810      0.820

Smallest AIC values and ordered subsets:

   268.711      1.000      1.000      1.000      2.000      2.000      2.000
   270.109      1.000      1.000      2.000      3.000      3.000      3.000
   270.144      1.000      2.000      2.000      3.000      3.000      3.000
   270.251      1.000      1.000      2.000      2.000      2.000      2.000
   270.667      1.000      1.000      1.000      2.000      2.000      3.000

Smallest BIC values and ordered subsets:

   275.673      1.000      1.000      1.000      2.000      2.000      2.000
   277.212      1.000      1.000      2.000      2.000      2.000      2.000
   277.577      1.000      1.000      1.000      1.000      1.000      1.000
   278.620      1.000      1.000      1.000      1.000      2.000      2.000
   279.517      1.000      2.000      2.000      2.000      2.000      2.000
Execution time in seconds =        0.050
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