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Abstract

The spectral representation of stationary Gaussian processes via the Fourier basis
provides a computationally efficient specification of spatial surfaces and nonparametric
regression functions for use in various statistical models. I describe the representation
in detail and introduce the spectralGP package in R for computations. Because of the
large number of basis coefficients, some form of shrinkage is necessary; I focus on a nat-
ural Bayesian approach via a particular parameterized prior structure that approximates
stationary Gaussian processes on a regular grid. I review several models from the litera-
ture for data that do not lie on a grid, suggest a simple model modification, and provide
example code demonstrating MCMC sampling using the spectralGP package. I describe
reasons that mixing can be slow in certain situations and provide some suggestions for
MCMC techniques to improve mixing, also with example code, and some general recom-
mendations grounded in experience.

Keywords: Bayesian statistics, Fourier basis, FFT, geostatistics, generalized linear mixed
model, generalized additive model, Markov chain Monte Carlo, spatial statistics, spectral
representation.

1. Introduction

Smoothing in the context of spatial modeling and nonparametric regression, often in an ad-
ditive modelling scenario such as a generalized linear mixed model (GLMM) or generalized
additive model (GAM), is a common technique in applied statistical work. A basic general
model is

Yi ∼ F(f(xi, si), κ)
h(f(xi, si)) = x>i β + g(si;θ), (1)
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2 Bayesian Smoothing Using Fourier Basis Functions

where Yi, i = 1, . . . n, is the ith outcome, F is commonly an exponential family distribution,
κ is a dispersion parameter, h(·) is the link function, xi is a vector of covariates for the ith
observation, and g(si;θ) is a smooth function, parameterized by θ, evaluated at the location
or covariate value of the ith observation, si, depending on whether the smooth function is
in the spatial domain or covariate space. In this work I focus on settings in which g(·;θ)
is a spatial surface, but results hold generally for one dimension and potentially for higher
dimensions.

There have been two basic approaches to modelling the smooth function, g(·;θ), each with a
variety of parameterizations. One approach considers the function as deterministic within a
generalized additive model (GAM) framework (Hastie and Tibshirani 1990; Wood 2006), for
example, using a thin plate spline or radial basis function representation with the function
estimated via a penalized approach. The other takes a random effects, or equivalent stochas-
tic process, approach in which the smooth function is treated stochastically, potentially via a
Bayesian approach. Within this latter approach, one might consider a collection of correlated
random effects, in which case (1) is a generalized linear mixed model (GLMM) (McCulloch
and Searle 2001; Ruppert, Wand, and Carroll 2003). Alternatively, stochastic process repre-
sentations such as kriging (Cressie 1993) or Bayesian versions of kriging (Banerjee, Carlin,
and Gelfand 2004) usually take g(·;θ) to be a Gaussian process. The random effects approach
can also be considered as a stochastic process representation based on the implied covariance
function of the process induced by the covariance structure of the random effects. Note that
by considering a prior over functions or equivalently over the coefficients of basis functions,
the additive model can be expressed in a Bayesian fashion, and there are connections be-
tween the thin plate spline and stochastic process approaches (Cressie 1993; Nychka 2000)
and also between thin plate splines and mixed model representations (Ruppert et al. 2003).
When interest lies in the linear coefficients and the smooth structure/spatial covariance is a
nuisance, one approach to fitting such models is via estimating equations (e.g. Heagerty and
Lele 1998; Heagerty and Lumley 2000; Oman, Landsman, Carmel, and Kadmon 2007). My
primary interest is in situations in which the smooth function is the outcome of interest, for
example, in predicting exposure to pollutants or spatial surfaces of climate variables, in which
case such methods are not useful.

While models of the form (1) have a simple structure, unless the responses are Gaussian and
the sample size is limited, fitting them can be difficult for computational reasons. If the
response were Gaussian, there are many methods, both classical and Bayesian, for estimating
β, g(·;θ), and θ. Most methods rely on integrating g(·;θ) out of the model to produce
a marginal likelihood or posterior, thereby moving the smooth structure out of the mean
and into the variance, such that the observations have a simple, mean structure, (in (1)
this is linear in a set of covariates), and a variance that is a sum of independent noise and
spatially correlated structure. This leaves a small number of parameters to be estimated,
often using numerical maximization or MCMC. However, for large n, computations can be
burdensome as they involve matrix calculations of O(n3). In the non-Gaussian case and
in hierarchical modeling in which the unknown process lies in the hierarchy of the model,
this integration cannot be done analytically, which leads to substantial difficulty in fitting
the model because of the high dimensional quantities that need to be estimated, as well
as burdensome matrix calculations. One set of approaches to the problem focuses on the
integral in the GLMM framework, using EM (McCulloch 1994, 1997; Booth and Hobert
1999) and numerical integration (Hedeker and Gibbons 1994; Gibbons and Hedeker 1997) to
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maximize the likelihood or approximating the integral to produce a penalized quasi-likelihood
that can be maximized by iteratively weighted least squares (IWLS) (Ruppert et al. 2003).
Likelihood and covariance approximations can reduce the computational complexity of the
matrix calculations (Stein, Chi, and Welty 2004; Furrer, Genton, and Nychka 2006), while
the gam() function in the mgcv package in R uses the reduced rank thin plate spline approach
of Wood (2004) fit by penalized IWLS. Rue and Tjelmeland (2002) exploit computationally
efficient methods for fitting Markov random field (MRF) models by approximating stationary
GPs using MRFs.

An alternative is to fit a Bayesian version of the model using a computationally efficient basis.
The approach introduced by Wikle (2002) approximates a stationary GP structure for g(·;θ)
using a spectral representation to decompose the function in an orthogonal basis, in particu-
lar using Fourier basis functions and employing the FFT for fast computation (Wikle 2002;
Royle and Wikle 2005; Paciorek 2007). While the Fourier basis approach has some adherents
and is one of the few efficient alternatives within the Bayesian paradigm, the intricacies and
bookkeeping involved in working with the complex-valued basis coefficients make it hard to
simply apply the methodology and replicate results. My goal here is to present the repre-
sentation in detail (Section 2), and provide an R (R Development Core Team 2006) package,
spectralGP, (freely available from CRAN, http://CRAN.R-project.org/) for working with
the representation that handles the bookkeeping and sampling of coefficients for use within
Markov chain Monte Carlo (MCMC) (Section 3). I describe several parameterizations for
exponential family data (Section 4), and discuss detailed MCMC implementation and mixing
issues that arise in fitting models, as well as general recommendations on parameterizations
and sampling techniques (Section 5). I note that my experience shows slower mixing than
one would desire; advances in this area are an open area for research.

2. Fourier basis representation

To simplify the notation I use gs to denote the vector of values calculated by evaluating g(·) for
each of the elements of s (e.g., for each observation location), namely gs = (g(s1), . . . , g(sn))>,
suppressing the dependence on hyperparameters. Also, where necessary, I denote a set of
unspecified parameters as θ. Proposal values are denoted with a ∗, e.g., θ∗, and vectors of
augmented quantities with a tilde, e.g., Ỹ .

2.1. Basic process model

In many Bayesian models, the unknown function, be it a spatial surface or regression function,
is a represented as a Gaussian process or by a basis function representation. Diggle, Tawn,
and Moyeed (1998) formalized the idea of generalized geostatistical models, with a latent
Gaussian spatial process, as the natural extension of kriging models to exponential family
responses. They used Bayesian estimation, suggesting a Metropolis-Hastings implementation,
with the spatial function sampled sequentially at each observation location at each MCMC
iteration. However, as shown in their examples and discussed elsewhere (Christensen, Møller,
and Waagepetersen 2000; Christensen and Waagepetersen 2002; Christensen, Roberts, and
Sköld 2006), this implementation is slow to converge and mix, as well as being computationally
inefficient because of the covariance matrix involved in calculating the prior for gs.

An alternative approach that avoids large matrix calculations is to express the unknown
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function in a basis, gs = Ψu, where Ψ contains the basis function values evaluated at the
locations of interest, and estimate the basis coefficients, u. These coefficients are taken to have
a prior distribution; constraints on the function, such as degrees of smoothness, are imposed
through this prior distribution and the basis choice. When the coefficients are normally
distributed, this representation can be viewed as a GP evaluated at a finite set of locations,
with Cov(gs) = ΨCov(u)Ψ>.

Isotropic GPs can be represented in an approximate fashion using their spectral representation
as a Fourier basis expansion, which allows one to use the Fast Fourier Transform (FFT) to
speed calculations. Here I describe the basic model in two-dimensional space, following Wikle
(2002).

The key to the spectral approach is to approximate the function g(·) on a grid, s#, of size
M = M1×M2, where M1 and M2 are powers of two. Evaluated at the grid points, the vector
of function values is represented as

gs# = Ψu, (2)

where Ψ is a matrix of orthogonal spectral basis functions, and u is a vector of complex-valued
basis coefficients, um = am + bmi, m = 1, . . . ,M . The spectral basis functions are complex
exponential functions, i.e., sinusoidal functions of particular frequencies; constraints on the
coefficients ensure that gs# is real-valued and can be expressed equivalently as a sum of sine
and cosine functions. The basis functions represented in the basis matrix, Ψ, capture behavior
at different frequencies, with the most important basis functions for function estimation being
the low-frequency basis functions. To approximate mean zero stationary, isotropic GPs, the
basis coefficients have the prior distribution,(

a
b

)
∼ N (0,Σθ) (3)

where the diagonal (asymptotically; see Shumway and Stoffer (2000, Section T3.12)) covari-
ance matrix of the basis coefficients, Σθ, parameterized by θ, can be expressed in closed form
(for certain covariance functions) using the spectral density of the covariance function desired
to parameterize the approximated GP.

To make this more explicit, consider the Matérn covariance popular in spatial statistics,

C(τ ; ρ, ν) = σ2 1
Γ(ν)2ν−1

(
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ρ
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(
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)
, (4)

where τ is distance, σ2 is the variance of the process, ρ is the range (correlation decay)
parameter, and Kν(·) is the modified Bessel function of the second kind, whose order is the
differentiability parameter, ν > 0. This covariance function has the desirable property that
sample functions of GPs parameterized with the covariance are bν − 1c times differentiable.
As ν →∞, the Matérn approaches the squared exponential form, with infinitely many sample
path derivatives, while for ν = 0.5, the Matérn takes the exponential form with no sample
path derivatives.

The spectral density of this covariance, which is used to calculate the elements of Σθ, evaluated
at spectral frequency, ω, is

φ(ω; ρ, ν) = σ2 Γ(ν + D
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where D is the dimension of the space (two in this case) and the parameters are as above.
For an appropriate set of spectral frequencies, the diagonal elements of Σθ are the values of
φ(·; ρ, ν) at those frequencies, and the off-diagonals are zero.

To construct real-valued processes with the approximate GP distribution based on the complex-
valued coefficients given above, some detailed bookkeeping and constraints are required. These
details are provided in the Appendix A.1, while details on accounting for the periodicity of
the Fourier domain appear in Appendix A.2.

2.2. Computations and statistical modeling of observations

The process at the observation locations is calculated through an incidence matrix, K, which
maps each observation location to the nearest grid location in Euclidean space,

gs = Kgs# = KΨu. (6)

For a fine grid, the error induced in associating observations with grid locations should be
negligible and the piecewise constant representation of the surface tolerable. This approach
amounts to binning the data, with square bins defined by the grid points. An extension would
be to do local interpolation between the grid points to define the process values at the data
locations, but I do not pursue that here. The computational efficiency comes in the fact that
the matrix Ψ, which is M ×M , need never be explicitly formed, and the operation Ψu is the
inverse FFT, and so can be done very efficiently (O (M log2(M))). In addition, evaluating the
prior for u is fast because the coefficients are independent a priori. This stands in contrast to
the standard MCMC setup for GP models, in which the prior on gs involves an n×n matrix
and therefore O(n3) operations. Of course the gridding could be done without the Fourier
basis approach, but this would only reduce the computations to O

(
(M/2D)3

)
(the division

by 2D occurs because the padding of Appendix A.2 would not be required). Note that with
the gridded approach, the number of observations affects the calculations only through the
likelihood, which scales as O(n), because the observations are independent conditional on gs.
The complexity of the underlying surface determines the computational efficiency by defining
how large M should be; simple surfaces can be estimated very efficiently even if n is large.

3. R spectralGP package

The spectralGP package for R provides an object-oriented representation of the Fourier basis
approach to computation with GPs. The primary purpose of the package is to handle the
bookkeeping details, allowing one to easily simulate and plot processes and sample the Fourier
basis coefficients within an MCMC. This allows developers to write code to fit models in which
a Gaussian process is a component, easily drawing MCMC samples of the coefficients of the
process, as described in Section 3.3. Also note that C. Wikle has released Matlab code for the
Fourier basis computations on his website (http://www.stat.missouri.edu/~wikle/).

3.1. Description of the package

The key functions in spectralGP are a constructor function, gp(), that creates a gp ob-
ject, and a number of S3 methods: two MCMC sampling methods for the coefficients,
Gibbs.sample.coeff.gp() and propose.coeff.gp(); a method for calculating the proposal

http://www.stat.missouri.edu/~wikle/
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density of the current coefficients for use in Metropolis-Hastings sampling, Hastings.coeff.gp();
a method for simulating GPs, simulate.gp(); a method for changing the GP hyperparameter
values, change.param.gp(); calculation of the logdensity of the coefficients, logdensity.gp();
and prediction and plotting methods. The function updateprocess.gp() updates the process
values based on the current values of the coefficients, while calc.variances.gp() calculates
the coefficient variances given the current covariance/spectral density parameters. These lat-
ter two functions are generally intended for internal use, but the template code in Appendix
B makes use of updateprocess.gp() after changing the coefficient values during a partic-
ular type of MCMC step. Auxiliary functions allow for copying, copy.gp(); determining
the basic grid used, getgrid.gp(); and extracting the object element names, names.gp().
Several functions deal with conversion between coordinate systems: a simplistic lon/lat to
Euclidean x/y projection, lonlat2xy(); mapping a Euclidean domain to (0, 1)D, xy2unit();
and mapping locations in the domain to the closest grid points, new.mapping(). Several
auxiliary functions are borrowed from the fields package, namely rdist.earth() as well as
image.plot() and its auxiliary functions, image.plot.info() and image.plot.plt().

I have used native R code for the entire package both for simplicity and because the essential
computations within the package are already compiled code, namely the functions, fft(),
rnorm(), and dnorm().

spectralGP includes only the spectral density function for the Matérn covariance (and thereby
the special case of the exponential covariance) but is easily extendible by writing user-defined
spectral density functions that can be used in the constructor function for a creating a new
process, gp().

Some additional intricacies included in the package are mentioned parenthetically in Sections
4 and 5 and in Appendix A. Note that in the package, the process is scaled by 1/

√
M1M2, as

described in Section 4.1, relative to the exact process values (21).

3.2. Using environments as objects to allow pass-by-reference

Since a gp object will be used repeatedly during MCMC sampling, I chose to use a pass-
by-reference scheme in the coding, using R environments to mimic object-orientation in tra-
ditional languages, as suggested by E.A. Houseman. In this way, one can operate on a gp
object and change internal elements without having to pass the entire object back from the
method function and thereby create a new copy of the gp object or overwrite the old copy
by assigning the output to the same name. This is possible because unlike other R objects,
environments are not copied when passed to functions. Each instantiation of a gp object is an
environment, initialized with a call to new.env() and assigned the class “gp”. The elements of
the object, e.g., myFun here, are local variables within the environment, accessed via list-like
syntax, e.g., myFun$process. S3 methods are used to operate on the gp objects, with the dif-
ference from standard R that global changes can be made to the elements of an object within
the method by virtue of those elements residing within an environment. For example, the
call, simulate.gp(myFun), samples new coefficients and updates the process based on those
coefficients without having to pass myFun back to the calling environment, yet the changes
to myFun are effective in the calling environment. Also note that care must be taken when
assigning gp objects because environments are not copied when used in assignments; I have
created an explicit copy.gp() function to make a new copy of a gp object; assignment merely
creates an additional name (i.e., pointer) referencing the existing object, so any changes to
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the original gp object also occur within the ’new’ object, which just references the original
object. I chose not to use S4 methods because my understanding is that their implementation
is still somewhat slow and spectralGP works with large objects and substantial computation.

This use of R environments as objects that can be passed by reference is not a standard
approach in R, which uses a pass-by-value system. As a result, the package can be nonintuitive
to the user, producing changes in the objects as a side effect of the call to a method function,
and then returning a null value. However, I believe this is a feature of the approach that
is more natural for setting up MCMC sampling, rather than a drawback. There is a single
copy of each parameter object that is changed during a sampling step instead of passing
back a new copy of the changed object to the calling environment. Unlike most cases in
R in which an object is created and then used as an input for additional work but is not
modified subsequently (such as use of lm(), following by summary() and plot()), in the
MCMC sampling setting, a parameter object needs to be modified repeatedly. It is more
natural to pass by reference in this context.

3.3. Using and extending the package

A basic use of the package is to simulate and plot GPs. After setting up the gp object, one
can simulate a realization and plot an image of the realization as follows:

myFun=gp(c(256,256),matern.specdens,c(0.3,2))
simulate(myFun)
plot(myFun)

This is computationally efficient because of the use of the FFT. The constructor function is

gp(gridsize,specdens,specdens.param,variance.param,const.fixed=FALSE)

The argument gridsize is a scalar for processes on <1 or vector of length two for processes
on <2. If gridsize=c(M1,M2), then the effective grid is M1/2 + 1 by M2/2 + 1, after ac-
counting for periodicity of the Fourier basis, as discussed in Appendix A.2. Note that if
M1 6= M2, the scaling in the two dimensions is different, which produces an anisotropic pro-
cess. The argument, specdens, is a spectral density function; currently only a Matérn func-
tion, matern.specdens(), with the exponential as a special case, is implemented but users
can write their own. The argument, specdens.param, is a scalar or vector of parameters re-
quired by specdens; in the Matérn case the first value is the spatial range parameter, ρ, and
the second the smoothness or differentiability parameter, ν. The argument, variance.param,
is the spatial process variance, σ2, while const.fixed=TRUE indicates whether the first ba-
sis coefficient, u0,0, should be fixed to be zero, which eliminates a non-identifiability in the
MCMC when a separate mean, µ, is included in the model (Appendix A.3); for simulation
of realizations one should use const.fixed=FALSE to preserve the approximate specified co-
variance for the GP realizations. The plot.gp() method uses arguments similar to those in
image while the only argument to simulate.gp() is the gp object itself. While fast simula-
tion of GPs on a discrete grid may be of interest, the primary use of the package is to ease
the sampling of the coefficients via MCMC in a Bayesian model context, as follows.

The simplest approach is to sample the coefficients in blocks grouped by basis function fre-
quency, with the code
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propose.coeff(object,block,proposal.sd)

where block specifies the block to be sampled (the blocks are created with add.blocks.gp()
and using block=0 proposes all of the coefficients at once) and proposal.sd is the user-
tunable Metropolis-Hastings proposal standard deviation. The user then needs to write code
to accept or reject the proposal by calculating the probability density of any model quantities
that depend on the process values (extracted using predict.gp()) and the prior density of
the coefficients using logdensity.gp(). predict.gp() by default makes predictions on the
effective grid of size M1/2 + 1 by M2/2 + 1, but can take the argument newdata as a ma-
trix of prediction locations or the argument mapping as a set of indices indicating the grid
cells whose values should be extracted. The set of indices can be created using the method
new.mapping(object,locations), where locations is a two-column matrix of location co-
ordinates. More details on this approach are given in Section 4.3, and Appendix B provides
template code illustrating this usage.

In certain models, the coefficients can be sampled by a Gibbs sampling step from their exact
conditional distribution. The following conditional distribution for the coefficients,

u|· ∼ N
(

V
s

σ2
e

Ψ>(z −m1),V
)

V =

(
s2

σ2
e

I + Σθ
−1

)−1

, (7)

arises when the coefficients have prior distribution, u ∼ N (0,Σθ) as in (3) and the gridded
data or latent process values whose distribution depends on the GP have the distribution,
z ∼ N (m1 + sΨ>(z −m1), σ2

eI). Here m is a mean term, s is a standard deviation term,
and σ2

e is a residual variance term. Section 4 shows how this conditional distribution arises
in several model structures for non-gridded data. Sampling is done with the code

Gibbs.sample.coeff(object,z,sig2e,meanVal,sdVal,returnHastings=FALSE)

where the mapping of the method arguments to the parameters above should be clear. Note
that the prior variance structure of the coefficients, Σθ, is already part of the gp object. One
can also sample coefficients from the distribution (7) even if it is not the exact conditional
distribution and base acceptance on the Metropolis-Hastings algorithm. One can calculate
the log proposal density, π(u|·), using

Hastings.coeff.gp(object,z,sig2e,meanVal,sdVal)

or as the return value of Gibbs.sample.coeff() with the argument returnHastings=TRUE.
To calculate the ratio of proposal densities for the Metropolis-Hastings algorithm, one would
first calculate the log proposal density of the current (original) coefficients as the output,
oldDensity, from

oldDensity=Hastings.coeff.gp(object,z,sig2e,meanVal,sdVal)

Then, possibly after changing hyperparameter values as part of a joint proposal of hyperpa-
rameters and coefficients (Section 5.2) one makes the proposal, u∗, using
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newDensity=Gibbs.sample.coeff(object,z,sig2e,meanVal,sdVal,returnHastings=TRUE)

which assigns the log proposal density of the proposed coefficients to newDensity. The dif-
ference of oldDensity and newDensity is then used as part of the Metropolis-Hastings ac-
ceptance decision.
Together these functions allow a developer to easily sample the coefficients within the context
of a larger model without worrying about the bookkeeping and technical details of the Fourier
basis representation. In Appendix B I provide R template code for various forms (Section 4)
of the simple model (1) for data from an exponential family distribution: normal, Poisson,
or binomial. The code assumes a constant mean, µ, in place of x>i β, and Matérn covariance
function with ν fixed. While this is a simple setting, users could take the template code
and use it within a more complicated hiearchical model or easily extend to a regression
structure in the mean. For example, Paciorek and McLachlan (2007) use a set of gp objects
to represent compositional data in a spatial setting with a complicated multinomial-Dirichlet
likelihood based on a transformation of the GPs, making use of the block sampling approach.
The template code includes code for joint sampling of covariance parameters and process
coefficients, which I discuss in Section 5.2 as a way to improve mixing. Developers could
build on the template code to include this type of sampling in their own models.

4. Basic MCMC sampling schemes for coefficients

In this section, I describe several parameterizations for simple Bayesian exponential family
models with associated MCMC sampling schemes for the Fourier basis coefficients. Bayesian
estimation of unknown processes in this framework relies on shrinkage to estimate the large
number of coefficients; coefficients of low-frequency basis functions are strongly informed
by the data while those of high-frequency basis functions are shrunk strongly toward their
prior distributions. These following basic parameterizations can also be used with relatively
straightforward modifications in more complicated hierarchical models, although the added
complexity may make the simple blocked sampling scheme (Section 4.3) the most feasible
approach in that case. Note that for simplicity I consider a scalar mean parameter, µ, but
this could be replaced by a regression term, e.g., Xiβ, or other additive components. Also, for
more compact notation, I suppress the dependence of Σθ on the covariance/spectral density
parameters, θ.

4.1. Data augmentation Gibbs sampling for normal data

For Gaussian data with mean function based on the latent process, g(·), a missing data scheme
allows for Gibbs sampling of the coefficients. This is a simplification of the Gibbs sampling
scheme of Wikle (2002), which is described in Section 4.2.
Take the data model to be

Y ∼ Nn(µ1 + γKΨu, η2I), (8)

where µ is the process mean and γ is the process standard deviation with σ2 in (4-5) set to
one. Since the prior for the coefficients is normal, we have conjugacy, and the conditional
distribution for u is

u|y, · ∼ NM

(
V
γ

η2
(KΨ)>(y − µ1),V

)
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V =

(
γ2

η2
Ψ>K>KΨ + Σ−1

)−1

. (9)

The sample of u represents precision-weighted shrinkage of the data-driven estimates of the
coefficients towards their prior mean of zero.

However, this sampling scheme requires calculation of Ψ>K>KΨ, which is not feasible for
large number of grid points; note that if K were the identity of dimension M , since Ψ is an
orthogonal matrix, this simplifies to

V =

(
γ2

η2
I + Σ−1

)−1

, (10)

which because Σ is diagonal, is easy to calculate. Assuming no more than one observation per
grid cell, K = I can be achieved using a missing data scheme by introducing latent pseudo-
observations for all grid cells without any associated data, including grid cells in which no data
can possibly fall because of padding to account for periodicity (Appendix A.2). Collecting
these pseudo-observations into a vector, Ỹ , they can be sampled within the MCMC using a
Gibbs step as

Ỹ ∼ NM−n(µ1 + γK̃Ψu, η2I), (11)

where the K̃ matrix picks out grid cells with no associated data. With this augmentation, Y
in (8-9) is a vector of values on the full grid, Y = (Y obs, Ỹ ), combining actual observations
with pseudo-observations, and K = I.

The coefficients can be sampled under this approach (9-10) using

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is Y , sig2e is η2, meanVal is µ, and sdVal is γ. Note that this straightforward
expression conceals some details required in working with the complex-valued coefficients. In
calculating (γ2/η2 + (Σ−1)ii), one needs to multiple γ2/η2 by one-half for all the elements
corresponding to complex-valued coefficients to ensure that the scaling is correct as described
in Appendix A.1. Also, the operation Ψ>(y−µ1) is the FFT and the correct scaling needs to
occur so the result is on the scale of the coefficients. In R, I specify the coefficient variances
as M1M2φ(ω;θ) and update the process as Ψu/

√
M1M2. If I then divide Ψ>(y − µ1) by√

M1M2 when sampling the coefficients (9-10), the desired approximate covariance structure
for the process is preserved, namely Ψu

·∼ NM (0,Cθ), where the matrix, Cθ is defined
by Cθ,ij = C(‖ si − sj ‖;θ) and C(·;θ) is the covariance function whose spectral density
defines φ(·;θ), e.g., (5). The exact algorithm is given in the Gibbs.sample.coeff.gp()
function in the spectralGP package. In Appendix B I provide template code for fitting this
parameterization, denoted as Code A.

If there is more than one observation per grid cell, some possible solutions are to use a
finer grid or to take y(sj) = ȳj , namely the average of the observations in the grid cell.
Ideally, one would set η2

j = η2/nj , but this would require calculation of Ψ>η−1Ψ, where
η = diag((η2

1, . . . , η
2
M )), which is computationally infeasible. Instead, I suggest using constant

η2 so long as there are relatively few locations with multiple observations per grid cell. One
could also use more extensive data augmentation to supplement the existing observations such
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that there are nj pseudo plus true observations per grid cell, with nj equal to the maximum
number of true observations in a cell over all of the grid cells.
Wikle (2002) recommends the uncentered (sensu Gelfand, Sahu, and Carlin 1996) parameter-
ization for the process variance (8), with γ allowed to vary and σ2 ≡ 1 in defining the variance
of the coefficients (5). He notes that moving the parameter closer to the data improves mixing
and helps avoid dependence with ρ. Note that I follow this approach in some cases, while in
others, I allow σ2 to vary and fix γ ≡ 1. In the spectralGP package, a value of σ2 not equal
to one is specified with the variance.param argument to gp() and the new.variance.param
argument to change.param.gp().
For non-normal data from the exponential family, Yi ∼ F(h−1(fi)), where fi = µ+ γKiΨu,
one might use a Metropolis-Hastings version of this Gibbs sampling scheme, again with data
augmentation, making use of the linearized observations and working variances used in fitting
GLMs in place of y and η2 in (9-10). As above, one would need to use a single homoscedastic
value for η2. I do not pursue this approach for non-normal data further, as I had little success
in tuning the proposals to achieve reasonable acceptance, but further research in this area
may be worthwhile.
One approach to speeding mixing in the case of normal data is to jointly sample η2 and Ỹ by
first proposing η2∗ and then, within the same proposal, sampling from [Ỹ |η2∗, ·] via a Gibbs
sample, conditional on the proposed value, η2∗. Because this joint sample is not from the
joint full conditional [Ỹ , η2|·], we need to use Metropolis-Hastings in determining acceptance
based on the ratio of the prior for η2 and likelihood, π(η2∗)L(Y obs|η2∗, ·)/(π(η2)L(Y obs|η2, ·)),
where Y obs is the actual data. Acceptance does not depend on the value of the augmented
observations, Ỹ . So one can propose η2, decide on acceptance based on the likelihood of the
true observations, and then, if accepted, do a Gibbs sample for Ỹ (11). We have effectively
integrated Ỹ out of the joint conditional density, π(η2, Ỹ |yobs, ·), thereby sampling η2 without
dependence on Ỹ (Rue and Held 2005, pp. 141-143). In the iterations, one may also wish to
do a separate Gibbs sample for Ỹ alone, apart from the joint sample with η2. Template code
A in Appendix B also includes modifications for this sampling approach.

4.2. Latent layer Gibbs sampling for exponential family data

Parameterizing with two latent layers (the Wikle parameterization)

For non-normal data, rather than losing the Gibbs sampling structure for the coefficients,
Wikle (2002) and Royle and Wikle (2005) embed the spectral basis representation in a hi-
erarchical model with additional latent processes and associated variance components. This
approach allows one to do Gibbs sampling in various generalized models in which exponential
family outcomes are related to a latent spatial process in the mean structure (1).
To take a concrete example, the model for Poisson data is

Yi ∼ P(exp(λi))
λi ∼ N (µ+ γKiz, η

2)
z ∼ NM (Ψu, σ2

zI), (12)

where Ψu is the Fourier basis representation with the prior structure (3). One can easily
modify the likelihood and link for other exponential family distributions. The model intro-
duces two variance components, η2 and σ2

z , corresponding to two latent processes, one, λ,
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defined only at the observation locations, and the second, z, defined for each of the grid cells,
including those in which no data can fall, as discussed in Appendix A.2. Note that the vari-
ance components account for overdispersion. In Section 5.1, I discuss issues that arise when
the data are not overdispersed.

Wikle (2002) suggests a Metropolis-Hastings proposal for λ, with conjugate normal Gibbs
sampling for z and u:

z|λ, · ∼ NM

(
V z

(
γ

η2
K>(λ− µ1) + σ−2

z Ψu

)
,Vz

)

Vz =

(
γ2

η2
K>K + σ−2

z I

)−1

u|z, · ∼ NM

(
Vu

Ψ>z

σ2
z

,Vu

)
Vu = (σ−2

z I + Σ−1)−1 (13)

Similar calculations to those in the previous section are needed in the Gibbs sampling for
u to account for the complex-valued coefficients and to scale the proposal correctly. In the
spectralGP package, u is sampled using

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is z, sig2e is σ2
z , meanVal is 0, and sdVal is 1. Template code is given in Appendix

B as Code B.

Note that sampling can require long chain lengths; Royle and Wikle (2005) used eight chains
of length 520,000, retaining every 50th iteration, which suggest slow mixing of the sort I have
experienced as well.

A simplified parameterization with a single latent layer (modified Wikle parameteriza-
tion)

I propose a modification of the model above to eliminate one of the latent layers, thereby
moving the coefficients closer to the data in the hierarchy and eliminating z and σ2

z , which
can be difficult to interpret and may not informed by the data (see Section 5.1). The simplified
model for Poisson data is

Yi ∼ P(exp(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I) (14)

where the ith row of K maps the observation to the grid cell in which it falls. One can easily
modify the likelihood and link for other exponential family distributions. Here η2 accounts for
overdispersion. Inference about the unknown smooth function should be based on µ1 + γΨu
rather than λ, as simulations indicate that inference based on λ has larger posterior variances
and is overly conservative for the unknown mean function because λ includes heterogeneity
from overdispersion.

One can use Gibbs sampling for the values of λ corresponding to the J grid cells with no
observations, denoted λ̃, and for u:
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λ̃|u, · ∼ NJ

(
µ1 + γK̃Ψu, η2I

)
u|λ, · ∼ NM

(
V u

γ

η2
Ψ>(λ− µ1),Vu

)

Vu =

(
γ2

η2
I + Σ−1

)−1

. (15)

Again, u can be sampled with

Gibbs.sample.coeff.gp(object,z,sig2e,meanVal,sdVal)

where z is λ, sig2e is η2, meanVal is µ, and sdVal is γ. For the elements of λ corresponding to
grid cells in which observations fall, λobs, I suggest Metropolis proposals, done individually for
each individual element, but computed in an efficient vectorized fashion in R. Some intuition
for how the information from the data diffuses to the level of the basis coefficients is that the
latent layer, λ, allows for some fluidity between the process values and the data: individual
sampling of λobs for individual grid cells allows the latent layer to accomodate the data based
on adjustments to λobs at individual locations, while the Gibbs sample of u translates these
adjustments to the coefficients. A single joint sample for the elements of λobs would likely
have slower mixing as it would be trying to sample many grid locations at once, with a single
acceptance decision, thereby slowing local adjustments. Template code C is given in Appendix
B.

In similar fashion to joint sampling of (η2, Ỹ ) in Section 4.1, with the parameterization
above, one can improve mixing by jointly sampling η2 and λ̃. First propose η2∗ and then,
within the same proposal, sample from [λ̃|η2∗, ·]. Because this joint sample is not from the
joint conditional of (η2, λ̃), we need a Metropolis-Hastings acceptance decision based on the
ratio of the prior for η2 and likelihood, π(η2∗)L(Y |η2∗,λobs, ·)/(π(η2)L(Y |η2,λobs, ·)), with
acceptance not depending on the value for the augmented locations, λ̃, thereby effectively
integrating λ̃ out of the joint conditional density, π(η2, λ̃|λobs,y, ·). So in practice one can
propose η2∗, decide on acceptance, and then, if accepted, do a Gibbs sample for λ̃ (15). In
the iterations, one may also wish to do a separate Gibbs sample for λ̃ alone. Template code
C in Appendix B also includes modifications for joint sampling of (η2, λ̃).

4.3. Blocked Metropolis sampling for exponential family data (simple pa-
rameterization)

An alternative to Gibbs sampling that avoids the use of the additional hierarchical layers
and variance components in Section 4.2 is a simple model with straightforward Metropolis
sampling for the coefficients described in Paciorek (2007). This approach has the advantage
of tying the coefficients to the data by involving the coefficients directly in the likelihood,
without intervening layers. For data that are not overdispersed, the simple model avoids
introducing the overdispersion parameter(s), η2 (and σ2

z).

The basic approach is to specify the obvious parameterization in which the data are directly
dependent on the latent spatial surface, which for Poisson data is

Yi ∼ P(exp(µ+ γKiΨu)). (16)
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I suggest sampling the coefficients in a blocked Metropolis scheme, with blocks of coefficients
whose corresponding frequencies have similar magnitudes (Paciorek 2007). I use smaller
blocks for the low-frequency coefficients, thereby allowing these critical coefficients to move
more quickly. The high-frequency coefficients have little effect on the function and are pro-
posed in large blocks. The first block is the scalar, u0,0, corresponding to the frequency
pair, (ω1

0, ω
2
0) = (0, 0) (but note that in Appendix A.3 I suggest not sampling this coeffi-

cient because of lack of identifiability with respect to µ). The remaining blocks are spec-
ified so that the block size increases as the frequencies increase. For example, the next
block might include the coefficients whose largest magnitude frequencies are at most one,
i.e., um1,m2 s.t.max{|ω1

m1
|, |ω2

m2
|} ≤ 1, but excluding the previous block, giving the block

of coefficients, {u0,1, u1,0, u1,1, uM1−1,1}. Recall that there are additional coefficients whose
largest magnitude frequencies are at most one, e.g., uM1−1,0 and uM1−1,M2−1, but these are
complex conjugates of the sampled coefficients. The next block might be the coefficients
whose largest magnitude frequencies are at most two, i.e., um1,m2 s.t.max{|ω1

m1
|, |ω2

m2
|} ≤ 2,

but excluding the previous block elements. The real and imaginary components of the co-
efficients in each block are proposed jointly, Metropolis-style, from a multivariate normal
distribution with independent elements whose means are the current values. Since the coef-
ficients have widely-varying scales, I take the proposal variance for each coefficient to be
the product of a tuneable multiplier (one for each block, the proposal.sd argument to
propose.coeff.gp()) and the prior variance of the coefficient, which puts the proposal
on the proper scale. In the add.blocks.gp() function in spectralGP package, the default
blocks are set by grouping coefficients based on the frequency thresholds, 0, 1, 2, 4, . . . , 2Q,
where Q = log2(max(M1,M2)) − 1. The coefficients can be proposed in spectralGP using
propose.coeff.gp(object,block,proposal.sd), with the numbered block to be proposed
specified as the argument block. Template code for fitting by this approach is given in
Appendix B as Code D.

4.4. Hyperparameter priors

Assuming the Matérn covariance (4-5), the hyperparameters in the various parameterizations
are θ = (µ, γ, ρ, ν, η2, σ2

z), with η2 and σ2
z not present in some cases. Royle and Wikle (2005)

use inverse gamma priors for η2 and σ2
z with a diffuse normal prior for µ. For ρ they use the

reference prior of Berger, De Oliveira, and Sansó (2001) for the Gaussian likelihood case to
avoid the use of an improper diffuse prior that could lead to an improper posterior. Paciorek
(2007) specifies independent, proper, but non-informative priors for the elements of θ, except
for ν, which cannot be estimated for a grid-level process (even for the continuous case, this
is difficult to estimate without some observations very close together) and which is fixed in
advance (ν = 4 gives smooth processes with a small number of derivatives).

Gelman (2006) suggests truncated uniform and folded non-central t distributions on the stan-
dard deviation scale for variance components and argues against IG(ε, ε) priors as these have
a sharp peak at small values that can strongly affect inference when the data do not constrain
the parameters away from zero. Berger et al. (2001) argue for reference priors and against
proper but non-informative priors, including truncated distributions, in part because they are
concerned about the posterior concentrating at extreme values or on the truncation limit.
In the setting here, I believe that the exact form of the priors is not critical, except that
it is desirable to keep the parameters in a finite interval to prevent them from wandering
in extreme parts of the space in which the likelihood is flat. In cases with sufficient data,
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Figure 1: Mean functions used in simulated datasets: simple function (left) with ρ̂ ≈ 0.3 and
more complicated GP (right) with ρ = 0.05.

the prior should play little role in estimation and prediction. The situations that concern
Berger et al. (2001) with regard to truncation and vague proper priors arise when the data
provide little information, in which case their concern about the posterior concentrating on
the truncation limit seems little different than having it constrained by the reference prior. I
discuss identifiability and priors for σ2

z and η2 in more detail in Section 5.1.

5. MCMC sampling considerations

In Sections 5.1-5.2, I describe some factors that impede mixing and some modifications to
the basic sampling schemes discussed above that can help to improve mixing. In Section
5.3 I compare the approaches of Section 4 and make broad recommendations. Appendix A.3
discusses the lack of identifiability of u0,0 with respect to an overall mean, µ, Appendix A.4
considers reparameterizing the covariance parameters for improved mixing, and starting values
are discussed in Appendix A.5. Note that for any particular application, my recommendations
may not provide the best mixing, and consideration of alternatives discussed in this paper
may improve matters.

I explored sampling effectiveness using a few simulated datasets, meant to provide a range
of function complexity and data intensity. All have Poisson data with the sampling locations
sampled uniformly in (0, 1)2: Data1 has 225 observations while Data2 has 1000 observa-
tions, both with the mean function, f(x1, x2) = 1.9 · (1.35 + exp(x1) sin(13 · (x1 − 0.6)2) ·
exp(−x2) sin(7x2)), used by Hwang, Lay, Maechler, Martin, and Schimert (1994) (Figure 1),
a fairly simple function that when fit with a GP has ρ̂ ≈ 0.3. Data3, Data4, and Data5 use
the same mean function; a GP with ρ = 0.05, µ = 0, γ = σ = 1 (Figure 1); and 400, 800, and
2500 observations, respectively (Figure 1).

I fit the data with the various parameterizations and sampling schemes using MCMC with a
burn-in of 10,000 iterations and runs of 100,000 additional iterations. To assess mixing speed,
I considered the trace plots, autocorrelations, and effective sample sizes (ESS) (Neal 1993, p.
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105),

ESS =
T

1 + 2
∑∞

d=1 Cord(θ)
, (17)

where Cord(θ) is the autocorrelation at lag d for a given posterior quantity, θ, truncating the
summation at the lesser of d = 10000 or the largest d such that Cord(θ) > 0.05. I focus on
ESS for 1.) the overall log posterior density, π(·|y) (as suggested in Cowles and Carlin (1996)
and calculated up to the normalizing constant), 2.) the critical smoothing parameter, ρ, and
3.) a random subset of 200 function estimates.

5.1. Variance component magnitudes and mixing speed

Here I discuss how the magnitude of a key variance component influences mixing.

The influence of the error variance in the normal model

Under the normal model (8), as η2 → 0, we have an interpolating surface that passes through
the observations. In spatial statistics, such interpolation may arise relatively frequently when
measurements are made with little measurement error or there is little fine-scale heterogeneity
(Cressie 1993, p. 59). However, a key sampling consideration arising from small values of η2

is that the size of MCMC moves for the basis coefficients is quite small. As η2 → 0,

V (ui|η2, ·) =

(
γ2

η2
+ Σ−1

ii

)−1

→ 0 (18)

for the Gibbs sample proposal variance (10). For the coefficients of low-frequency basis func-
tions, which most influence the process estimate, as η2 get small, the proposal variance is
a small fraction of the magnitude of the coefficient (Figure 2). When η2 ≈ 0, the process
estimates are specified nearly exactly at the observation locations, and any proposal at those
locations is constrained by the observations. This constrains the proposal for the entire spatial
process. Mixing can be challenging even if uncertainty away from the observations is substan-
tial and of real interest. While this issue seems likely to arise in other GP representations,
except when the process values can be integrated out of the model, the issue is particularly
clear with the spectral representation.

The influence of the dispersion parameter(s) in the exponential family model

Under the single latent layer model of Section 4.2, the magnitude of the variance component,
η2, that accounts for overdispersion affects the proposal variances for the coefficients in similar
fashion. When there is not overdispersion, the posterior for η2 should concentrate near zero.
While this might be the correct inference, if the value of η2 does approach zero in the MCMC
sampling, the chain will mix very slowly, as in the case of normal data, because in (15)
V (ui|η2, ·) → 0 as η2 → 0 as in (18). Small values of η2 result in small proposal variances and
slow movement of the coefficients. Figure 3a shows the ESS for the log posterior density and
for a sample of function values as a function of fixed η2 for Data3, Poisson data generated
without overdispersion.

In the case of overdispersion, the data can inform η2, and inverse gamma prior distributions
such as those of Wikle (2002) and Royle and Wikle (2005) may suffice. When there is little
overdispersion, these priors are more problematic. Note that the inverse gamma prior has
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Figure 2: Decay of proposal variances (scaled relative to prior variance) for three representa-
tive coefficients as a function of the relative error variance (η2/γ2) for (left column) GPs with
ρ = 0.1 and (right column) GPs with ρ = 0.4. Example process realizations are shown in the
lower row.

a rapidly-decaying left tail, dropping off as exp(−1/x), so the inverse gamma prior assigns
no mass to small values of η2, preventing the posterior from having mass in this area. For
example, the IG(0.5, 2) prior has very little mass at values less than 0.05 while the IG(1, 10)
has very little mass at values less than 0.006. Fitting the model of Section 4.2 to Data2 with
the IG(0.5, 2) prior shows that the constraints imposed by the prior cause the posterior to
have its mass in the extreme lower range of the prior, while using a truncated lognormal prior
results in most of the posterior mass lying at very small values of η2 near the truncation point
(Figure 3b). This suggests that when the observations exhibit little overdispersion, the prior
has substantial impact on the posterior for η2.

A prior that weights the model away from small values of η2 has the desirable impact of
improving mixing at the cost of forcing overdispersion, while use of a prior that allows for
small values of η2 carries the risk of very slow mixing. This suggests that we might choose a
prior or even fix η2 in advance to achieve optimal mixing, treating η2 as an MCMC tuning
parameter. The danger of using large values of η2 is that while mixing will improve, the
posterior variances of key quantities such as the function estimates will increase, with overly
conservative inference and poor predictive ability because of oversmoothing (Table 1). In
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Figure 3: (a) ESS for a sample of 200 function values (boxplots) and for the log posterior
density (’LP’) as a function of fixed η2 for Data2. (b) Posterior densities for η2 under an
IG(0.5, 2) prior and a lognormal prior truncated at 0.02 for Data3.

contrast, for the smallest value of η2, coverage is low and predictive ability is poor because of
poor mixing. A compromise value of η2 (say 0.32 in this case) trades off well between mixing
and statistical performance.

In general, to obtain reliable inference about overdispersion, one would want to initially allow
sufficient freedom in one’s prior for η2 to allow small values of η2. However, if the data appear
to not be overdispersed and one wants to achieve reasonable mixing, one may want to run a
version of the model with a fixed, larger value of η2 and report inference for the other aspects
of the model based on that MCMC. One can examine interval length as a function of η2 in
comparison with mixing properties to determine a good value of η2. Cross-validation may be
helpful for assessing coverage.

Turning to the model (12), there are two variance components, η2 and σ2
z . Interpretation of

η2 coverage interval length test R2

0.012 0.73 1.60 0.33
0.12 0.92 2.45 0.57
0.32 0.93 2.54 0.57
0.52 0.97 2.75 0.53
0.752 0.97 2.89 0.49
12 0.95 2.93 0.50
22 0.94 3.43 0.04

Table 1: For 200 function estimates, average 95% credible interval coverage and length, and
test R2 of posterior mean (indicating predictive ability), as a function of fixed η2 for Data3.
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Figure 4: Trace plots for Wikle approach applied to Data2, with lower right subplot showing
prior and posterior densities for η2 and σ2

z .

these parameters is difficult as the parameterization divides any inherent overdispersion into
seemingly non-identifiable components. Royle and Wikle (2005) claim that both η2 and σ2

z

are identifiable with sufficient within-cell replication, with η2 accounting for overdispersion
within cell, while σ2

z represents uncorrelated variability across grid cells, inducing a lack
of spatial smoothness beyond that induced by the discretization. Wikle (2002) and Royle
and Wikle (2005) sample both components and find reasonable mixing, perhaps because their
inverse gamma distributions prevent small values of the components and perhaps because their
empirical count data have real overdispersion that provides information about a functional
of the variance components (η2 + γ2σ2

z), while replication provides information about η2. In
contrast, I have had difficulty achieving reasonable mixing for the two variance components
in simulations with no overdispersion (σ2

z ≡ η2 ≡ 0) (Figure 4), presumably because of the
lack of identifiability and lack of overdispersion. Note how the posteriors for the variance
components concentrate on the smallest values allowed by the priors, while at the same time
the likelihood mixes well, indicating that the process values, λ, are well-identified by the data
and mix well.

5.2. Joint sampling of hyperparameters and process

The covariance hyperparameters in GP models frequently mix poorly. For illustration, con-
sider ρ. The difficulty in sampling ρ is that a simple Metropolis-Hastings proposal for ρ results
in a new set of variances for the coefficients, u. Since these coefficients are not part of the
proposal, proposing ρ∗ can easily produce a low prior density, π(u|ρ∗, ·), because the new prior
is inconsistent with the current u. For example, with a process generated based on ρ = 0.1,
the prior logdensity, log π(u|ρ = 0.1, ·), is 50411 while the prior logdensity, π(u|ρ∗ = 0.101, ·),
is 50387, a change of 24 in the logdensity, despite the fact that surfaces generated based on
ρ = 0.1 compared to ρ = 0.101 are indistinguishable even with massive amounts of data,
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assuming non-negligible error variance. Note that the issue here is not a matter of whether
we can sample from the full conditional for ρ; the primary obstacle in sampling ρ is the strong
dependence of ρ and u (Rue, Steinsland, and Erland 2004). A better proposal would account
for the strong dependence between ρ and u by proposing them jointly, allowing the lower
levels of the model hierarchy close to the data to arbitrate between different values of ρ. In
the context of Markov random field models, Rue and Held (2005, pp. 142-143) suggest a
similar strategy of jointly sampling process values and their hyperparameters.

My strategy is to tie the covariance hyperparameters more closely to the coefficients and hence
to the data by having the effects of proposing new hyperparameter values ripple down through
the hierarchy of the model. I do this by jointly proposing a hyperparameter, generically
denoted θ ∈ {ρ, σ2}, and, then conditional on that hyperparameter and within the same
Metropolis-Hastings proposal, proposing the process coefficients from [u|θ∗, ·]. This provides
a joint proposal for (θ,u) that adjusts u in such a way that it is more consistent with the
proposed value, θ∗. Parameterizations that permit proposing from the full conditional, [u|θ, ·],
are likely to particularly benefit from this approach, with u effectively integrated out of the
joint density. Provided the correct Hastings adjustment (ratio of proposal densities) is made,
this joint proposal is a standard, valid Metropolis-Hastings sampling scheme, implemented
as a marginal proposal for θ and a conditional proposal for [u|θ, ·], with a single acceptance
decision, as discussed in Rue and Held (2005, p. 142). I now detail these joint proposals in
the three basic sampling schemes described in Section 4.

For the data augmentation sampling approach for normal data, one proposes θ∗, and then
proposes from the full conditional, [u|θ∗, ·] (9). Acceptance is then determined based on the
ratio of the proposed and current posterior densities, π(u, θ|y, ·) divided by the Hastings ratio
for u (and θ as well if not proposed symmetrically). Note that the proposal for u is conditional
on the proposed θ∗, so a Metropolis-Hastings acceptance decision is needed because we are
not doing a joint Gibbs sample for (u, θ). The Hastings ratio is based on the proposal mean
(9) and variance (10), with the variances for complex-valued coefficients scaled by one-half
(22) and not including the coefficients that are complex conjugates of sampled coefficients.
This is calculated in the spectralGP package using the Hastings.coeff.gp() method or by
providing returnHastings=TRUE as an argument to Gibbs.sample.coeff.gp(). Template
code is provided in Appendix B as Code E.

In the modified Wikle approach, the presence of the latent λ̃ values (14) distances the coeffi-
cients from the data. However, one can mimic the proposal just described by sampling θ and
then u from [u|λ, θ∗, ·], conditioning on λ rather than y, and being satisfied with a proposal
for u that is consistent with the new proposed θ∗ and the current λ, albeit without any direct
influence of the data. Again a Hastings correction is needed, and can be calculated using the
Hastings.coeff.gp() function, but with λ taking the place of y. Template code is given as
Code F. For the original Wikle approach, z takes the place of λ above.

However, in neither the modified nor original Wikle parameterizations does the sampling
directly link θ to the observations, causing there to be no influence of the likelihood on the
acceptance. An alternative that carries the changes through to the level of the data is to avoid
sampling from the conditionals as described above and instead propose to move u and λ (and
z in the Wikle parameterization) in such a way that their prior densities remain constant.
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First propose θ∗. Then, deterministically propose,

u∗i = ui ·

√
(Σθ∗)i,i√
(Σθ)i,i

, i = 1, . . . ,M. (19)

Modifying ui based on its prior variance, (Σθ)i,i, allows the hyperparameters to mix more
quickly by avoiding proposals for which the original coefficients are no longer probable based
on their new prior variances. In the modified Wikle parameterization, one next proposes

λ∗i = λi − γ(Ψu)i + γ(Ψu∗)i, (20)

while in the Wikle parameterization, one proposes z∗i = zi − (Ψu)i + (Ψu∗)i and finally
λ∗i = λi−γKiz +γKiz

∗. This approach propagates the changes through the model in a way
that ties θ directly to the likelihood. Such deterministic proposals are valid MCMC proposals
so long as the Jacobian of the transformation is included in the acceptance ratio, based on
a modification of the argument in Green (1995). The Jacobian of the transformation for
u cancels with the ratio of the prior distributions for u, π(u∗|θ∗)/π(u|θ), to give the final
Metropolis-Hastings acceptance for the entire joint proposal of (θ∗,u∗,λ∗) or (θ∗,u∗,z∗,λ∗)
based only on the ratio of the proposed and current prior densities for θ, the proposed and
current likelihoods, and any required Hastings ratio to account for non-symmetric proposals
for θ. Note that the transformations for z and λ have Jacobian of one. The validity of
the deterministic proposal can be seen intuitively by considering Metropolis proposals in
place of the transformation (19) with very small proposal variances, ζ2 ≈ 0, e.g., u∗i ∼
N (ui((Σθ∗)i,i)1/2((Σθ)i,i)−1/2, ζ2), and calculating the acceptance ratio of such a proposal.
Template code for the modified Wikle parameterization is given in Appendix B as Code G.
Note that a similar joint proposal could be made for θ = σ2

z to tie this hyperparameter more
closely to the data.

For the coefficient block sampling scheme, no Gibbs scheme is available. Instead, one can
carry out a joint sample in a similar manner to that just described, by proposing θ∗ and then
proposing u as in (19). Acceptance is determined by the ratio of the proposed and current
prior densities for θ and proposed and current likelihoods, and any required Hastings ratio to
account for non-symmetric proposals for θ. Template code is given in Appendix B as Code
H.

In Table 2, I show a comparison of mixing for the modified Wikle parameterization (14) with
1.) straightforward sampling of γ and ρ, 2.) joint sampling of (σ2,u) and of (ρ,u) based
on Gibbs samples from [u|σ2, ·] and [u|ρ, ·], and 3.) joint sampling via (19-20). Both joint
sampling approaches appear to mix much more quickly than the simple Metropolis-Hastings
proposals for the hyperparameters. The joint sampling with the full conditional sampling
from [u|θ, ·] does not mix as well as using (19-20), perhaps because the conditional Gibbs
sample does not modify λ and therefore does not involve the likelihood in the determination
of proposal acceptance. Note that for η2 ≡ 0.22, the improved mixing of the deterministic
shift proposal compared to the conditional Gibbs is even more marked (not shown).

5.3. Empirical comparison of sampling methods and recommendations

Based on the evidence provided in Section 5.2, it appears that joint sampling of θ and u in the
modified Wikle parameterization greatly improves mixing, with deterministic sampling of u
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Sampling Method

Quantity Dataset simple: γ, ρ joint, Gibbs: σ2, ρ joint, deterministic: σ2, ρ

Data1 NM 42 193

LP Data2 NM 87 205

Data3 NM 17 447

Data5 NM 143 646

Data1 NM 37 146

ρ Data2 NM 70 145

Data3 NM 15 414

Data5 NM 125 289

Data1 549 (28-1898) 510 (34-1338) 597 (90-1808)

f Data2 1806 (22-3496) 1805 (132-3763) 2137 (229-4231)

Data3 236 (5-2154) 611 (200-3062) 657 (307-3232)

Data5 1563 (17-6503) 1964 (519-8958) 2021 (467-8971)

Table 2: ESS for log posterior density, ρ and median (range) of 200 sample function values
by dataset for three sampling approaches: 1.) sampling γ and ρ using simple Metropolis-
Hastings, 2.) jointly sampling each of σ2 and ρ with u based on conditional Gibbs sample for
u, and 3.) jointly sampling each of σ2 and ρ with u and λ as in (19-20). η2 is fixed at 0.32.
’NM’ indicates that the chain has not burned in or is mixing so slowly as to make calculation
of ESS uninformative.

better than full conditional sampling for u. In Appendix A.4 I also consider reparameterizing
(σ2, ρ) to reduce potential posterior correlation between these parameters, but find little
improvement in mixing.

Here I compare mixing for the three parameterizations in Section 4: the modified Wikle
approach with joint sampling of hyperparameters and coefficients, block sampling with joint
sampling of hyperparameters and coefficients, and the original approach of Wikle without
joint sampling. Since the latter is essentially the same as the modified Wikle approach with
one extra layer, I do not devise a joint sampling scheme for it, but rather consider mixing
under the sampling approach proposed by Wikle (2002) and Royle and Wikle (2005). In
general, the modified Wikle approach outperforms block sampling and the original Wikle
approach. Table 3 shows that for the simple function (Data1 and Data2), block sampling
is worse than the modified Wikle approach but shows some degree of mixing, while for the
more complicated function (Data3 and Data5), the block sampling approach does not appear
to have burned in by 100,000 iterations. The original Wikle approach also has not burned
in, as judged by the log posterior density and ρ although the sample function values appear
to be mixing somewhat. Note that while the increase in sample size (from Data1 to Data2
and from Data3 to Data5) seems to result in somewhat improved mixing, the effect is not
substantial.

A key question is how fine a resolution to use for the grid. While one does not want to
oversmooth by virtue of using too coarse a resolution, finer resolution estimation takes longer
to run and can exhibit slower mixing, because of the higher-dimensionality of the coefficients
that are fit in the MCMC. My suggestion is to use a grid that is fine enough for reasonable
prediction with the expected heterogeneity of the surface, but to make use of sensitivity
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Sampling Method

Quantity Dataset modified Wikle original Wikle block sampling

Data1 193 NM 54

LP Data2 205 NM 25

Data3 447 NM 53

Data5 646 NM NM

Data1 146 NM 107

ρ Data2 145 NM 40

Data3 414 NM NM

Data5 289 22 NM

Data1 597 (90-1808) 125 (13-321) 551 (247-1166)

f Data2 2137 (229-4231) 56 (9-166) 473 (198-873)

Data3 657 (307-3232) 298 (106-737) 33 (7-139)

Data5 2021 (467-8971) 467 (127-1100) 25 (6-83)

Table 3: ESS for log posterior density, ρ and median (range) of 200 sample function values by
dataset for the three parameterizations: 1.) modified Wikle with η2 fixed at 0.32, 2.) original
Wikle parameterization and sampling approach, and 3.) block sampling.

analyses to choose the grid resolution in light of mixing performance and computational
speed. For the simple simulated data with an effective value of ρ ≈ 0.3 (Data1 and Data2),
a resolution of k = 128 is probably more than sufficient for good prediction (even coarser
resolution might be sufficient), and runs with k = 256 and k = 512 showed slower mixing.
For the simulated data with ρ = 0.05 (Data3, Data4, and Data5), k = 128 also seemed to be
sufficient. Mixing with k = 256 was not substantially degraded relative to k = 128, but for
k = 512, mixing was substantially worse.

These results suggest that mixing using the block sampling approach is substantially slower
than the modified Wikle approach, particularly with a more variable underlying process.
However, results may depend significantly on the form of the model and the exact data used.
In Paciorek (2007), with a coarse grid, simple spatial functions, and binary observations,
mixing was reasonable using the block sampling approach. In a multivariate setting within a
complicated hierarchical model (Paciorek and McLachlan 2007), with a compound Dirichlet-
multinomial likelihood for 10 categories and a coarse 32 by 32 grid, mixing was reasonable,
albeit slow, with the block sampling approach, and the modified Wikle approach provided no
improvement and was slower to compute.

6. Discussion

This paper introduces an R package for the Fourier basis representation of Gaussian pro-
cesses, pioneered by Wikle (2002), and provides template code for fitting Bayesian models for
exponential family data. The code can be readily adapted for more complicated hierarchical
models. I discuss several possible parameterizations, including models allowing for overdis-
persion, and describe potential nonidentifiability in the hierarchical model of Wikle (2002)
that may impact mixing. I document some of the critical issues affecting MCMC mixing in
these models, in particular, the difficulty in mixing for ρ in particular and the dependence of



24 Bayesian Smoothing Using Fourier Basis Functions

mixing speed on the dispersion parameter, η2. In models with little noise (interpolating mod-
els) or non-Gaussian situations with little overdispersion, a small value of η2 can substantially
impede mixing. Based on a series of experiments with simulated Poisson data, I recommend
use of a modified version of the parameterization of Wikle (2002), with an approach for joint
sampling of the hyperparameters and the basis coefficients to more efficiently sample the hy-
perparameters by tying them more closely to the data. In contrast, while the block sampling
approach of Paciorek (2007) works only somewhat less well for a relatively smooth spatial
function, it mixes very poorly for a very unsmooth spatial function. However, the block sam-
pling approach has the virtue of avoiding the overdispersion parameter that, if small, can
hurt mixing and of simplicity, which may be helpful in more complicated hierarchical models.
I could not achieve reasonable mixing of the parameterization and sampling approach sug-
gested in Wikle (2002), presumably because of dataset-dependent differences in mixing, but
also possibly because of the difficulty in replicating Bayesian MCMC schemes. Note that these
recommendations and conclusions are based on qualitative, rather than exhaustive, testing.

The critical smoothing parameters (ρ and either σ or γ) appear to be the parameters that
mix most slowly in the Fourier basis representation, as they are in many spatial models.
In particular, ρ changes the amount of smoothing, by changing the prior weights on the
basis functions, which vary in their frequency. Changing this parameter changes the form of
the model, analogous to adding or subtracting basis functions in a free-knot spline model.
Achieving reasonable mixing across model spaces is generally difficult.

Some alternative spatial models, such as thin plate splines and radial basis function models
with fixed basis functions (Kammann and Wand 2003; Ruppert et al. 2003) have modeled
spatial functions without estimating a spatial correlation parameter, relying solely on variance
components (in the radial basis model) to achieve smoothing. O’Connell and Wolfinger (1997)
relate the ratio of σ2 and η2 in a Gaussian setting to the smoothing parameter in a thin plate
spline model, and Nychka (2000) speculates that this ratio may be more important than the
spatial correlation parameter in smoothing noisy data. Zhang (2004) found that ρ and σ2

cannot both be estimated consistently under infill asymptotics. I experimented with fixing ρ
and forcing σ2 to perform the smoothing role, but found that the model did not estimate the
right amount of smoothing and predictive performance was poor. It may be that in this and
perhaps other spatial models, models with estimated values of ρ are more efficient. This issue
appears not to have been addressed thoroughly in the literature (but see Laslett (1994) and
invited comments) and deserves more attention.

One might explore more sophisticated MCMC algorithms to improve mixing. For example,
Christensen et al. (2006) develop a data-dependent reparameterization scheme for improved
MCMC performance and apply the approach with Langevin updates that use gradient in-
formation; while promising, the approach is computationally intensive, again involving n× n
matrix computations at each iteration, and software is not available. For the Fourier represen-
tation the high-dimensionality and complex values of the basis coefficients pose an impediment
to such an approach. Based on the results here, I believe that proposals that jointly consider
the key hyperparameters and the basis coefficients are critical in achieving adequate mixing.

One drawback to the GP model presented here is its restriction to stationary GPs. Future
work on this model structure to allow for nonstationarity in the spatial process will con-
sider wavelet bases in place of the Fourier basis used here, in particular the two-dimensional
wavelet basis used by Matsuo, Paul, and Nychka (2006) to fit irregular Gaussian data in a
non-Bayesian fashion. However, mixing may be more challenging in a more complicated model



Journal of Statistical Software 25

with additional hyperparameters. An alternative relates to the work of Pintore and Holmes
(2006), who have extended the Higdon/Paciorek/Stein (Higdon, Swall, and Kern 1999; Stein
2005; Paciorek and Schervish 2006) nonstationary covariance model based on kernel convo-
lutions to the spectral domain. This allows one to build nonstationarity based on a latent
process representing spatially-varying ρ or ν. Given the widespread interest in nonstationary
and space-time representations, fast computation for such models is of obvious interest, but it
is not clear how these covariance structures would be represented in the type of basis function
approach developed here.

Acknowledgments

The author thanks Chris Wikle for introducing him to the Fourier basis representation and
Andy Houseman for the idea of using R environments as a means of passing by reference.
The project was supported by Grants numbered 5 T32 ES007142-23 (to the Department of
Biostatistics at Harvard School of Public Health) and 5 P30 ES000002 (to Harvard School of
Public Health) from the National Institute of Environmental Health Sciences (NIEHS), NIH.
The contents are solely the responsibility of the author and do not necessarily represent the
official views of NIEHS, NIH.

References

Banerjee S, Carlin B, Gelfand A (2004). Hierarchical Modeling and Analysis for Spatial Data.
Chapman & Hall.
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A. Technical details

A.1. Constructing the gridded process

The details that follow draw on Dudgeon and Mersereau (1984), Borgman, Taheri, and Hagan
(1984), and Wikle (2002). The first step in representing the function is to choose the grid size,
Md, in each dimension, d = 1, . . . , D, to be a power of two. The Md frequencies in the dth
dimension are then ωd ∈ {0, 1, . . . , Md

2 ,−
Md
2 + 1, . . . ,−1}, where the superscript represents

the dimension. There is a complex exponential basis function for each distinct vector of
frequencies, ω = (ω1

m1
, . . . , ωD

mD
), md ∈ {0, . . . ,Md − 1}, with corresponding complex-valued

basis coefficient, um1,...,mD .

First I show how to construct a random, mean zero, Gaussian process in one dimension from
the M spectral coefficients, um = am + bmi, m = 0, . . . ,M − 1, and complex exponential
basis functions, ψm(sj) = exp(iωmsj), whose real and imaginary components have frequency
ωm. The circular domain of the process is S1 = (0, 2π) with the process evaluated only at
the discrete grid points, sj ∈ {0, 2π 1

M , . . . , 2πM−1
M }. To approximate real-valued processes,

u0, . . . , uM/2 are jointly independent, u0 and uM/2 are real-valued (b0 = bM/2 = 0), and the
remaining coefficients are determined, uM/2+1 = ūM/2−1, . . . , uM−1 = ū1, where the overbar
is the complex conjugate operation. This determinism causes the imaginary components of
the basis functions to cancel, leaving a real-valued process,

g(sj) =
M−1∑
m=0

ψm(sj)um =

M
2∑

m=0

exp(iωmsj)(am + bmi) +
M−1∑

m=M
2

+1

exp(iωmsj)(aM−m − bM−mi)

= a0 + 2

M
2
−1∑

m=1

(am cos(ωmsj)− bm sin(ωmsj)) + aM/2 cos(ωM
2
sj). (21)

Hence for a grid of M values, the process is approximated as a linear combination of M
spectral basis functions corresponding to M real-valued sinusoidal basis functions, including
the constant function (ω0 = 0). To approximate mean zero Gaussian processes with a par-
ticular stationary covariance function, the coefficients have independent, mean zero Gaussian
prior distributions with the spectral density for the covariance function, φ(·;θ), e.g., (5),
determining the prior variances of the coefficients:

V(um) = φ(ωm;θ)
⇒ {V(a0) = φ(ω0;θ); V(aM/2) = φ(ωM/2;θ);

V(am) = V(bm) =
1
2
φ(ωm;θ), o.w.} (22)

.

The setup is similar in two dimensions, with a matrix of M = M1M2 coefficients, ((um1,m2)),
md ∈ {0, . . . ,Md − 1}, and corresponding frequency pairs, (ω1

m1
, ω2

m2
), and a toroidal do-

main. As seen in Table 4, many coefficients are again deterministically given by other co-
efficients to ensure that the process is a linear combination of real-valued sinusoidal basis
functions of varying frequencies and orientations in <2. The real and imaginary compo-
nents of each coefficient, um1,m2 = am1,m2 + bm1,m2i, are again independent. For (m1,m2) ∈



30 Bayesian Smoothing Using Fourier Basis Functions

0 1 . . . h2 −h2 + 1 . . . −1
0 u0,0 u0, · u0,h2 u&

0, ·
1

..

. u·, 0 uA u&
B

h1 uh1,0 uh1,h2
−h1 + 1

.

.. u&
·, 0 uB u&

A

-1

Table 4: Visual display of the spectral coefficients for a two-dimensional process. The fre-
quencies in each dimension are indicated by the row and column labels, with hd = Md

2 for
d = 1, 2. The & operation indicates that one takes the matrix or vector, flips it in both the
horizontal and vertical directions (just the horizontal or vertical in the case of a vector) and
then takes the complex conjugates of the elements.

{(0, 0), (M1
2 , 0), (0, M2

2 ), (M1
2 ,

M2
2 )}, bm1,m2 = 0 and V(am1,m2) = φ(ω1

m1
, ω2

m2
;θ), while for the

remaining complex-valued coefficients, V(am1,m2) = V(bm1,m2) = 1
2φ(ω1

m1
, ω2

m2
;θ).

A.2. Periodicity and Euclidean domains

The construction produces periodic functions; in one dimension the process lives on a circular
domain, while in two dimensions the process lives on a torus. To work in Euclidean space, we
need to map Euclidean space onto the periodic domain. The goal is to use the representation
for Euclidean domains without inducing anomalous correlations between locations that are
far apart in Euclidean space, but close in the periodic domain. To do this, I suggest mapping
the Euclidean domain of interest onto a portion of the periodic domain and ignoring the
remainder of the periodic domain as follows.

In one dimension, g(0) = g(2π), so the correlation function, C(τ) = C(g(0), g(τ)) of the
process at distances τ ∈ (π, 2π) is the mirror image of the correlation function for τ ∈ (π, 0)
with Cor(g(0), g(2π)) = 1 (Figure 5). I avoid artifacts from this periodicity by mapping the
interval (0, 2π) to (0, 2) and mapping the original domain of the observations to (0, 1), thereby
computing but not using the process values on (1, 2). Note that the use of πρ rather than ρ
in (5) allows us to interpret ρ on the (0, 1) rather than (0, π) scale. The modelled process on
(0, 1) is a piecewise constant function on an equally-spaced grid of size M/2 + 1. This setup
ensures that the correlation structure of the approximating process is close to the correlation
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Figure 5: Comparison of correlation structure of GPs based on the standard Matérn covariance
on the Euclidean domain, (0, 2) (dashed lines), and approximate GPs based on the Fourier
basis for the periodic domain, (0, 2π), mapped to (0, 2) (solid lines), for three values of ρ.
Note that the Euclidean correlation for ρ = 0.05 falls off to zero as rapidly as the periodic
case and remains at zero for all remaining distances.

structure of a GP with the desired stationary correlation function (Figure 5).

As the higher-dimension analogue of the one-dimensional case, I estimate the process on
(0, 1)D. To do so, I map the periodic domain (0, 2π)D to (0, 2)D and then map the observation
domain onto the (0, 1)D portion (maintaining the scale ratio in the different dimensions, unless
desired otherwise), thereby calculating but ignoring the process values outside this region.
Note that if the original domain is far from square, I unnecessarily estimate the process in large
areas of no interest, resulting in some loss of computational efficiency. Wikle (2002) and Royle
and Wikle (2005) do not mention the issue of periodicity; it appears that they use a somewhat
larger grid than necessary to include all observations (sometimes called padding) and rely on
the correlation decaying sufficiently fast that anomalously high correlations between distant
observations induced by the periodicity do not occur. For example, notice in Figure 5 that
for ρ = 0.05 the correlation does not start to rise again until the distance is almost 2.0, so a
small amount of padding would suffice).

A.3. Non-identifiability of u0,0 and µ

The Fourier basis function corresponding to the coefficient, u0,0, is a constant function. As
such, it is not identifiable with respect to an overall mean parameter, µ, specified outside
of the Fourier basis representation of the Gaussian process (12,14,16). One might choose to
omit µ from the model, but this would generally be a mistake as the covariance structure (22)
imposes a restrictive prior on u0,0. A large value of γ or σ would allow for a process mean
far from zero, but this would also allow the function to have high variability. An example of
where the problem arises is a process with large mean, say 100, but whose variability places the
function entirely in (99, 101). Such a process would require a large value of u0,0 but if γ or σ is
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large enough to allow this, each would be so large as favor process estimates that vary widely
around 100. Instead, a separate mean parameter is a better choice that will help to avoid slow
mixing because of nonidentifiability. One can fix u0,0 = 0, without otherwise constraining the
model. The spectralGP package can fix the coefficient and ignore it when calculating the
prior density of the coefficients; this is done using const.fixed=TRUE as an argument to
gp(). However, simulate GP realizations using the Fourier basis approximation, one should
not fix this constant, in order to retain the desired approximate covariance structure.

A.4. Reparameterizing the covariance

In a GP model part of the difficulty in estimating the covariance parameters occurs because
of limitations on identifiability. The data cannot readily distinguish the overall variability in
the function, captured by γ or σ, from the decay in the spatial correlation, captured by ρ.
In Bayesian models, these parameters tend to have high posterior correlation, while Zhang
(2004) has shown that these two parameters cannot both be estimated consistently under
infill asymptotics, but that a functional of the two can be estimated consistently. Note that
in thin plate spline models and in the mixed model representation suggested by Kammann
and Wand (2003) and Ruppert et al. (2003), there is only one parameter in place of the
two covariance parameters here. However, as discussed further in Section 6, comparisons of
estimates using the Fourier basis approach here suggest that ρ cannot be fixed in advance
without seriously affecting the function estimates because the function heterogeneity is not
adequately represented.

Given the results of Zhang (2004), in which the ratio, σ2/ρ2ν , can be estimated consistently,
consider reparameterizing on the log scale as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. This
approach uses the centered parameterization, fixing γ ≡ 1. The reparameterization will tend
to reduce posterior correlation and allow each parameter to move more freely. Joint sampling
as described in Section 5.2 can also be employed with this reparameterization. Template
code for sampling based on the reparameterization and joint sampling of the parameters and
process values using deterministic conditional proposals for u (19-20) is given in Appendix B
as Code I under the modified Wikle parameterization and code J under the block sampling
approach.

Since the joint sampling of each of σ2 and ρ with u based on deterministic proposals for u and
λ appeared to be the best of the options in Section 5.2, in Table 5, I compare mixing for that
approach with the (σ2, ρ) parameterization and the same joint approach using deterministic
proposals with the (ψ1, ψ2) parameterization. There is little difference in mixing between
the two parameterizations. Table 6 shows posterior correlations of (σ, ρ) and of (ψ1, ψ2)
based on sampling under the original and the new parameterizations. For Data1, Data2,
and Data3, ψ1 and ψ2 have little posterior correlation, suggesting that in principle, sampling
using the new parameterization would mix more quickly, although this is not the case in
Table 5. The minimal difference in mixing was also seen when using the joint sampling with
the full conditional samples from [u|θ, ·] and when fixing η2 = 0.22 and η2 = 0.52, as well
as for an alternative reparameterization, ψ1 = log σ and ψ2 = log σ − log ρ. In practice,
the minimal difference in mixing suggests that the posterior correlation between σ2 and ρ is
not materially hurting mixing, in sharp contrast to the importance of jointly sampling each
covariance hyperparameter with u.
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Table 5: ESS for log posterior density, ρ, and median (range) of 200 sample function values
by dataset when sampling is done using the parameterizations: 1.) (ρ, σ2) and 2.) (ψ1, ψ2).
η2 is fixed at 0.32.

Parameterization
Quantity Dataset original: σ2, ρ Zhang: ψ1, ψ2

Data1 193 105

LP Data2 205 244

Data3 447 443

Data5 646 777

Data1 146 56

ρ Data2 145 157

Data3 414 431

Data5 289 426

Data1 597 (90-1808) 591 (89-1427)

f Data2 2137 (229-4231) 2154 (235-4274)

Data3 657 (307-3232) 656 (305-3169)

Data5 2021 (467-8971) 1972 (469-8879)

Table 6: Posterior correlations for (log σ, log ρ) and (ψ1, ψ2) when sampling is done using the
parameterizations: 1.) (σ2, ρ) and 2.) (ψ1, ψ2). η2 is fixed at 0.32.

Parameterization
Dataset Posterior correlation original: σ2, ρ Zhang: ψ1, ψ2

Data1 Cor(log σ, log ρ) 0.70 0.79
Cor(ψ1, ψ2) 0.15 0.24

Data2 Cor(log σ, log ρ) 0.81 0.84
Cor(ψ1, ψ2) 0.08 0.13

Data4 Cor(log σ, log ρ) 0.20 0.21
Cor(ψ1, ψ2) 0.26 0.26

Data5 Cor(log σ, log ρ) 0.56 0.56
Cor(ψ1, ψ2) 0.11 0.12
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A.5. Starting values

Good starting values for the coefficients can be difficult to determine because of the high
dimensionality of the coefficients and lack of a maximum likelihood-based estimate due to the
need for shrinkage in estimating the coefficients. In addition, as described in Section A.2, a
portion of the domain contains no observations. For the grid points not used to represent the
domain of interest

((
(0, 1)2

)C ∩ (0, 2)2
)
, it is helpful to initiate values for these buffering grid

points so as to keep the variability and spatial range features of the data similar across the
whole domain. This can be achieved by ’mirroring’ the initial values from the portion of the
domain in which the observations lie, as follows, in one dimension,

ĝ(sM ), . . . , ĝ(sM/2+2) ≡ ĝ(sM/2), . . . , ĝ(s2). (23)

In two dimensions, the mirroring occurs first across the the line s1 = 1 (for s2 < 1) and then
across the line s2 = 1, such that ĝ(sm1,m2) is defined, for m1 > M1/2+1 and m2 <= M2/2+1
as ĝ(sm1,m2) ≡ ĝ(sM1−m1+2,m2). For m2 > M2/2 + 1, take ĝ(sm1,m2) ≡ ĝ(sm1,M2−m2+2).

In the data augmentation scheme for normal data, I suggest using a gam() fit to estimate the
process values, predicting Ỹ values at unobserved locations using the fitted model, mirroring
the values, and then doing a Gibbs sample for the coefficients. In the Wikle approach, one
can estimate the spatial process at the grid points based on a gam() fit, assign these values
to z (λ in the modified Wikle approach) and initialize u via a Gibbs sample. For the block
sampling scheme, one might use gam() to estimate the process on the grid, ĝs# , add error
and mirror the values, and then set u = (γ2

η2 I + Σ−1)−1 γ
η2 Ψ>(ĝs# − µ1), mimicing (15).

Some basic experiments with simulated datasets Data1, Data2, Data3, and Data5 suggest
little difference between starting the coefficients based on a Gibbs sample and starting at val-
ues simulated from the prior conditional on the hyperparameter starting values. Reasonably
rapid burn-in occurred when the coefficients were simulated from their prior, although mixing
for Data1 was slightly better for the Gibbs sample starting values. For the coefficients corre-
sponding to low frequencies, the long-run estimates are comparable for the different starting
values. However, it may be the case that the Gibbs sample starting values are useful in some
circumstances.

B. Template code

I provide R template code for MCMC sampling under various parameterizations and sampling
schemes described in Sections 4 and 5. The code is designed for the simple model (1) in which
the data come from an exponential family distribution: normal, Poisson, or binomial. The
code assumes a constant mean, µ, in place of x>i β, and Matérn covariance function with ν
fixed. While this is a simple setting, users could take the template code and use it within a
more complicated hiearchical model or easily extend to a regression structure in the mean.
The contribution of this work is to provide code for easy manipulation and MCMC sampling
of the Fourier basis representation of the Gaussian process component in the model.

The code makes use of the spectralGP package and uses easily modifiable R functions for the
log-likelihood, prior distributions, and Gibbs sampling; the names of these will be obvious in
the code. Also note that parameters take the form of R lists, with components that will be
obvious from the code. The code does not save iterations, report acceptance rates, or adapt
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the proposal variances based on acceptance rates, but these features could be readily added.
The code assumes the default Matérn spectral density function but the only changes needed
to use a different covariance function are to define a new spectral density function, use that
function as the argument to the constructor gp(), and define an appropriate prior density for
the parameter(s) of the covariance function. If the covariance/spectral density function has a
second parameter, the code would need to be modified to allow for MCMC sampling of that
parameter; the code currently takes the second parameter, ν, of the Matérn to be fixed.

Next I provide a brief overview of the model structure and sampling approach used in each
template code file. The information is summarized in Table 7.

Code A (Section 4.1) In this template, data, Y , are assumed to be normally distributed
and are augmented with pseudo-observations, Ỹ ,

Y ∼ Nn(µ1 + γKΨu, η2I)
Ỹ ∼ NM−n(µ1 + γK̃Ψu, η2I),

which allows Gibbs sampling of the process coefficients, u. The pseudo-observations are
also sampled via a Gibbs step. Covariance hyperparameters are sampled individually by
Metropolis-Hastings. To speed mixing in some cases, joint sampling of η2 and Ỹ is also
possible.

Code B (Section 4.2) In this template, data, Y , are taken to be Poisson or binomial, and
two latent processes are embedded in the model,

Yi ∼ F(h−1(λi))
λi ∼ N (µ+ γKiz, η

2)
z ∼ NM (Ψu, σ2

zI).

Here λ is sampled via Metropolis-Hastings, and z and u are sampled via Gibbs steps. Co-
variance hyperparameters are sampled individually by Metropolis-Hastings. There are two
overdispersion parameters, η2 and σ2

z , in this model.

Code C (Section 4.2) In this template, data, Y , are taken to be Poisson or binomial, and
one latent processes is embedded in the model,

Yi ∼ F(h−1(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I).

I divide the latent process values into a group whose grid cells contain data, λobs, which
are sampled via Metropolis-Hastings, and the remaining values, λ̃, which are sampled via
a Gibbs step. To speed mixing in some cases, joint sampling of η2 and λ̃ is also possible.
Covariance hyperparameters are sampled individually by Metropolis-Hastings. There is one
overdispersion parameter, η2, in this model.
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Code D (Section 4.3) In this template, data, Y , are taken to be Poisson or binomial, and
the likelihood depends directly on the process coefficients,

Yi ∼ F(h−1(µ+ γKiΨu)).

The coefficients, u, are sampled by Metropolis-Hastings in blocks. Covariance hyperparame-
ters are sampled individually by Metropolis-Hastings. The model contains no overdispersion
parameter.

Code E (Section 5.2) As in Code A, data, Y , are assumed to be normally distributed
and are augmented with pseudo-observations, Ỹ ,

Y ∼ Nn(µ1 + KΨu, η2I)
Ỹ ∼ NM−n(µ1 + K̃Ψu, η2I),

with the modification that γ ≡ 1 and σ2 in (5) is allowed to vary. The process coefficients, u,
and pseudo-observations are both sampled via Gibbs steps. In contrast to Code A in which
covariance hyperparameters are sampled by Metropolis-Hastings on their own, in this code,
each covariance hyperparameter, σ2 and ρ, is sampled jointly with u in a Metropolis-Hastings
step.

Code F (Section 5.2) As in Code C, data, Y , are taken to be Poisson or binomial, and
one latent process is embedded in the model,

Yi ∼ F(h−1(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I).

As in Code C, I divide the latent process values into a group whose grid cells contain data,
λobs, which are sampled via Metropolis-Hastings, and the remaining values, λ̃, which are
sampled via a Gibbs step. In contrast to Code C in which covariance hyperparameters are
sampled by Metropolis-Hastings on their own, in this code, each covariance hyperparameter,
σ2 and ρ, is sampled jointly with u in a Metropolis-Hastings step. There is one overdispersion
parameter, η2, in this model.

Code G (Section 5.2) As in Code F, data, Y , are taken to be Poisson or binomial, and
one latent process is embedded in the model,

Yi ∼ F(h−1(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I).

The one difference from Code F is that here, each covariance hyperparameter, σ2 and ρ, is
sampled jointly with both u and λ in a Metropolis-Hastings step.
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Code H (Section 5.2) As in Code D, data, Y , are taken to be Poisson or binomial, and
the likelihood depends directly on the process coefficients,

Yi ∼ F(h−1(µ+ γKiΨu)).

The coefficients, u, are sampled by Metropolis-Hastings in blocks. I divide the latent process
values into a group whose grid cells contain data, λobs, which are sampled via Metropolis-
Hastings, and the remaining values, λ̃, which are sampled via a Gibbs step. In contrast to
Code D in which covariance hyperparameters are sampled by Metropolis-Hastings on their
own, in this code, each covariance hyperparameter, σ2 and ρ, is sampled jointly with u in a
Metropolis-Hastings step. The model contains no overdispersion parameter.

Code I (Appendix A.4) As in Code G, data, Y , are taken to be Poisson or binomial,
and one latent process is embedded in the model,

Yi ∼ F(h−1(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I).

The one difference from Code G is that here, the covariance parameters are reparameterized
as ψ1 = log σ+ log ρ and ψ2 = log σ− log ρ. Each of ψ1 and ψ2 is sampled jointly with u and
λ in a Metropolis-Hastings step.

Code J (Appendix A.4) As in Code H, data, Y , are taken to be Poisson or binomial,
and the likelihood depends directly on the process coefficients,

Yi ∼ F(h−1(µ+ γKiΨu)).

The one difference from Code H is that here, the covariance parameters are reparameterized
as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. Each of ψ1 and ψ2 is sampled jointly with u in
a Metropolis-Hastings step.

Data distribution Latent structure Sampling of cov. parameters Template code
Normal data augmentation individually: θ ∈ {σ2, ρ} A

joint: {θ,u}, θ ∈ {σ2, ρ} E
Poisson/binomial two processes individually: θ ∈ {σ2, ρ} B

individually: θ ∈ {σ2, ρ} C
Poisson/binomial one process joint: {θ,u}, θ ∈ {σ2, ρ} F

joint: {θ,u,λ}, θ ∈ {σ2, ρ} G
joint: {θ,u,λ}, θ ∈ {ψ1, ψ2} I

individually: θ ∈ {σ2, ρ} D
Poisson/binomial no process joint: {θ,u}, θ ∈ {σ2, ρ} H

joint: {θ,u}, θ ∈ {ψ1, ψ2} J

Table 7: Overview of model structure and covariance parameter sampling algorithms for
template code.



38 Bayesian Smoothing Using Fourier Basis Functions

Affiliation:

Christopher J. Paciorek
Department of Biostatistics
Harvard School of Public Health
655 Huntington Avenue
Boston, MA 02115, United States of America
E-mail: paciorek@alumni.cmu.edu
URL: http://www.biostat.harvard.edu/~paciorek/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 19, Issue 2 Submitted: 2006-08-09
April 2007 Accepted: 2007-04-10

mailto:paciorek@alumni.cmu.edu
http://www.biostat.harvard.edu/~paciorek/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Fourier basis representation
	Basic process model
	Computations and statistical modeling of observations

	R spectralGP package
	Description of the package
	Using environments as objects to allow pass-by-reference
	Using and extending the package

	Basic MCMC sampling schemes for coefficients
	Data augmentation Gibbs sampling for normal data
	Latent layer Gibbs sampling for exponential family data
	Parameterizing with two latent layers (the Wikle parameterization)
	A simplified parameterization with a single latent layer (modified Wikle parameterization)

	Blocked Metropolis sampling for exponential family data (simple parameterization) 
	Hyperparameter priors

	MCMC sampling considerations
	Variance component magnitudes and mixing speed
	The influence of the error variance in the normal model
	The influence of the dispersion parameter(s) in the exponential family model

	Joint sampling of hyperparameters and process
	Empirical comparison of sampling methods and recommendations

	Discussion
	Technical details
	Constructing the gridded process
	Periodicity and Euclidean domains
	Non-identifiability of u0,0 and mu
	Reparameterizing the covariance
	Starting values

	Template code

