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Abstract 

A modification of the Kaiser and Dichman (1962) procedure of generating multivariate 

random numbers with specified intercorrelation is proposed. The procedure works with 

positive and non-positive definite population correlation matrix. A SAS module is also 

provided to run the procedure.  
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1. INTRODUCTION 

A fundamental task of quantitative researches is to make probability-based inferences about 

population characteristics, θ, based on an estimator, θ
)

, using a "representative" sample drawn 

from that population. However, the statistics of classical parametric inference inform us about 

how the population works to the extent necessary mathematical assumptions are met, and 

violation of any of the mathematical assumptions may harm the accuracy of the research 

conclusion(s). In regression, for instance, when the slope of the independent variable (x) is 

statistically significant and BLUE (best linear unbiased estimator), a researcher can clearly 

expect what happens to the dependent variable (y) when x changes one unit provided that the 

usual mathematical assumptions of the regression (independence, homogeneity of variance, 

and normality) are met. If any of these assumptions is violated, the risk of inference from the 

ordinary lease squares (OLS) is seriously off the mark (Moony, 1997).  

 In real world, however, there are numerous situations where data violates at least one 

of the mathematical assumptions of the inferential statistic that is going to be used in analysis. 

Therefore, statisticians as well as researchers are interested to know how the mathematical 

assumptoin(s) violation affects the inferntial statistics’ power (the probability of correctly 

rejecting a false null hypothesis) and/or the Type I error rate (the probability of incorrectly 

rejecting a true null hypothesis). Fortunately, meaningful investigation of many problems in 

statistics can be done through Monte Carlo simulations (Brooks et al., 1999). 

1.1 Statement of the Problem  

Monte Carlo simulation is a computer-based technique that enables one to generate artificially 

random samples from populations with known characteristics in order to control some 

variables and manipulate others to investigate the effect of the manipulation on the robustness 

of a statistic. For more details about Monte Carlo simulation, the reader is referred to Brooks 

et al., 1999 and Mooney, 1997. 
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 Monte Carlo simulations that require correlated data from normal and nonnormal 

populations are frequently used to investigate the small sample properties of competing 

statistics, or the comparison of estimation techniques (Headrick & Sawilowsky, 1999). And, 

the widely used technique to generate correlated data from normal population (which is the 

paper's concentration) is the Kaiser and Dichman (1962) procedure. The procedure uses a 

component analysis (e.g., principal components, square-root components) of a positive 

definite population correlation matrix (R) for generating multivariate random numbers with 

specified intercorrelations.  

 The procedure depends mainly on the decomposition of R and works only with a 

positive definite R. This limitation is an obstacle often faces users because not all real world 

situations have a positive definite R. Thus, a modification for this procedure (or development 

of a new one) is highly desired.  

1.2 Purpose of the Study 

The study proposes a modification of the Kaiser and Dichman procedure in order to decrease 

its limitation effect. That is, the paper presents techniques that enable the Kaiser and Dichman 

procedure’ users to generate multivariate correlated pseudorandom numbers using a non-

positive definite R.    
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2. REVIEW OF THE LITERATURE 

The importance of the problem of generating a correlated pseudorandom numbers comes up 

from the considerable attention that has been given to the Monte Carlo studies; Monte Carlo 

studies have been of interest to applied statisticians and continue to receive large focus in the 

recent statistical literature. 

The first to introduce a method for generating correlated pseudorandom numbers was 

Hoffman in 1924. He presented a simple technique that is used only to simulate two 

correlated variables. Then, Kaiser and Dickman (1962) extended the Hoffman’s procedure for 

m ≥ 2, where m is the number of the correlated variables. They proposed a method for 

generating sample and population score matrices and sample correlation matrices from a 

given R. The procedure utilizes component analysis for generating multivariate random 

numbers. The disadvantage of the Kaiser and Dickman procedure is that it depends on matrix 

factorization that requires positive definiteness, and this condition does not frequently hold. 

Fleishman (1978) noted that real-world distributions of variables are typically 

characterized by their first four moments (i.e., mean, variance, skew, and kurtosis) and 

presented a procedure for generating normal as well as nonnormal random numbers with 

these moments specified. The procedure accomplishes this by simply taking a linear 

combination of a random number drawn from a normal distribution and its square and cube. 

Tadikamalla (1980) criticized the Fleishman's procedure for producing distributions of 

variables for which the exact distribution was known and thus lacked probability-density and 

cumulative-distribution functions and which, furthermore, could not produce distributions 

with all possible combinations of skew and kurtosis. 

Tadikamalla (1980) proposed five alternative procedures for generating nonnormal 

random numbers and compared them all with Fleishman power method for speed of 

 5



execution, simplicity of implementation, and generality of their ability to generate nonnormal 

distributions.  

 Vale and Maurelli (1983) extended the Fleishman (1978) and Kaiser and Dickman 

(1962) procedures to the multivariate case. They proposed a method for generating 

multivariate normal and nonnormal distributions with specified intercorrelations and marginal 

means, variances, skews, and kurtoses. However, like Kaiser and Dickman (1962) procedure , 

the procedure fails to work when R is not positive definite. Not only that, but also the 

procedure fails to generate desired intercorrelations when the conditional distributions possess 

extreme skew and/or heavy tails, even for sample sizes as large as N = 100 (Headrick and 

Sawilowsky, 1999). 

 Headrick and Sawilowsky (1999) proposed a method that combines a generalization 

of Theorem 1 and 2 from Knapp and Swoyer (1967) with the Fleishman (1978) procedure. 

The procedure generates multivariate nonnormal distributions with average values of 

intercorrelations closer to the population parameters for skewed and/or heavy tailed 

distributions and for small sample sizes. Although the procedure eliminates the necessity of 

conducting a factorization procedure on R that underlies the random deviate, yet it still 

requires the positive definiteness of R.  

 Briefly, all procedures that can be used to generate multivariate pseudorandom 

numbers require either directly or indirectly positive definite R and do not work without it, 

but the Fleishman’s (1978). This study will present a modified technique that minimizes the 

reliance on positive definiteness condition for R.  
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3. DESCRIPTION OF THE PROCEDURES 

3-1 Kaiser and Dichman procedure  

The Kaiser and Dichman (1962) procedure is generally applied to generate multivariate 

normal random numbers, and uses a matrix decomposition procedure. A Cholesky 

factorization (or any factorization, for that matter) is performed on R that is to underlie the 

random numbers. To generate a multivariate random number, one random number is 

generated for each component, and each random variable is defined as the sum of the products 

of the variable’s component loadings and the random number corresponding to each of the 

components. When the random numbers input are normal, the resulting random numbers are 

multivariate normal with population intercorrelations equal to those of the matrix originally 

decomposed.  

3-2 The Modified Procedure 

The modified procedure is also used to generate multivariate normal pseudorandom numbers 

utilizing R. However, unlike other procedures, it works with a positive as well as a non-

positive definite R.  

 To generate a correlated multivariate data matrix with specific R, 

we rewrite R as a block matrix such as  

] [ knqnmn ××× = XYD









′

=
CB
BA

R  

where and are the correlation matrices of Y and X, respectively, and the  is the 

correlation matrix between Y and X. The division is assumed to occur intentionally to ensure 

positive definiteness of both  and . This is a necessary condition (i.e., the method 

dose not work without it).  

qq×A kk×C kq×B

qq×A kk×C

Next, one of the following techniques may be applied.  
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3-2-1 When A q × q and q =1 

This technique is applied to generate multivariate pseudorandom numbers when R can be 

partitioned into three matrices: , B , and C , where k is the number of x's and k >1 

such as 

11×A k×1 kk×
















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



=
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
′

=

1

1
1

1

1
2

1

21

xxyx

x

xyx

xxyx

yxyxyx

k

k

CB
B

ρρρ
ρ

ρρ
ρρρ
ρρρ

L

OOMM
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L

L

R  

The technique is performed as follows: 

A total of k correlation matrices that contain the correlation between y and each x 

individually are created such as  ∀ i = 1, 2, …, k. Then, a multivariate 

normal data matrix ( ) is generated through the equation 









=

1
1

yx

yx
i

i

i

ρ
ρ

B

kn×X

UXX ˆ+=µ  

where X is the multivariate normal data matrix, µ is the vector containing the variable 

means, contains vectors of independent and standard normal variates, U is the Cholesky 

upper triangular matrix of C . The factorization  is known as the Cholesky 

factorization. 

X̂

kk× Tkk UUC =×

A data vector (y n × 1) of standard normal variates is generated and concatenated 

horizontally with each column of the matrix X individually such as  

Ti =[y Xi] ∀ i = 1, 2, …, k). This will gives us a total of k matrices each of size (n × 2). 

A total of k vectors Zi of size (n × 1) are generated independently through the 

equation Zi = µ + Ti Uic2
 ∀ i = 1, 2, …, k 
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where Uic2
 is the 2nd column of the Cholesky upper triangular matrix of Bi which was 

created in the beginning. The vector y is then concatenated horizontally with  Zi ∀ i = 1, 

2, …, k to create data matrix of size (n × k+1) such as D n × k+1 = [ y Z1 Z2 … Zk]. 

The resulting data matrix has a correlation matrix that most likely varies from the 

given population matrix (R) and the change takes place mainly in C. Thus, to get data 

matrix that has a correlation matrix close to (i.e. with average intercorrelation among the 

x’s around) the desired R, we manipulate the actual correlation value among the x’s, and 

repeat the process.  

The average intercorrelation among the x’s is assessed using the measure proposed by 

Kaiser (1968) 

1
1
−
−λ

=γ
O

           (3.1) 

where λ is the largest eigenvalue of the correlation matrix, and O is the number of 

variables (which is k when measuring the average intercorrelation among the x’s). The 

larger the value of γ, the greater the correlation; if γ  = 0, there is no correlation. γ  = 1 

when the correlations among the variables in the set are quite high. Accordingly, one 

should expect that γ takes values near the values of ρx. 

Simulation Example 1 

Suppose a data matrix of size (20 × 5) with specific intercorrelations need to be generated, 

and suppose  



























=

18.08.08.00
8.018.08.00
8.08.018.05.0
8.08.08.015.0

005.05.01
4321 xxxxy

R  
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The Kaiser and Dickman procedure cannot be used here to generate the required 

data because the provided R is not positive definite. Thus, the new procedure is going to 

be implemented instead (the SAS module in the Appendix A can be utilized to simulate 

the data using the modified procedure).  

Table 1 shows the correlation matrix (Ri) used in the procedure and the correlation 

matrix of the simulated data (Rei) at attempt i. At the second attempt (when the correlation 

among the x’s was replaced by 0.84 in the original R), we had data with correlation matrix 

(Re2) that is closer to the original R (which equals R1) than those of the first (Re1) and the 

third (Re3) attempts.  

Notice that Rei in the Table are full rank (i.e., Rank(Rei) = 5), and usually 

compared with the original R. R2, R3, … etc. are only used in the method to simulate the 

needed data. 
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TABLE 1 The Theoretical and Empirical Correlations Values 

The Correlation matrix used  The Correlation matrix gotten 

  y x1 x2 x3 x4     y x1 x2 x3 x4 
y 1 0.5 0.5 0 0 y 1 0.5013 0.4948 -4E-04 -0.006 
x1 0.5 1 0.8 0.8 0.8 x1 0.5013 1 0.8497 0.6954 0.689 
x2 0.5 0.8 1 0.8 0.8 x2 0.4948 0.8497 1 0.6919 0.6896
x3 0 0.8 0.8 1 0.8 x3 -4E-04 0.6954 0.6919 1 0.7982

R1 

x4 0 0.8 0.8 0.8 1 

Re1

x4 -0.006 0.689 0.6896 0.7982 1 

          γ = 0.736 

 1 0.5 0.5 0 0  1 0.4964 0.5008 0.0011 0.0050
 0.5 1 0.84 0.84 0.84  0.4964 1 0.8819 0.7317 0.7363
 0.5 0.84 1 0.84 0.84  0.5008 0.8819 1 0.7272 0.7305
 0 0.84 0.84 1 0.84  0.0011 0.7317 0.7272 1 0.8432

R2 

 0 0.84 0.84 0.84 1 

Re2

 0.0050 0.7363 0.7305 0.8432 1 

          γ = 0.776 

 1 0.45 0.45 0 0  1 0.4558 0.4552 0.0068 -0.004
 0.45 1 0.84 0.84 0.84  0.4558 1 0.8761 0.7515 0.7466
 0.45 0.84 1 0.84 0.84  0.4552 0.8761 1 0.7517 0.7478
 0 0.84 0.84 1 0.84  0.0068 0.7515 0.7517 1 0.8424

R3 

 0 0.84 0.84 0.84 1 

Re3

 -0.004 0.7466 0.7478 0.8424 1 

          γ = 0.786 

Note: Ri is the correlation matrix used to simulate the required data; Rei is the average correlation matrix of the data 
simulated 1000 times; γ is the Kaiser’s Gamma. 

 

The real and cpu times needed for 1000 replications = 0.10 and 0.07 seconds, respectively 

when a hp with 1.70GHz processor and 256 KB RAM is used. The standard error matrix of 

Re2 is as follows: 
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  y x1 x2 x3 x4 
y 0 0.0054 0.0054 0.0069 0.0070 
x1 0.0054 0 0.0018 0.0036 0.0037 
x2 0.0054 0.0018 0 0.0038 0.0038 
x3 0.0069 0.0036 0.0038 0 0.0024 

Re2 

x4 0.0070 0.0037 0.0038 0.0024 0 
 

3-2-2 When A q × q and q ≥ 2 

This technique is applied when R can be partitioned into three matrices: , B , and 

, where q >1 and k>1 are numbers of the y's and the x's, respectively, such as 
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In this case, the technique is performed in this way: 

A total of (q × k) correlation matrices that contain the correlation between each y 

and each x are created such as  ∀ i = 1, 2, …, q and j = 1, 2, …, k. 

Then a multivariate normal data matrix ( ) is generated through the equation 












= 1

1

ij

ji

yx

xy
ij ρ

ρ
B

kn×X

UXX ˆ+=µ  

where X is the multivariate normal data matrix, µ is the vector containing the variable 

means, contains vectors of independent and standard normal variates, U is the Cholesky 

upper triangular matrix of C . 

X̂

kk×
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Similarly, a multivariate normal data matrix ( ) is generated using the 

Cholesky upper triangular matrix of . Next, each column of the matrix Y is 

concatenate horizontally with each column of the matrix X individually (i.e., Tij =[ Yi 

Xj] ∀ i = 1, 2, …, q and j = 1, 2, …, k), which gives a total of (q × k) matrices each of 

size (n × 2). 

qn×Y

qq×A

A total of (q × k) vectors Zij of size (n × 1) are generated through the equation  

Zij = µ + Tij Uijc2
 ∀ i = 1, 2, …, q and j = 1, 2, …, k 

where Uijc2
 is the 2nd column of the Cholesky upper triangular of the matrix Bij which was 

created at first. Afterward, the vectors Zj ∀ j = 1, 2, …, k are concatenate horizontally to 

create data matrix of size (n × k) for each Yi individually such as ] ...  [~
21 ikii ZZZX =×kn

i . 

The matrices kn
j
×X~  ∀ i = 1, 2, …, q are then summed together to create data 

matrix ( ), and then the matrix Y is concatenate horizontally with the matrix ∑
=

×
q

i

kn
i

1

~X

q

×kn
i

~X∑
==

q

i 1~X to create the required data matrix ( D ). kqn +×

Similar to the first case, the resulting data matrix ( ) has a correlation matrix 

that most likely varies from the population matrix and the change, once again, takes place 

mainly in C. Thus, to get data matrix that has a correlation matrix close to (i.e. with 

average intercorrelation among the x’s around) the desired population correlation matrix, 

we manipulate the actual correlation value among the x’s, and repeat the process. 

kqn +×D

Simulation Example 2 

Suppose a data matrix of size (20 × 6) with specific intercorrelation need to be generated 

and suppose 
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

























=

14.04.01.01.01.0
4.014.07.07.07.0
4.04.017.07.07.0
1.07.07.015.05.0
1.07.07.05.015.0
1.07.07.05.05.01

R  

Again, the Kaiser and Dickman procedure does not work in this situation because 

the provided R is not positive definite. Consequently, the modified procedure is going to 

be implemented as an alternative (the SAS module in Appendix A also can be utilized to 

simulate the data using the modified procedure).  

Table 2 shows the correlation matrix (Ri) used in the procedure and the correlation 

matrix of the simulated data (Rei) at attempt i. At the third attempt (when the correlation 

among the x’s was replaced by 0.84 in the original population correlation matrix), we had 

data with correlation matrix (Re3) that is closer to the original population correlation 

matrix (R1) than those of the first (Re1) and the second (Re2) attempts. 
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TABLE 2 The Theoretical and Empirical Correlations Values 

The Correlation matrix used  The Correlation matrix gotten 

 y1 y2 y3 x1 x2 x3   y1 y2 y3 x1 x2 x3 
y1 1 0.5 0.5 0.7 0.7 0.1  y1 1 0.4959 0.4931 0.5165 0.5101 0.0700
y2 0.5 1 0.5 0.7 0.7 0.1  y2 0.4959 1 0.4972 0.5079 0.5079 0.0730
y3 0.5 0.5 1 0.7 0.7 0.1  y3 0.4931 0.4972 1 0.5119 0.5054 0.0635
x1 0.7 0.7 0.7 1 0.4 0.4  x1 0.5165 0.5079 0.5119 1 0.6329 0.3546
x2 0.7 0.7 0.7 0.4 1 0.4  x2 0.5101 0.5079 0.5054 0.6329 1 0.3672

R1 

x3 0.1 0.1 0.1 0.4 0.4 1  

Re1

x3 0.0700 0.0730 0.0635 0.3546 0.3672 1 

              γ = 0.4585 
               
 1 0.5 0.5 0.9 0.9 0.1   1 0.5072 0.5061 0.7071 0.7015 0.0666
 0.5 1 0.5 0.9 0.9 0.1   0.5072 1 0.5098 0.7074 0.7063 0.0726
 0.5 0.5 1 0.9 0.9 0.1   0.5061 0.5098 1 0.7067 0.7068 0.0748
 0.9 0.9 0.9 1 0.4 0.4   0.7071 0.7074 0.7067 1 0.8448 0.2731
 0.9 0.9 0.9 0.4 1 0.4   0.7015 0.7063 0.7068 0.8448 1 0.2768

R2 

 0.1 0.1 0.1 0.4 0.4 1  

Re2

 0.0666 0.0726 0.0748 0.2731 0.2768 1 

              γ = 0.4982 
               
 1 0.5 0.5 0.9 0.9 0.1   1 0.4984 0.4969 0.7028 0.7015 0.0649
 0.5 1 0.5 0.9 0.9 0.1   0.4984 1 0.4965 0.6989 0.7002 0.0604
 0.5 0.5 1 0.9 0.9 0.1   0.4969 0.4965 1 0.7002 0.6995 0.0631
 0.9 0.9 0.9 1 0.1 0.1   0.7028 0.6989 0.7002 1 0.7613 0.1193
 0.9 0.9 0.9 0.1 1 0.1   0.7015 0.7002 0.6995 0.7613 1 0.1163

R3 

 0.1 0.1 0.1 0.1 0.1 1  

Re3

 0.0649 0.0604 0.0631 0.1193 0.1163 1 

              γ = 0.3981 

Note: Ri is the correlation matrix used to simulate the required data; Rei is the average correlation matrix of the data 
simulated 1000 times; γ is the Kaiser’s Gamma; the real and cpu times needed for 1000 replications = 0.57 and 0.10 
seconds, respectively. 
 

The real and cpu times needed for 1000 replications = 0.57 and 0.10 seconds, respectively 

when a hp with 1.70GHz processor and 256 KB RAM is used. The standard error matrix of 

Re2 is as follows: 
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 y1 y2 y3 x1 x2 x3 
y1 0 0.0055 0.0056 0.0039 0.0039 0.0073 
y2 0.0055 0 0.0057 0.0039 0.0041 0.0071 
y3 0.0056 0.0057 0 0.0040 0.0041 0.0073 
x1 0.0039 0.0039 0.0040 0 0.0033 0.0073 
x2 0.0039 0.0041 0.0041 0.0033 0 0.0072 

Se =

x3 0.0073 0.0071 0.0073 0.0073 0.0072 0 
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4. CONCLUSION 

The paper has suggested a modification to the Kaiser and Dickman (1962) procedure of 

generating multivariate normal pseudorandom numbers. As demonstrated in the numerical 

examples, the procedure can produce random numbers with intercorrelation near the 

population correlation matrix when other procedures do not work at all. Although there are 

few situations (especially when A or C are not positive definite) where the procedure does not 

work, still it might be used to generate numbers close to the preferred intercorrelations by 

manipulating the correlations among the y’s or the x’s beside the correlations between the y’s 

and the x’s.        
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APPENDIX (A) 

 OPTIONS ls=100 ps=60 nodate nonumber; 
 
proc iml; 
 
/*********    The Parameters   **************/ 
 
NS=20;          /* No. of subjects */ 
 
/* The population correlation matrix is entered as YY YX, XY XX */ 
 
 PopCor={1 .5 .5 .7 .7 .1, 
         .5 1 .5 .7 .7 .1, 
    .5 .5 1 .7 .7 .1, 
    .7 .7 .7 1 .2 .2, 
    .7 .7 .7 .2 1 .2, 
    .1 .1 .1 .2 .2 1}; 
%Let NY=3;     /*    No. of the y's   */ 
%Let NX=3;     /*    No. of the x's   */ 
%Let NPC=9;     /* No. of yx correlations = NY*NX */ 
 
/***************************************************/ 
 
NV=&NY+&NX;     /* No. of Variables    */ 
CorY= PopCor[1:&NY,1:&NY];   /* Corr. among the y's */ 
CorX= PopCor[&NY+1:NV,&NY+1:NV]; /* Corr. among the x's */ 
CorYX= PopCor[&NY+1:NV,1:&NY]; /* Corr. betw. the y's & the x's */ 
 
do i=1 to ncol(CorYX); /* Corr. betw. the y's & the x's as a column*/ 
CorYXs=CorYXs//CorYX[,i]; 
end; 
 
%macro loop(NPC); 
 %Do i=1 %to &NPC;  /* Bi's Correlation matrices */ 
 Cryx&i=I(2); 
 Cryx&i[1,2]=CorYXs[&i,1]; 
 Cryx&i[2,1]=CorYXs[&i,1]; 
 
%mend loop; 

%end; 

%loop (&npc); 
 
X=Rannor(Repeat(0,NS,&NX))*root(CorX); /* The X data matrix  */ 
y=Rannor(Repeat(0,NS,&NY))*root(CorY); /* The Y data matrix */ 
 
  DaXs=0*j(ns,&NX); 
  
%macro loop2 (NY); 
  %Let k=0; 
   %do j= 1 %to &NY; 
  %do i=1 %to &NX; 
  %Let c=%eval(&i+&K); 
  %put c=&c; 
  dat=(Y[,&j]||X[,&i])*(root(CrYX&c)); 
  dat2=dat2||dat[,2]; 
  %end; 
  %Let k=&c; 
  daXs=daXs+Dat2;  
  free dat2; 
   %end; 
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%mend loop2; 
%loop2 (&NY ); 
 
  daXs=daXs*(1/&NY);    
  data=Y||daXs; /* The final data matrix            */ 
 
 

eg=eigval(corr(DaXs));  
CXs=(eg[<>,1]-1)/(&NX-1);  /* The average Correlations among all x's */  

eg=eigval(corr(Y));  
CYs=(eg[<>,1]-1)/(&NY-1);  /* The average Correlations among all y's */  
Call=corr(data);    /* Correlations among all data */ 
ca=call[1:&NY,(&NY+1):(&NY+&NX)]; 
 
print   'The Correlations between Xs and Ys',ca,  
     'The average Correlations among all Xs =  ' CXs, 
     'The average Correlations among all Xs =  'CYs,  
     'The total correlation matrix of the data', call;    
  
quit; 
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