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Abstract

In this paper we describe the Xlisp-Stat version of the sm library, a software for applying nonpara-
metric kernel smoothing methods. The original version of the sm library was written by Bowman and
Azzalini in S-Plus, and it is documented in their book Applied Smoothing Techniques for Data Analysis
(1997). This is also the main reference for a complete description of the statistical methods implemented.

The sm library provides kernel smoothing methods for obtaining nonparametric estimates of density
functions and regression curves for different data structures. Smoothing techniques may be employed as
a descriptive graphical tool for exploratory data analysis. Furthermore, they can also serve for inferential
purposes as, for instance, when a nonparametric estimate is used for checking a proposed parametric
model. The Xlisp-Stat version includes some extensions to the original sm library, mainly in the area of
local likelihood estimation for generalized linear models.

The Xlisp-Stat version of the sm library has been written following an object-oriented approach. This
should allow experienced Xlisp-Stat users to implement easily their own methods and new research ideas
into the built-in prototypes.

KEY WORDS: Kernel smoothing methods; nonparametric density estimation; nonparametric regression;
graphics; local likelihood for generalized linear models; Xlisp-Stat; Arc.
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1 Introduction

This document describes the Xlisp-Stat version of the sm library for applying nonparametric kernel smooth-
ing methods. The original version of the sm library was written by Bowman and Azzalini in S-Plus, and it
is documented in their book Applied Smoothing Techniques for Data Analysis (1997). Algorithmic aspects
of the software are discussed by Bowman and Azzalini (2001). All the statistical methods discussed by
the two authors have been translated following an object-oriented approach. In addition, further nonpara-
metric methods have been implemented, mainly in the area of local likelihood. The sm library have been
developed and checked using Xlisp-Stat 3.52.17 and Arc 1.03, both on Windows and Unix systems.

The computer code that implements the sm library is available at the Web address http://www.
stat.unipg/luca/xlispstat/sm.zip. The library contains the following files:

� sm-density.lsp nonparametric density estimation
� sm-regression.lsp nonparametric regression estimation
� sm-glm.lsp local likelihood estimation for generalized linear models
� sm-survival.lsp nonparametric regression with survival data
� sm-functions.lsp set of functions used for binning, bandwidth selection, etc.
� sm-miscfun.lsp set of miscellaneous functions of general utility
� sm-addson.lsp set of statistical functions and methods added to the sm

library from other sources

Furthermore, the file sm-readme.txt provides information on how to install the library, whereas the
file sm-library.lsp contains code for loading all the needed files, compiling the library to speed-up
computations, and provides an help through a windows user interface.

Scripts for running the examples from the book by Bowman and Azzalini are contained in the file sm-
script.lsp, and datasets discussed by the two authors are also available in Arc format (see Section 9).
Moreover, scripts for reproducing the examples used in the present document are available at the bottom of
the file sm-script.lsp.

The following sections will briefly describe the main functions and provide some examples. Further
details on each function are provided through the on-line help discussed in Section 1.2. As a general
philosophy, during the translation from S-Plus to Xlisp-Stat we tried to keep as much as possible things
similar to the original sm library. From a user perspective there should be no great differences between the
two libraries. Neverthless, the way the functions are called and arguments are passed necessarily differ due
to the differences in the two statistical environments. For a full understand of the usage of the library we
suggest to repeat the examples from the book of Bowman and Azzalini (1997) using the scripts provided in
the file sm-script.lsp.

A basic knowledge of the lisp language is assumed. A readable introduction is provided by Tierney
(1990), and further documents on Xlisp-Stat can be obtained at the address http://www.stat.umn.
edu/˜luke/xls/xlsinfo/xlsinfo.html. Arc, a computer program written in Xlisp-Stat for the
analysis of regression data as described in Cook and Weisberg (1999), can be obtained from the Web at
http://www.stat.umn.edu/arc. An archive of Xlisp-Stat programs may be found on the Web at
http://www.xlispstat.org, whereas a set of useful links is available at the addess http://www.
visualstats.org. The book Common Lisp by Guy L. Steele (1990) is a comprehensive source for the
lisp language, and it is available on-line at http://www.cs.cmu.edu/Groups/AI/html/cltl/
cltl2.html.
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1.1 Installing and loading the sm library into Xlisp-Stat

Assuming that a version of Xlisp-Stat or Arc is already installed on your computer, the following steps are
needed for installing the sm library:

1. get the sm.zip file;

2. for inflating the archive in Windows OS you may use Winzip, while in Unix/Linux you need to type

> unzip -a sm.zip

Stuffit Expander may be used in Macintosh OS.

3. copy the files extracted from the zipped archive in a directory you have created, for example one
called sm;

4. copy the file sm-library.lsp in the directory where you run Xlisp-Stat or Arc. In the latter case,
you may want to copy the file in the Extras sub-directory so it will be automatically loaded at the
start-up;

5. if needed modify the *sm-home-directory* at the beginning of the file sm-library.lsp.
This variable should contain the directory to be added to your search paths. By default, *sm-home-
directory* is set to the directory sm relative to your working directory.

For example, suppose you are working on Unix/Linux system, and you run Xlisp-Stat or Arc from the
directory xls. Then, by default the variable *sm-home-directory* is set to "sm/". However,
if the source sm lisp files are located in a different directory, say " � user/xls/library/sm",
then you must edit the file sm-library.lsp as follows:

(defparameter *sm-home-directory* #+macintosh "Extras:sm:"
#+unix "library/sm/"
#+msdos "Extras\\sm\\")

So, we simply changed the second row from "sm/" to "library/sm/". For other systems the
procedure is analogous, provided that the right row is modified depending on your system.

Once you have installed the sm library, you may simply run Xlisp-Stat or Arc and load the library as
follows:

> (load "sm-library")

If you are using Arc the sm library is automatically loaded at start-up if the file sm-library.lsp is
located on the:
Windows: Extras sub-directory of your Arc directory;
Macintosh: Extras sub-folder of your Arc folder;
Unix/Linux: Extras sub-directory of the directory from which you start Arc.

Computational efficiency may be speed-up compiling the library. The function

> (sm-library-compile)

will do the job for you, and the resulting .fsl files will be saved on the directory specified by *sm-home-
directory*.
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1.2 Getting on-line help

A very basic on-line help system can be invoked through the command

> (sm-help)

This function opens a window like that on Figure 1. From this window you may select an item and click
on the Print button (or double-clicking on the item itself) to see the corresponding documentation on the
listener.

Figure 1: Help dialog for the sm library.

The standard lisp procedure can also be used to obtain the documentation associated with a function.
For example, suppose you want to display the help for the hnorm function. You need to type the following
in the text windows command line following the prompt:

> (help ’hnorm)
HNORM [function-doc]
-------------------------------------------------------------------------------

Normal optimal choice of smoothing parameter in density estimation
-------------------------------------------------------------------------------
This function evaluates the smoothing parameter which is asymptotically optimal
for estimating a density function when the underlying distribution is Normal.

Args: (x &optional weights)

...
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2 Nonparametric density estimation

A univariate kernel density estimator for a continuous variable based on a sample
�������������	�
����


at the
evaluation point

�
can be expressed as

���� ��������
�� �
� ���

� � �!� �#"%$ �

where � � �&� is called kernel function, a symmetric weighting function, and

$
is the smoothing parameter or

bandwidth. The sm library uses a normal kernel function centered at the evaluation point with mean 0 and
standard deviation

$
, so that

� � � �!�
� "%$ �'�)( � � �*� � "+$ �

where
( �-, "%$ �

denotes the normal density function in
,

with mean 0 and standard deviation

$
.

A two-dimensional density estimate can be constructed using a two-dimensional kernel function in the
form ��.� � � �/��0��'�1��

�� �
� �	�

� � � �!� � � "%$ � � � � ��02�!��0
� "+$ 0��

where
� $ �3� $ 0 �

are the joint smoothing parameters, and the kernel function is obtained as the product of two
univariate kernels.

2.1 The sm-density function

The function sm-density allows nonparametric density estimation in one or two dimensions:

sm-density

Args: (x &key h (hmult 1)
(h-weights nil) (weights nil)
(binning nil) (nbins nil)
eval-points positive delta
(model "none")
(display "estimate") if 1D or (display "persp") if 2D
(add nil)
(props (list 75 50 25))
xlab ylab xlim ylim yht
(ngrid *sm-ngrid*)
(points-on-plot T)
(color ’black)
(symbol ’cross) if 1D or (symbol ’disk) if 2D
(type ’solid) (width 1))

The only required argument is the data x, which can be a list in the one-dimensional case, or a list of
lists or a matrix with two columns in the two-dimensional case. The keyword argument :h provides the
smoothing parameter (or two smoothing parameters in the two-dimensional case, one for each dimension),
and if this parameter is omitted a normal optimal smoothing parameter is used (in the two-dimensional case
the default smoothing parameter is computed separately for each dimension).

In large datasets a procedure called binning can be used for increasing the computational speed. Setting
the keyword argument :binning to T, the kernel density estimate is computed on the binned data with
number of bins provided by :nbins, or if not provided it is computed by the nbins function. For further
details on binning see Section 4.4.
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Variable bandwidths may be used throught the keyword argument :h-weights, a list of weights
which multiply the smoothing parameter used in the kernel function at each observation (for details on the
methodology see Bowman and Azzalini, 1997, p. 17, and the example on script 1.11).

A list of weights may be assigned to each observation using the keyword argument:weights. Weights
are used, for example, in the computation of density estimate from binned data.

The points at which the density estimator should be evaluated can be set using the keyword argument
:eval-points. If not provided, a regular grid is used for computing the estimates with number of
points given by :ngrid. By default :ngrid provided by the global variable *sm-ngrid*: for one-
dimensional density estimate this gives the number of points in the regular grid used, whereas for two-
dimensional data, approximately *sm-ngrid*/2 number of points for each axis are used.

Data with positive bounded support can be handled setting :positive to T. In this case, a log trans-
formation is applied to the data before construction of a density estimate. The result is then transformed
back to the original scale (the method is described in Bowman and Azzalini, 1997, pp. 14-16).

The graphical output is controlled by the keyword argument :display. The setting "none" or NIL
will prevent any graphical output from being produced. In one dimension, the default setting "estimate"
will produce the density estimate, while the setting "se" will in addition produce a variability band, show-
ing the variability, but not the bias, of the estimate. In two dimensions, the default setting "persp" will
produce a perspective plot of the density estimate, while the setting "slice" will produce a slice or con-
tour plot. Observed points are added to the plot if :points-on-plot is set to T, unless a perspective
plot is drawn.

In one dimension a reference band, indicating where a density estimate is likely to lie when the data are
normally distributed, may be superimposed on the plot setting the keyword argument :model to "Nor-
mal". The default "none" assumes no reference model.

By default any plot is drawn on a new window, but a plot may be added to an existing one if you provide
a graph object to the keyword argument :add.

The function sm-density returns a sm-density-proto object as its result. Hence, the user may
assign the returned object to a variable and then send messages to it.

Example 2.1 (aircraft span data) Consider the data on aircraft technology described in Section 1.2 of
Bowman and Azzalini (1997). This dataset can be analyzed in Arc loading the file sm-aircraft.lsp.
Suppose we want to obtain a density estimate for the aircraft span on a log scale for the period 1956–1984.
The following expressions must be typed in the listener window:

> (load "sm-aircraft")
> (def y3 (log (select span (which (= period 3)))))
> (def sm (sm-density y3 :xlab "Log Span"))

After loading the data, a variable containing the log-span for the third period is defined. Then, the last line
produces a graph of the density estimate and returns a sm-density-proto object which is assigned to
the variable sm (but you may want to use a different name as well). Slot values can be retrieved from this
object by sending the messages summarized in Table 1. The results from the density estimation are stored
in the slots shown in Table 2.

Information from the resultant object can be obtained by sending to it the :help message:

> (send sm :help)
SM-DENSITY-PROTO
Nonparametric Kernel Density Estimation.
Translation by Luca Scrucca from the S-Plus library "sm" by Bowman, A.W. and
Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel
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Approach with S-Plus Illustrations. Oxford University Press, Oxford.
Help is available on the following:

ADD ADD-METHOD ADD-SLOT BAND COLOR COMPUTE DELETE-DOCUMENTATION DELETE-METHOD
DELETE-SLOT DELTA DENSITY-EVAL-1D DENSITY-EVAL-2D DENSITY-POSITIVE-1D
DENSITY-POSITIVE-2D DIAGNOSTIC-PLOTS DISPLAY DOC-TOPICS DOCUMENTATION EST-CDF
ESTIMATE EVAL-POINTS GET-METHOD GRAPH H H-WEIGHTS HAS-METHOD HAS-SLOT HELP
HMULT INTERNAL-DOC ISNEW LOWER MAKE-CLONE METHOD-SELECTORS MODEL NBINS NDIM
NEW NGRID NORMDENS-BAND NORMDENS-BAND-LOWER NORMDENS-BAND-UPPER OWN-METHODS
OWN-SLOTS PARENTS PLOT PLOT-DENSITY-2D-PERSP PLOT-DENSITY-2D-SLICE
POINTS-ON-PLOT POSITIVE PRECEDENCE-LIST PRINT PROPS PROTO REPARENT RETYPE
SE SHOW SLOT-NAMES SLOT-VALUE SYMBOL TYPE UPPER WEIGHTS X X-OBS XLAB XLIM
YHT YLAB YLIM

Help on a specific topic can be obtained as follows:

> (send sm :help :plot)
PLOT
Args: ()
Plots the density estimate unless the display slot is set to "none" or NIL.

Table 1: Methods for accessing slot values in a sm-density-proto object
Method Description
:x data used in density estimation, i.e. the observed data or the

binned data if binning is used
:x-obs observed data
:h value of the smoothing parameter
:hmult multiplier for the smoothing parameter (by default equal to 1)
:h-weights weigths applied to the smoothing parameter
:nbins number of bins used if any, NIL otherwise
:ndim number of dimensions
:ngrid number of points used in a regular grid for density estimation
:eval-points points where the kernel density estimation has been evaluated
:positive logical flag for data with positive bounded support
:weights weights associated to each observation
:model reference model
:band if a band for normality is computed (T) or not (NIL)
:display controls the graphical output
:points-on-plot logical flag which controls whether or not observed points are drawn
:props list defining the proportions of the data to be included within each

contour in a slice plot for two-dimensional data
:add object address which contains the graphical output if required,

NIL otherwise

As an example of their use, suppose we want to add to the previous plot a density estimate for the other
two periods. This is very easy, since we need only to get the graph address from the sm-density object
created, and then call the function sm-density specifying that we want to add the density estimate to an
existing graph.

> (def y1 (log (select span (which (= period 1)))))
> (def y2 (log (select span (which (= period 2)))))
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Table 2: Methods for accessing results from a sm-density-proto object
Method Description
:estimate density estimate at each evaluation point
:se standard error at each evaluation point
:upper variability band upper limit at each evaluation point, computed

as the density estimate plus 2 times the standard errors
:lower variability band lower limit at each evaluation point, computed

as the density estimate minus 2 times the standard errors
:normdens-band-upper upper limit for the normality band
:normdens-band-lower lower limit for the normality band
:graph address of the last graph drawn

> (sm-density y2 :add (send sm :graph) :color ’blue :type ’dashed)
> (sm-density y1 :add (send sm :graph) :color ’cyan)
> (send (send sm :graph) :legend 4 1 ’("Period = 1" "Period = 2" "Period = 3")

:color ’(black blue cyan)
:type ’(solid dashed solid)
:width ’(1 1 1)
:frame T)

Figure 2: Density estimation for the log span data within each period from the sm-aircraft.lsp dataset.

The final plot is shown in Figure 2.

Example 2.2 (tephra data) As a further example, script 2.6 contained in the file sm-script.lsp

shows how to obtain reference bands for normality using the tephra data. These data record the percentages
of aluminium oxide found in samples from a tephra layer resulting from a volcanic eruption in Iceland
around 3500 years ago. Since the variable Al203 is a percentage, before computing the density estimate a
logit transformation is applied.

> (load "tephra")
> (def logit (log (/ Al2O3 (- 100 Al2O3))))
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> (sm-density logit :model "Normal" :xlab "logit(Al203)" :points-on-plot nil)

The density estimate is shown on the left panel of Figure 3, together with reference bands for normality.
The argument :points-on-plot sets to NIL implies that observed points are not drawn at the bottom
of the plot.

In the previous estimate we did not provide a bandwidth, so by default a normal optimal bandwidth has
been used (see 4.2, and Bowman and Azzalini, 1997, pp. 31-32). It is known that bandwidths chosen using
this criterion tend to oversmooth if the underlying density is not normal. Perhaps a better approach would
be to select the bandwidth based on some other more general criterion, as for example by cross-validation
(see Section 4.2, and Bowman and Azzalini, 1997, pp. 32-34). The following instrunctions allow to use the
cross-validation criterion to select the bandwidth, and then compute the density estimate.

> (hnorm logit)
0.0263566
> (setf hcv (hcv logit))
0.017678
> (sm-density logit :h hcv :model "Normal" :xlab "logit(Al203)")

The hnorm function returns the normal optimal smoothing parameter, which is larger than the band-
width choosen by cross-validation using the hcv function. The density estimate based on the latter band-
width is shown on the right panel of Figure 3. Bowman and Azzalini (1997, p. 40, script 2.6) uses the
Sheather-Jones plug-in criterion to select the bandwidth, and this provides a value of

$
very close to that

selected by cross-validation.

Figure 3: Density estimates of the tephra.lsp data with reference bands for normality. On the left panel a normal
optimal smoothing parameter has been used, whereas a smoothing parameter selected by cross-validation on the right
panel.

Table 3: Methods for computing and graphing density estimates
Method Description
:compute starts computing density estimates based on the information stored in the

slots of the current object
:plot draws a plot of the current density estimates

Table 3 may be of interest to experienced Xlisp-Stat users. The two methods shown are responsible
for computing and plotting the density estimates. This may be helpful if we want to re-compute or re-
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graph the density estimate based on the same data but changing one or more parameters. For instance, in
some circumstances we would like to investigate the sensitivity of our nonparametric estimate to bandwidth
size changing. Thus, we may define different bandwidths and plotting the results on the same graph to
allow comparisons. Two approaches may be adopted. The first approach defines the list of values for the
bandwidth, computes the first density estimate, and then adds the successive estimates to the existing plot.
Taking a different approach, we may define only one sm-density-proto object, and then repeatedly
modify the parameter hmult to control the amount of smoothing applied.

> (def sm (sm-density logit :xlab "logit(Al203)"))
> (send sm :h) get the default bandwidth used
0.0263566
> (send sm :hmult) get the default multiplier of h
1
> (def hmult (list 0.5 0.75 1.25 1.5)) define a list of values for hmult
> (send sm :add (send sm :graph)) set the plot for adding the density estimates
> (dotimes (i (length hmult)) starts the loop

(send sm :hmult (select hmult i)) ... re-defines the value of the slot hmult
(send sm :compute) ... re-computes the estimates
(send sm :plot)) ... graphs the results

Example 2.3 (aircraft span data) Data on the aircraft span based on the first two principal components
can be used as an example of density estimation in two dimensions (see also script 1.4). After loading the
dataset, a perspective plot and a contour plot using the default normal bandwidth can be obtained as follows:

> (load "sm-aircraft-pc")
> (def pc3 (list (select Comp1 (which (= period 3)))

(select Comp2 (which (= period 3)))))
> (sm-density pc3 :xlab "Comp1" :ylab "Comp2")
> (sm-density pc3 :display "slice" :xlab "Comp1" :ylab "Comp2")

Figure 4: Bivariate density estimates of the Aircraft span data in the file sm-aircraft-pc.lsp The left panel
shows a perspective plot, whereas the right panel a contour plot with default contour at 75, 50 and 25 percent levels.

2.2 Comparison of univariate density estimates

sm-density-compare
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Args: (x group &key h
(display "lines")
(model "none")
(test nil test-set)
(band T)
(ngrid *sm-ngrid*)
(nsim 100)
(verbose T)
xlab ylab )

This function allows a set of univariate density estimates to be compared, both graphically and formally
in a bootstrap hypothesis test of equality (see Bowman and Azzalini, 1997, Section 6.2). The data x are
grouped based on the argument group, and the same smoothing parameter h is used for each group. If
:model is "none" comparison is restricted to plotting only. The alternative value "equal" produces a
permutation hypothesis test of equality. For two groups, an appropriate reference band is displayed, unless
:band is set to NIL. The number of permutation simulations is controlled by the argument :nsim.

2.3 Nonparametric density estimation of stationary time series data

sm-ts-pdf

Args: (x &key h lags
(display "persp")
(ngrid *sm-ngrid* set-ngrid)
(points-on-plot T)
(varname "x"))

This function estimates the density function of a time series x, assumed to be stationary (see Bowman
and Azzalini, 1997, Section 7.2). The univariate marginal density is estimated in all cases. Bivariate
densities of pairs of lagged values are estimated depending on the keyword argument :lags, a list of
values for the lags to consider in the joint distribution estimation. The bandwidth can be set by the argument
:h, and if missing a normal optimal bandwidth is used. The :display argument controls the bivariate
density plot, with possible values "persp" (default) and "slice".

3 Nonparametric regression estimation

A general formulation for a nonparametric regression model takes the form

� ��� ��� �����
where

�
denotes the response variable,

�
the explanatory variable and

�
an independent error term with

zero mean and variance equal to �
0
. The aim of a nonparametric regression is to provide an estimate of the

smooth function
� � �&�

.
A simple kernel estimator of

� � �&�
is the local mean estimator (see Bowman and Azzalini, 1997, p. 49)

�� ��� ���
	
�� � � � ���

� � � "+$ � � �
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� � � "%$ �
where the kernel function � � ,

"+$ �
is a smooth positive function, wich gives weights that decrease monoton-

ically as � , � increases in size. As for density estimation, a normal kernel function centered at the evaluation
point with mean 0 and standard deviation

$
is used. Therefore,

$
acts as smoothing parameter.
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The local mean estimator provides an estimate
�� ��� �

by computing a local average in the neighbour of
the evaluation point

�
. A better estimator, in particular near the edges of the region over which the data

have been collected, is the local linear estimator. This involves solving the following least squares problem

�����
��� �

�� �
� �
��� � �
	 ��� ��� � � � � 
 0 � ���

� � � "%$ �
and taking as the estimate at the evaluation point

�
the value

�	
(see Bowman and Azzalini, 1997, p. 50).

Extension to two dimensions is straightforward (see Bowman and Azzalini, 1997, p. 52-53).

3.1 The sm-regression function

The function sm-regression can be used for nonparametric regression estimation in one or two dimen-
sions:

sm-regression

Args: (x y &key (h nil) (hmult 1)
(h-weights nil) (weights nil)
(binning nil) (nbins nil)
(model "none")
(display "lines") if 1D (display "persp") if 2D
(print T)
(add nil) levels
(test nil) (poly-index 1)
(design-mat nil)
(ngrid nil) eval-points
xlab ylab zlab levels
(points-on-plot T)
(color ’black) (symbol ’disk)
(type ’solid) (width 1))

The required arguments are the covariate(s) x (list of values in the one covariate case, or a list of lists
or a matrix with two columns in the two covariates case), the response variable y (a list of values), and the
smoothing parameter h (a list of one or two values, for the one- and two-dimensional case respectively).

The keyword argument :poly-index controls whether local mean estimator (0) or a local linear
estimator (1) is used.

The graphical output is controlled by the keyword argument :display. The setting "none" or NIL
will prevent any graphical output from being produced. With one covariate, the default setting "lines"
will produce the regression estimate, while the setting "se" will in addition produce a variability band,
showing the variability, but not the bias, of the estimate (see Bowman and Azzalini, 1997, pp. 75-77). With
two covariates, the default setting "persp" will produce a perspective plot of the regression estimate,
while the setting "contour"will produce a contour plot with levels specified by the argument :levels.
This must be list of heights of contour lines, and by default 5 levels are used to drawn contours which cover
the range of the smooth estimate of y.

The keyword argument :model defines the reference model. The values "none", "no effect"

and "linear" are possible. When a model is provided, a reference band for the reference model is
plotted on the graph. Moreover, if :test is T a formal test is produced using the reference model as the
null hypothesis (see Bowman and Azzalini, 1997, Sections 5.2, 5.3).

Most of the remaining arguments have the same meaning we have already discussed for the sm-
density function. Details can be obtained throught the on-line help.
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The function sm-regression returns a sm-regression-proto object as its result. Then, the
user may assign the returned object to a variable and send messages to it.

The slot values can be retrieved sending the messages summarized on Table 4, and the results from the
nonparametric regression are stored in the slots reported on Table 5. As we saw for the density estimation
case, slot values can be modified and the needed computations invoked sending the message :compute,
while a new plot may be obtained through the :plot method (see Table 3.1).

Table 4: Methods for accessing slot values in a sm-regression-proto object
Method Description
:x data for the covariate(s), i.e. the observed data or the

binned data if binning is used
:x-obs observed data for the covariate(s)
:y data on the response variable, i.e. the observed data or the

binned data if binning is used
:y-obs observed data on the response variable
:h value of the smoothing parameter
:hmult multiplier for the smoothing parameter (by default equal to 1)
:h-weights weigths applied to the smoothing parameter
:nbins number of bins used if any, NIL otherwise
:ndim number of dimensions
:ngrid number of points used in a regular grid for estimation
:eval-points points where the nonparametric smoothing regression have been evaluated
:weights weights associated to each observation
:poly-index the estimator used, 0 for local mean estimator and 1 for local linear estimator
:model reference model
:band when a reference model is provided, this slot is set to T and a band will be

plotted on the graph (only for one covariate); setting this slot to NIL will
prevent any band to be plotted

:display controls the graphical output
:points-on-plot logical flag which controls whether or not observed points are drawn
:add object address which contains the graphical output if required,

NIL otherwise

Example 3.1 (brain weight data) The following example considers the data on brain weight (BrainWt)
in grams and body weight BodyWt in kilograms for sixty-two species of mammals. This dataset is
described by Cook and Weisberg (1999, Section 5.1) and can be analyzed in Arc by loading the file
brains.lsp. A linear regression model for BrainWt on BodyWt, both expressed on a log scale, with
constant variance function seems reasonable. We may further investigate this linear relationship comparing
the estimated parametric model with a nonparametric regression model (see Bowman and Azzalini, 1997,
Section 5.3). The cross-validation criterion may be used to select the smoothing parameter, then a plot
of the estimated smooth function together with reference bands for linearity allows to perform a graphical
check. This can be obtained typing the following commands:

> (load "brains")
> (def log[BodyWt] (log BodyWt))
> (def log[BrainWt] (log BrainWt))
> (setf hcv (hcv log[BodyWt] :y log[BrainWt] :display "lines"
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Table 5: Methods for accessing results from a sm-regression-proto object
Method Description
:estimate regression estimates at each evaluation point
:estimate-grid regression estimates over a grid formed by the evaluation points
:se standard errors at each evaluation point
:upper variability band upper limits at each evaluation point, computed

as the regression estimates plus 2 times the standard errors
:lower variability band lower limits at each evaluation point, computed

as the regression estimate minus 2 times the standard errors
:sigma estimated standard deviation of the error
:graph address of the last graph drawn from the object
:regression-test computes p-value for a hypothesis test that checks a reference

parametric regression model with the estimated nonparametric model.

Table 6: Methods for computing and graphing nonparametric regression estimates
Method Description
:compute starts computing regression estimates based on the information

stored in the slots of the current object
:plot draws a plot of the estimated nonparametric regression model

:hstart 0.3 :hend 1.5 :ngrid 20))
(0.49632 #<Object: f1bcd0, prototype = SCATTERPLOT-PROTO>)
> (def sm (sm-regression log[BodyWt] log[BrainWt] :h (select hcv 0) :model "linear"

:xlab "log[BodyWt]" :ylab "log[BrainWt]"))
Test of linear model: significance = 0.1243

The function hcv returns a list giving the value of

$
which minimizes the cross-validatory criterion

and a plot showing the criterion function plotted over the search grid of smoothing parameters (see top-left
panel of Figure 5).

The nonparametric regression analysis is then performed through the function sm-regression,
which returns an object assigned to the variable sm (again, you may want to use a different name as well).
The graphical output shown in the bottom panel of Figure 5 is also produced. From this plot we can see
that the estimated smooth function lies inside the reference band over almost all the range of the predictor.
A formal hypothesis test suggest that there is no strong evidence against the reference linear model. Since
this test depends on the smoothing parameter selected, it is possible to obtain the observed significance for
a range of smoothing parameters as follows:

> (sig-trace sm (rseq 0.3 1.5 10))
((0.3 0.433333 0.566667 0.7 0.833333 0.966667 1.1 1.23333 1.36667 1.5)
(0.204511 0.129438 0.128668 0.148171 0.164595 0.175607 0.189515 0.211389
0.241197 0.276249)

#<Object: c8641c, prototype = SCATTERPLOT-PROTO>)

The significance trace plot, shown on the top-right panel of Figure 5, suggests no strong evidence against
the null hypothesis (for further details on the methodology see Bowman and Azzalini, 1997, p. 93).

Example 3.2 (ethanol data) Consider the dataset contained in the file ethanol.lsp, where the goal
is to model nitric oxide concentration (NOx) from the emissions of a single cylinder engine as a function of
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Figure 5: Nonparametric regression analysis of the brains.lsp dataset. The top-left panel shows the CV criterion
evaluated over a grid of � values, while the top-right panel shows the significance trace plot. The graph on the bottom
is the plot of the estimated smooth function with reference bands for linearity.

equivalence ratio (E), a measure of the richness of the air and fuel mix in the engine, and of compression
ratio of the engine (C). This dataset has been studied extensively, among others, by Cleveland (1993).
We start by loading the data and using the function hcp for selecting the bandwidths (see Section 5.4),
both separately and jointly for the two predictors. We also provide the corresponding approximate span
computed as defined in Section 4.1.

> (load "ethanol")
> (hcp E NOx :display T)
(0.0205786 #<Object: eff744, prototype = SCATTERPLOT-PROTO>)
> (sm-span E 0.025786)
0.221974
> (hcp C NOx :hstart 1 :hend 15 :ngrid 15 :display T)
hCP: boundary of search area reached.
Try readjusting hstart and hend.
hstart: 1
hend : 15
Values of h and CP:
1 4.77802
1.21341 4.2412
1.47236 3.49723
1.78657 2.76979
2.16783 2.14982
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2.63047 1.61278
3.19183 1.13083
3.87298 0.716118
4.69951 0.397845
5.70241 0.173718
6.91935 0.0206948
8.39599 -0.0830884
10.1877 -0.153441
12.3619 -0.201155
15 -0.233531
Warning: Dumped
> (hcp (list E C) NOx :hstart 1 :hend 15 :ngrid 15 :display T)
((0.434613 8.39571) #<Object: f29008, prototype = SCATTERPLOT-PROTO>)
> (sm-span E 0.434613)
3.74129
> (sm-span C 8.39571)
4.79755

The selected bandwidth for E is equal to 0.0205786, which corresponds to a span of approximately
0.22. The same function is then applied to C, but the criterion does not converge even after re-adjusting the
seach grid. The problem is due to the fact that NOx is almost constant as C varies, so the criterion tends to
select the largest bandwidth value available in the search grid. This difficulty also emerges if we use both
predictors: the bandwidths selected are extremely large. Adopting an heuristic approach for bandwidth
selection, we computed the values corresponding approximately to a span of 0.5, and then we used them
for smoothing data in two dimensions.

> (sm-bandwidth E 0.5)
0.0580833
> (sm-bandwidth C 0.5)
0.875
> (sm-regression (list E C) NOx :h (list 0.058 0.875)

:xlab "E" :zlab "C" :ylab "NOx")
> (def sm (sm-regression (list E C) NOx :h (list 0.058 0.875)

:display "contour" :levels ’(3 2 1 0)
:xlab "E" :zlab "C" :ylab "NOx"))

> (send sm :summary)
Nonparametric regression
Local linear estimator Kernel function: Normal(0,h)
Response = NOx h = (0.058 0.875)
Terms = E, C span = (0.499283 0.5)

Sigma: 0.219
Number of cases: 88
Fitted df: 28.788
Residual df: 59.212
RSS: 2.837

The first fitting produces the perspective plot shown in the left panel of Figure 6, while the latter gives the
contour plot in the right panel of Figure 6, where levels are computed at selected value of NOx estimated.
From such graphs the underlying relationship between the response and the two predictors can be easily
assessed.
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Figure 6: Nonparametric regression analysis of the ethanol.lsp dataset. The left panel shows the estimated
smooth function through a perspective plot, whereas the right panel through a contour plot.

3.2 Nonparametric analysis of covariance

A nonparametric analysis of covariance model (see Bowman and Azzalini, 1997, Sections 6.4, 6.5) may be
written as � � � � �

� ��� � � � � �
�
�

where � is used to identify groups ( � � � �������	��� ), and � indexes the �
�

observations within each group.
Furthermore, each group has its own smoothing function

�
� � �&�

. This general nonparametric analysis of
covariance model may be adapted to reflect the assumption of parallel nonparametric regression functions,
that is we may write � � � � 	

�
��� ��� � � � � �

�
�

where there is a single smooth function
� � � �

, but different intercepts
	
�

for each group.
The sm library can be used to perform a nonparametric analysis of covariance using the function

sm-ancova

Args: (x y &key group h (display "lines")
(model "none")
(band T)
(test T)
(h.alpha nil)
weights
(binning nil) (nbins nil)
(add nil)
(ngrid *sm-ngrid*)
eval-points
xlab ylab
(points-on-plot T)
color symbol type width)

The required arguments are the covariate x, the response variable y, the grouping variable group, and
the smoothing parameter h.

The reference model can be set using the keyword argument :model, which can take the values
"none", "equal" and "parallel". Setting :band to T a reference band for the reference model
will be produced (only in the case of two groups). A formal test can also be obtained setting :test to T.
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3.3 Nonparametric estimation of the autoregression function

The dependence structure of a process
� ���/


can be studied nonparametrically analyzing the conditional
mean function or autoregression function. This may be written as (see Bowman and Azzalini, 1997, Section
7.3) ��� � ���'��� ��� � � � �	� � � ��� for 
�� �
or � � � � � � � , �'�
� ��� � � � �	� � � � � � �	� � � , � for ��� � � 


The function in the sm library for fitting this kind of models is the following:

sm-autoregression

Args: (x &key h (d 1)
(lags (iseq 1 d))
(se nil)
(ngrid *sm-ngrid*)
(add nil)
display
(varname "x")
(color ’black)
(type ’solid) )

As usual, the argument x provide the data, in this case a list of time series values, while h the bandwidth
used for kernel smoothing.

The keyword argument :d provides the number of past observations used for conditioning (1, the de-
fault, or 2), whereas :lags needs to be a list containing the lags considered for conditioning. If :se is set
to T pointwise confidence bands are computed of approximate ����� level.

3.4 Nonparametric analysis of repeated measurements data

A repeated measurements model can be formulated in a nonparametric context as follows (see Bowman and
Azzalini, 1997, Section 7.4) � � � � � ��� � � � � �
where � is used to identify individuals ( � � � �������	��� ), and

�
indexes the time (

� � � �������	� � ). The smooth
function

� � �&�
is a function of time, and the errors

�
�
� are correlated within each individual and independent

between individuals (a further assumption often made is that of stationarity).
Such a model can be fitted using the sm library through the function

sm-rm

Args: (y &key Time
(minh 0.1) (maxh 2) (hngrid 100)
(display "lines")
(poly-index 1)
(add nil) (ngrid *sm-ngrid*)
(display-rice nil) (print t)
(varname "y")
(color ’black) (type ’solid) (symbol ’disk))

This function estimates nonparametrically the mean profile for repeated measurements (i.e. longitudinal
data) from a matrix y, with each rows associated to individuals and columns associated to observation times.
The smoothing parameter is computed using the modified Rice criterion, which selects the bandwidth taking
into account the estimated autocorrelation function (see Bowman and Azzalini, 1997, p. 139).
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Further details are provided in the on-line help. Scripts 7.3 and 7.4 show some statistical analyses on
repeated measurements data.

3.5 Nonparametric regression with autocorrelated errors

A nonparametric regression model with autocorrelated errors can be stated as follows

� �.��� ��� �
� � ���
where the

� � �&�
is a smooth function which depends on single covariate observed over time (

� � � �������	� � ),
and the errors

� �
are generated by a stationary stochastic process with mean 0 (see Bowman and Azzalini,

1997, Section 7.5).
The function in the sm library which fits a nonparametric regression model with autocorrelated errors

is the following

sm-regression-autocor

Args: (y hfirst &key (x nil)
(minh 0.5) (maxh 10) (hngrid 50)
(method "direct")
(display "plot")
(add nil) (ngrid *sm-ngrid*)
(display-gcv nil) (display-acf nil)
(print T)
(xlab "x") (ylab "y")
(color ’black) (type ’solid))

This function estimates nonparametrically the regression function of y on x when the error terms are
serially correlated. The keyword :method specifies the optimality criterium adopted: possible values are
"no.cor" "direct" (default), and "indirect".

4 Other functions in the sm library

The file sm-functions.lsp contains the definition of global variables used by the sm library (see
Table 7), and several functions used in conjunction with methods for nonparametric density and regression
estimation.

4.1 Controlling the span and the bandwidth of the smoothing parameter

The amount of smoothing applied to the data is controlled by the smoothing parameter

$
, which in the sm

library corresponds to the standard deviation of a gaussian kernel function with zero mean. Often, since
the bandwidth is expressed in absolute value, a more easily interpretable measure is computed, namely
the span, which is the proportion of sample data providing positive weights. Since we are using a normal
kernel with standard deviation

$
, we may reasonably assume that data points outside a range of

���
times

the standard deviation receive virtually zero weight. Hence, there exists the following approximate relations

����� �
	 �
�

$
����� ��� �.� ��� � ��� �

and $
	
����� � � � ����� ��� �.� ����� ��� �
�

�
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Table 7: Global variables for the sm library
Variable Default value Description
*sm-band* T If T reference bands produced by sm-density and

sm-regression are plotted as a shaded area,
otherwise as lines.

*sm-ngrid* 100 The number of points in a regular grid used to plot the
kernel estimate. For two-dimensional data approximately,
*sm-ngrid*/2 number of points are used along each
dimension.

*sm-glm-ngrid* 25 The number of points in a regular grid used for fitting
local likelihood models.

*sm-glm-aic* NIL If T the corrected version of AIC is used in local
likelihood model (see Section 6.8)

*sm-plot-size* ’(600 450) Sets the size of the graphs produced through
the sm library.

Note that the above approximations turns out to be exact, except near the boundaries, when data points
along the x-axis are evenly spaced. Hence, the approximate value of the span is really the proportion of the
observed range of

�
which receives positive weights for a given evaluation point. In this respect, it provides

a simple descriptive statistic of the amount of smoothing applied to the data.
Two functions are available for computing the span for a given bandwidth and viceversa.

sm-bandwidth

Args: (x span &key (nnbr nil))

This function calculates the bandwidth for the data x (a list, a list of lists or two-columns matrix) corre-
sponding to the span provided by the argument span. If nnbr is T a list of weights based on nearest
neighbour distances is calculated; this allows to use variable bandwidths. In two dimensions, the same
calculations are applied to each dimension. If nnbr is NIL only the bandwidth is returned, otherwise a list
with the bandwidth and a list of weights.

These weights are computed as

� � ���
� �'����� ��� � ������

where
� � ��� � �

is the 
 th nearest neighbour distance of the covariate value
�
�

(computed with the function
(nnbr x k) for k=round(n*span)) and

��
is the geometric mean of the

� � ��� � �
. Variable bandwidths

can then be defined as

$ � � $ � � ���
� �

for an overall bandwidth

$
(see Bowman and Azzalini, 1997, pp.

17-19). Weights based on nearest neighbour distances can be provided as argument to :h-weigths in
both the sm-density and sm-regression functions.

sm-span

Args: (x h)

This function returns the span for the data x (a list, a list of lists or two-column matrix) corresponding to
the bandwidth h.

Example 4.1 (follicle data) The follicle.lsp dataset can be used to show how variable bandwidths
may be fitted with the sm library. The data concern the number of ovarian follicles counted from sectioned
ovaries of women of various ages. The scatterplot of log[Count] vs Age shows that points are sparse
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along the x-axis, with data denser at older ages. Using a span of 0.5 we compute a nonparametric regression
curve with fixed bandwidth and one with variable bandwidth. For comparison purposes also a lowess
estimate is computed and then added to the plot. The last command provides a legend.

> (load "follicle")
> (def h (sm-bandwidth Age 0.5 :nnbr t))
> h
(4.25 (3.62644 3.62644 ... 0.997271 1.08793))
> (def sm (sm-regression Age log[Count] :h (first h)

:xlab "Age" :ylab "log[Count]"))
> (sm-regression Age log[Count] :h (first h) :h-weights (second h)

:add (send sm :graph) :type ’dashed)
> (def lw (lowess Age log[Count] :f 0.5))
> (send (send sm :graph) :add-lines (first lw) (second lw) :color ’red :width 2)
> (send (send sm :graph) :legend 5 6 ’("sm fit with fixed bandwidth"

"sm fit with var. bandwidths"
"lowess")

:color ’(black black red)
:type ’(solid dashed solid)
:width ’(1 1 2)
:frame T)

Figure 7: Nonparametric regression analysis of the follicle.lsp dataset. The solid curve is based on a nonpara-
metric regression with span approximately equal to 0.5 and fixed bandwidth, the dashed line uses variable bandwidths,
and the thick line is obtained with the lowess smoother.

4.2 Functions related to density estimation

Nearest neighbour distances from data in one or two dimensions

nnbr

Args: (x k)
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This function calculates the 
 nearest neighbour distance from each value in
�

to the remainder of the
data. In two dimensions, Euclidean distance is used after standardizing the data to have unit variance in
each component.

Mean integrated squared error for density estimation with normal data

nmise

Args: (sd n h)

This function evaluates the mean integrated squared error of a density estimate which is constructed
from data which follow a normal distribution (see Bowman and Azzalini, 1997, pp. 26-17).

Normal optimal choice of smoothing parameter in density estimation

hnorm

Args: (x &optional weights)

This function evaluates the smoothing parameter which is asymptotically optimal for estimating a den-
sity function when the underlying distribution is normal (see Bowman and Azzalini, 1997, pp. 31-32).

Cross-validatory choice of smoothing parameter

hcv

Args: (x &key (y nil) (h-weights nil) (ngrid 8)
(hstart nil) (hend nil) (display "none") (add nil))

This function uses the technique of cross-validation to select a smoothing parameter suitable for con-
structing a density estimate or nonparametric regression curve in one or two dimensions (see Bowman and
Azzalini, 1997, pp. 32-34, 77-79).

Cross-validation criterion for nonparametric density estimation

cv

Args: (x h &optional (h-weights nil))

This function computes a cross-validatory criterion, based on integrated squared error, for use in select-
ing a smoothing parameter in nonparametric density estimation.

Sheather-Jones choice of smoothing parameter for density estimation

hsj

Args: (x &key (step-tol 0.1))

This function uses the Sheather-Jones plug-in method for selecting a bandwidth which is suitable for
constructing a density estimate in the one-dimensional case (see Bowman and Azzalini, 1997, pp. 34-36).

Sheather-Jones criterion for nonparametric density estimation

sj

Args: (x h)

This function computes a criterion associated with the Sheather-Jones plug-in method of selecting a
bandwidth in nonparametric density estimation.
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Integrated squared error between a density estimate and a normal density

nise

Args: (y &optional (hmult 1) (nbins (nbins y)))

This function evaluates the integrated squared error between a density estimate constructed from a
standardized version of the univariate data y and a standard normal density function (see Bowman and
Azzalini, 1997, pp. 38-40).

4.3 Functions related to nonparametric regression

Weighted mean and variance

wmean

Args (x w)

wvar

Args: (x w)

The two functions return, respectively, the weighted mean and the weighted variance of x with weights
given by w, where x and w can be a list or a vector.

A significance trace for a hypothesis test comparing a reference parametric model with a nonpara-
metric one

sig-trace

Args: (smreg hvec &key (plot T))

This functions creates a significance trace for a hypothesis test based on a nonparametric smoothing
procedure. The argument smreg must be a sm-regression object and hvec a list of smoothing pa-
rameters for which the test will be performed. It :plot is T the p-value of the test is plotted against a range
of smoothing parameters (see Bowman and Azzalini, 1997, pp. 89, 93).

Probability that a quadratic form is greater than zero

p-quad-moment

Args: (A Sigma &optional (tobs 0) (ndevs 0))

This function calculates the probability that a quadratic form
����� �

is greater than zero, where
�

�
� ��� ���� � �

. The arguments which must be provided are the �
	!� matrix of coefficients for the quadratic
form, and the ��	*� covariance matrix. Optional arguments are required if binning is used and they are,
respectively, the observed statistic and the number of observations minus the number of bins.

Estimation of the smoothing matrix in nonparametric regression

sm-weight

Args: (x h &key (eval-points x) (hmult 1)
(h-weights (repeat 1 (length x)))
(poly-index 1) (cross nil)
(weights (repeat 1 (length x))))
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For the one-covariate case, this function computes a length(eval-points) by length(x)

smoother matrix � such that the local polynomial smooth of y on x with bandwidth h and weights h-
weights is given by � y.

An analogue function called sm-weight2 allows to obtain the smoothing matrix in nonparametric
regressions with two covariates.

Estimation of the error standard deviation in nonparametric regression

sm-sigma

Args: (x y &key (diff-ord 2) (devs nil)
(weights (repeat 1 (length y))))

This function uses ideas of local differencing to estimate the standard deviation of the errors in a non-
parametric regression model with one covariate. Simple first-order differencing of pairs of neighbouring
observations, or a method based on pseudo-residuals constructed from three neighbouring observations,
may be used (see Bowman and Azzalini, 1997, pp. 73-75).

4.4 Binning

When the number of data points is high, the method of binning (see Wand and Jones, 1995, Appendix D)
may be used to avoid lengthy computations and use of very large matrices. If binning is used in density
estimation, the data are tabulated with the use of the function binning, and the outcome is passed with
the frequencies computed as weights.

binning

Args: (x &key (y nil) (breaks nil) (nbins nil))

Given the data in x, this function constructs a frequency table associated to appropriate intervals cover-
ing the range of x. This can be a list, a vector, or a matrix with one column in the one dimensional case,
whereas a list of lists, or a matrix with two columns in the two dimensional case. If you want to use bin-
ning in nonparametric regression you must provide a list or a one-column matrix of values for the response
variable with :y.
The argument :breaks, either a list or a matrix with two columns, assigns the division points of the axis,
or the axes in the matrix case. If :breaks is not given, it is computed by dividing the range of x into
:nbins intervals for each of the axes. The argument :nbins gives the number of intervals on the x axis
(in the univariate case), or a list of two elements with the number of intervals on each axes of x (in the
bivariate case). If :nbins is not given, a value is computed as (round (+ (log (length x) 2)

1)) or using a similar expression in the bivariate case.
The function returns a list of several elements, and for details see the on-line help.

A sort of “optimal” number of bins is returned by the following function:

nbins

Args: (x &optional (k 500))

For the list or list of lists x, given the cutoff value k, returns the number of bins to use according to the
following rule:

��������� � 	�

��� ��� ��� ������� � � �
� � �
����� if ����� �!#"
otherwise

where n is the number of observations and ndim is the dimension of x.
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5 Extra functions for nonparametric density and regression

The file sm-addson contains code not provided in the original sm library and implements methods dis-
cussed mainly by Loader (1999).

5.1 Diagnostics for density estimation

Once we have obtained a density estimate for the data at hand, we may ask whether such estimate fit the data
or not. This question is not easily answered since there is no natural definition of residuals as for regression
problems, and no reference model for comparison, such as a saturated or null model. Loader (1999, pp.
87-90) suggests two graphical checks:

1. compare the integral of the density estimate

�� ��� � �������� ��.��� � � �
with the empirical distribution function

��
	���
 ��� ��� ��
�� �
� ��� ���

�
� � �

Thus, plot
�� ��� �

vs
��
	���
 ��� �

and use the latter (which is the MLE for the true cumulative distribution
function) as a reference for comparing the distribution function based on kernel estimation.

2. use PP-plot and QQ-plot for
�� ��� �

and
��
	���
 ��� �

respectively. The probability (PP) plot exploits the
result that any cdf is distributed uniformly on the range � � � ��� . Hence, if ��� ��� is the � th order statistic,
then

� � � � ��� ��� �
� � � � � � � � � , and a plot of
�� � ��� ��� � vs � � � � � � � should be close to a straight line

with zero intercept and unit slope. The quantile (QQ) plot transforms back to the observation scale,
plotting ��� ��� vs

�� � � � � � � � � � �/� . Also in this case, any departure from a straight line indicates lack
of fit.

The library allows, only for the one-dimensional case, to obtain a plot of the estimated cdf vs the
emprical distribution function, and the PP-plot for the estimated cdf.

Example 5.1 (aircraft span data) Recalling the aircraft.lsp dataset, we may get a density estimate
for the log span on the third period and these dignostic plots as follows:

> (load "sm-aircraft")
> (def y3 (log (select span (which (= period 3)))))
> (def sm (sm-density y3 :xlab "Log Span"))
> (send sm :diagnostic-plots)

The method :diagnostic-plots produces the plots shown in Figure 8. The estimated CDF is com-
puted by the :est-cdf method.

5.2 Smoothing matrix, approximate df, residuals and diagnostic plots for nonpara-
metric regression

A method called :smooth-matrix has been added to the sm-regression-proto in order to obtain
the smoothing matrix. This method returns a

� � 	 � � smoother matrix � evaluated at the observed points�
�

( � � � �������	� � ) for the current nonparametric regression model.
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Figure 8: Diagnostic plots for nonparametric density estimation.

Fitted values for the current sm-regression model can be retrieved with the message :fit-

values. These are defined as
�� � ��� , where � is the smoothing matrix evaluated at the observed

points and � is the vector of observed values for the response variable.
Residuals, defined as �

� � � � � �� �
, can be retrieved sending the message :residuals. A plot of

the residuals vs the explanatory variable (one-predictor case) or the fitted values (two-predictors case) is
produced by the method :plot-residuals.

The approximate “number of parameters” used by the smoothing procedure is given by the degrees of
freedom of a local fit. In analogy with the definitions used in parametric linear models (see Hastie and
Tibshirani, 1990, Sec. 3.5), two possible definitions are:

� � ����� � � �
� 0 ����� �
	 � � � � � �

where � is the smoothing matrix evaluated at the observed values. The method :fitted-df returns the
approximate degrees of freedom for the current fit. The computing formula is controlled by the optional
parameter formula, which may take the value 1 (default) or 2, for �

�
and �

0
respectively.

In the context of model comparison, approximate degrees of freedom for the error may be defined as
� � �2����� �
� � � �'� � ����� � � ��� � � � �
� � 0 ����� � �
� � � � � �
� � � � � � � ����� �
	 � � � � � �'� � � � 0

where
�

is an identity matrix of suitable dimensions. To avoid an expensive calculation of
� � 0

, Hastie and
Tibshirani (1990, Appendix B) suggest to use the following approximation

	 ��� � � � ����� � � � � � 	 � � 	 � ��� � � �.� � � �
The method :df returns the approximate degrees of freedom for the error. It also takes the optional argu-
ment formula for controlling the computational formula: 1 for

� � �
, 2 for

� � 0
and 3 for the approximated

version of
� � 0

. It may be worthwhile to note that the above definitions of degrees of freedom coincide when� is a projection matrix.
For any evaluation point

�
, the estimated value computed with a nonparametric regression model can

be written as �� ��� � � �� �
� � �

��� � � � � � �
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where �
��� � � � � ���

� � � �%
 �� � � is the row of the smoothing matrix � corresponding to the evaluation point�
. This shows that nonparametric regression estimators are a linear function of the response variable. Thus,

it is easy to see that
� � �� ��� � � � �� �

� � �
��� � � � � � ��� � �'�

�
��� � � � ��� �

and
� � � � �� ��� � � � � 0 �� � � � � ���

� � � � 0 � � 0 � � � ��� � � � 0

These results form the basis for some diagnostic procedures (see Loader, 1999, pp. 27–29). Assume the
evaluation points are the actual observed values of the explanatory variables, so � is a

� � 	 � � smoothing
matrix. The diagonal elements of � , denoted as �

� ��� � �
, may be used as a measure of the sensitivity of

the estimated curve to the individual data points. Another useful quantity is the variance reducing factor
� � � ��� � � � 0 which measures the reduction in variance due to the local regression. It can be shown that

�� � � � � ��� � � � 0 � �

� ��� � � � �
The two extreme cases correspond, respectively, to a smoothed curve which is equal to the sample average
of the response variable, and a curve which interpolates exactly the observed points.

Diagnostic plots can be obtained through the method :diagnostic-plots. As a result a graph
with the following functions is drawn:

� Influence function: a plot of diagonal elements of � vs the explanatory variable (one-predictor case) or
the fitted values (two-predictors case);

� Variance function: a plot of variance reducing factors vs the explanatory variable (one-predictor case) or
the fitted values (two-predictors case).

Finally, a printed summary for the fitted nonparametric model is provided when the evaluation points
are set equal to the observed points. In any case, this summary may be obtained sending the message
:summary to a sm-regression object.

5.3 Generalized cross-validatory choice of smoothing parameter for nonparamet-
ric regression

The generalized cross-validation criterion can be used to select a smoothing parameter for a nonparametric
regression curve in one or two dimensions. The GCV statistic is an estimate of the predictive mean squared
error (PMSE), and it is given by

��� � � $ � � � 	
�� � � � �

� � �� ��� � �
� 0
� � � �

where �
�

is equal to the trace of the smoothing matrix, so
� � � � � � is an estimate of the degrees of freedom

already discussed.
In the sm library the GCV criterion can be invoked using the following function:

hgcv

Args: (x y &key (h-weights nil) (ngrid 10) (hstart nil) (hend nil)
(nnbr nil) (display "none") (add nil)
(color ’black) (type ’solid) )

The x argument provides the explanatory variable (a list, a vector, or a single column matrix) in the one-
dimensional case, or the explanatory variables (a list of lists or a two-column matrix) in the two-dimensional
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case. y is a list of response values. If the argument :nnbr is set to T a nearest neighbour bandwidth is
used. The argument :display controls the graphical output: any character setting other than "none"
will cause the criterion function to be plotted over the search grid of smoothing parameters. The particular
value "log" will use a log scale for the grid values, whereas "df" will use the fitted degrees of freedom
on the x-axis. By default fitted df are computed using � � in Section 5.2, whereas �

0
is used if :display

is set to "df2". The remaining arguments were already discussed in the hcv function (see Section 4.2).

5.4 Mallows’ CP criterion for selecting the smoothing parameter for nonparamet-
ric regression

Mallows’ CP criterion can be used to select a smoothing parameter for nonparametric regression in one or
two dimensions. The CP criterion is an estimate of the squared estimation error, and is given by

��� � $ �'� �
�
0
�� �
� �
� � � � �� ��� � �/� 0 � � � 	 � �

An estimate of �
0

is required. Cleveland and Devlin (1988) suggested to use the normalized residual
sum of squares evaluated at the smallest bandwidth considered (i.e. where the bias is the smallest):

�� 0 � �� � 	 � � � � 0
�� �
� �
� � � � �� ��� � �
� 0

The CP criterion can be applied using the following function:

hcp

Args: (x y &key (h-weights nil) (ngrid 10) (hstart nil) (hend nil)
(nnbr nil) (display "none") (add nil)
(color ’black) (type ’solid) )

All the arguments have the same meaning already discussed in the previous section for the hgcv function.

Example 5.2 (motorcycle data) Considers the mcycle.lsp dataset (Silverman, 1985), which records
data from an experiment to test crash helmets. A series of measurements of head acceleration after a
simulated motorcycle crash were recorded (accel), together with the time in milliseconds since impact
(times). Since observations are sparse for large values of the covariate, we might think to use a variable
bandwidths based on nearest neighbour distances.

> (load "mcycle.lsp")
> (def hgcv (hgcv times accel :nnbr T :ngrid 20 :display T))
(1.53183 #<Object: ca4160, prototype = SCATTERPLOT-PROTO>)
> (def hcp (hcp times accel :nnbr T :ngrid 20 :display T))
(1.57266 #<Object: c9dfa0, prototype = SCATTERPLOT-PROTO>)
> (sm-span times 1.53)
0.166304

The smoothing parameter selected by the GCV criterion and the CP criterion are almost the same (see
also Figure 9), and corresponds to a span of about 0.166. Since we are using variable bandwidths, we first
need to get the weights for any observation at the selected span. Then, we fit a local linear regression model
and we produce some diagnostic plots.
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Figure 9: Generalized cross-validation plot (left panel) and CP plot (right panel) for bandwidth selection in the mcy-
cle.lsp dataset.

> (def h (sm-bandwidth times (sm-span times 1.53) :nnbr T))
(1.53 (3.29206 3.2381 ... 4.91111))
> (def smreg (sm-regression times accel :h (first h) :h-weights (second h)

:eval-points times
:xlab "times" :ylab "accel"))

Nonparametric regression
Local linear estimator Kernel function: Normal(0,h)
Variable bandwidths
Response = accel h = 1.530
Term = times span = 0.166

Sigma: 22.825
Number of cases: 133
Fitted df: 13.856
Residual df: 119.144
RSS: 60600.097

> (send smreg :plot-residuals)
> (send smreg :diagnostic-plots)

The top panel of Figure 10 shows both the smooth regression function obtained using variable band-
widths (solid line) and the smooth function obtained with fixed bandwidth as follows:

> (sm-regression times accel :h (first h)
:eval-points times
:add (send smreg :graph) :type ’dashed
:xlab "times" :ylab "accel")

Nonparametric regression
Local linear estimator Kernel function: Normal(0,h)
Response = accel h = 1.530
Term = times span = 0.166

Sigma: 22.825
Number of cases: 133
Fitted df: 16.072
Residual df: 116.928
RSS: 61660.119
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Figure 10: Nonparametric regression model for the mcycle.lsp dataset. The top panel shows the plot of the re-
sponse variable vs the explanatory variable together with the estimated smooth functions, solid for variable bandwidths
and dashed for fixed bandwidth. The bottom-left panel shows the residuals plot, while the bottom-right panel shows the
influence and variance functions.
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6 Local likelihood estimation for generalized linear models

Local likelihood fitting was proposed by Tibshirani (1984) and Hastie and Tibshirani (1987). The basic idea
is that whenever a likelihood function is available we can maximize it locally in order to obtain an estimate
of a response variable at some point, say

���
. Data points in a neighbourhood of

���
are weighted according

to a smooth function which gives weights that decrease as
�
�

increases in distance from
���

. A technical
discussion of the local likelihood approach is given by Fan et al. (1995), while a full account of the topic is
provided by Loader (1999).

This approach allows to fit a smooth curve on a scatterplot of data, taking directly into account the
nature of the response variable. In the case of a binomial response, and even more for a bernoulli variable,
smoothers developed for a continuous variable are not satisfactory because they do not use the information
available. For instance, if we smooth a scatterplot of a binary vs a continuous predictor with a smoother for
continuous data, a clear drawback is that we are not taking into account the binary nature of the response, so
the fitted smooth curve could lie outside the range � � � ��� . On the contrary, using a local likelihood approach
we can model directly this information and obtain a smooth curve that fit the data in a more sensible way.
The same arguments apply for bounded variables, such as nonnegative variables, or discrete variables, such
as those expressing counts.

The sm library provided by Bowman and Azzalini (1997) allows to smooth binomial and Poisson data.
The corresponding Xlisp-Stat functions are described in Section 6.10. A more general approach suitable
for any GLM family should be included in the further release of the sm library for S-Plus. In the current
release of the sm library for Xlisp-Stat, we developped several functions for applying the local likelihood
approach to any GLM, and these are described in the following sections.

6.1 A review of the theory of local likelihood for GLMs

Assume that a response variable
�

has a distribution in the exponential family, taking the form

��� � � " � �%( �'��� �	� � � � � ��
 ��� � � � � � ( � ��
 � � �%(�� 

where

�
, the canonical parameter, and

(
, the dispersion parameter, are scalar values. �

� �
,

 � �

,

 � �

are known
functions, which determine the specific parametric family of distributions (see McCullagh and Nelder, 1989,
Table 2.1, p. 30). Usually,

�
is the parameter of interest, whereas

(
is regarded as a nuissance parameter.

The log-likelihood for a set of � i.i.d. observations is given by

� ���� � " � ���
�� � � �
����� ���2� � � " � � �

where
� ��� � � � � �

whose � th component is
�
� ��
�� ��� � �

. Assuming we have � observations on a set of �

covariates � �3������� � � 
 , the systematic component of a GLM is given by � � � ��� � � �
, where � � � is called the

linear predictor and its � th component is �

� � � � � � �
�
.

Finally, the link function connects the random and systematic components, that is

�

� � � ��� � �
so the mean function is given by

� � � � � �
� �'� � � � � �

� �'� � �	� � � � � � �
� �

.
Maximum likelihood estimates for

� � �
are obtained by setting the first derivative of the log-likelihood

with respect to each parameter equal to zero and then solving the system of equations. Since this is usually
a set of nonlinear equations, estimates are obtained numerically through the Fisher scoring algorithm or the
Newton-Raphson method (Nelder and Wedderburn, 1972).
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6.2 Local likelihood function

Suppose we have a single predictor, and we denote the log-likelihood as
� � � � � " � � . The local likelihood

approach essentially applies a weighting mechanism to the log-likelihood, so we can write

��� � � � � � � " � ��� ��� � � � � � � " � � � � ��� � � � "%$ � (1)

where � ���
� � � "+$ �

is a weighting function that determines the relative importance of each contribution�
� � � � � " � � �

to the log-likelihood.
Generally, � � ,

"+$ �
is a smoothing function which peaks at 0 and decreases monotonically as

,
increases

in size. This puts more weight on the observations
�
�
s close to

�
, and decreasing weights for

�
�
s that

are distant from
�

. The smoothing parameter

$
controls the bandwidth of the smoothing function, that

is the width of the nearest neighbourhood of
�

. Only the observations that lie in this neighbourhood will
contribute to the log-likelihood. The proportion of points that lie in it is called the span. Thus, the smoothing
parameter controls the degree of smoothing applied to the data.

The local likelihood in equation (1) for any point of evaluation
�

, and for a given smoothing parameter
$

, is equal to the sum of the contribution
�
� � � � � " � � �

from each observed value
�
�
, weighted by a smoothing

function of the distance of
�
�

from
�

.
For any

�
we can maximize the local likelihood (1) with respect to

� � �
, which provides the local estimate�� � �

(in a more formal notation we should indicate the coefficient estimates at
�

with
�� � � � , but we avoid this for

simplicity of notation). The fitted value at
�

can then be computed as

�� � � �� � � � �
where � � � � � � � � .

Applying the inverse link function transformation, we can express the fitted value in the response vari-
able scale as �� � � � �	� � �� � � � � �
6.3 Smoothing weights

Since the local likelihood estimates depend on the weighting function � ���
� � � "%$ �

, we need to define the
weights to use on each

�
� � � � � " � � �

.
Let � � � ������� �������	� ����� � � be the 
 	 � vector of points where evaluate equation (1), and ��� ��� a 
 	 �

vector of values all equal to the � th ordered observation
�
�
. Define a 
 	 � matrix as

� ��� �
� � � � �
� 0 � �������	� �
� � �
	� ��
 ���� � ��� � � � � � ������� � � � 	� ��
 ���� � �������
��� � � ����� � ��� 0 � ����� � ����� ��� � � � ��� ���� � � ����� � ��� 0 � ����� � ����� ��� � � � ��� �

...
...

...��� � � � � � � ��� 0 � � � � � ����� ��� � � � � � �
������

where the generic
� � � � � -th element is given by

��� � � � ��� �
. Therefore, the

�
matrix has elements equal

to the difference between the point of estimation and the observed value of the predictor. The smoothing
weights are then obtained by applying a smoothing function, which depends on

$
, to

�
. For instance, we

can use a normal kernel density with standard deviation equal to

$
, so the smoothing weights are defined as

� ���
� � � � � "+$ �'��� � �

	 � �
	�� � � � ��� �$ ! 0#"
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When � �
� � � ��� � is zero the � th observation has weight equal to one, and as the distance increases the weights

decrease approaching zero for observations
�
�
s far from the point of evaluation

�����
. Since we are using a

normal kernel, observations outside a range of
���

$
standard deviations from

� � �
have approximately zero

weight and their contribution to the local likelihood will be nearly zero.
Once we have obtained the weights we can use the IRWLS procedure for fitting a generalized linear

model using as prior weights � ���
� � � "+$ �

for � � � �������	� � , and repeating the fitting procedure 
 times,
one for each evaluation point

��� �����
.

6.4 Variability bands

As in all statistical models, it is useful to have a measure of the uncertainty associated with the estimated
values. Usually this is done providing standard errors for the estimates and/or confidence intervals for a
given confidence level. An informal approach can be pursued providing the so-called variability bands (see
Bowman and Azzalini, 1997, pp. 75–76). These bands indicate pointwise confidence intervals for

� � �� � �
rather than

�� � .
Assume that for each evaluation point � � � � � � � � � � we have fitted a local regression model, and we

have obtained a vector of coefficient estimates
�� � �
. Associated with these estimates, a covariance matrix

given by
� � ��� ��� � � �	� is provided, where

� � ��� � � � is the design matrix and
� ��� is the matrix of

weights obtained at the end of the iteratively reweighted least squares procedure. For the fitted value of the
linear predictor �� � � � �� � � � � �
the variance can be computed as

� � � � �� � � ��� ( � �� � � � � � � � � � � � �
where, if required, we need to plug-in an estimate for

(
. A variability band in the linear predictor scale can

be constructed to indicate the size of two standard errors above and below
�� ��� . Applying the inverse link

function transformation to the lower and upper limits of this band, we obtain a set of variability bands for
the mean.

6.5 Approximate degrees of freedom

As we saw in Section 5.2 the approximate fitted degrees of freedom expresses the “number of parameters”
used by the smoothing procedure. For generalized linear models, the number of coefficients estimates can
be computed through the hat matrix defined as

� �	� ��
 0 � � � � � � � �	� ��� �

 0
where

�
is the deign matrix and

�
is the matrix of known weights obtained at the end of the iterative fitting

algorithm (see McCullagh and Nelder, 1989, p. 405). In analogy with the linear regression models, the
trace of the hat matrix equals the number of parameters.

In a local likelihood GLM with evaluation points equal to the observed points, for each �

� � � � � � � � �
the corresponding leverage is given by$ � ��� ��
 0� �

�

� � � � � ��� � � �	� �
�
� �

 0�

where
�
�

is the � th diagonal element of
� ��� for the current fit. Summing

$ �
over all � provides the approxi-

mate number of fitted degrees of freedom

� ����� � �� �
� �
$ �
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Residual degrees of freedom are easily obtained as
� ��� ������� � � � � �����

6.6 Goodness of fit measures

A general measure of goodness of fit used in GLM is the deviance. This is defined as twice the difference
between the log-likelihood of a saturated model (which has as many parameters as the number of obser-
vations) and the log-likelihood for the current model. The exact form depends on the exponential family
distribution under study, and it can be expressed as the sum of � components

� � � � �� � � ���
�� �
� �
� � � � � �� � �

where
� � � � � �� � �

is the contribution from the � th observation. This definition easily extends to local likeli-
hood GLM, where in this case

�� � � � �	� � �� � ���
� �

, the mean evaluated at the � th observation.
Another measure of discrepancy is the Pearson � 0 statistic

� 0 � �� �
� �
� � � � �� � � 0
� � � � ��

� �
which extends to local likelihood models in a way similar to the deviance.

6.7 Residuals

Residuals for local likelihood are defined similarly to residuals for GLM based on the full likelihood. Some
possible choices are:

� raw residuals � � � � � � �� �
� deviance residuals �

	 �
� ��
 � � � � � � � �� � � � � � � � �� � � �

 0

� Pearson residuals �
� �
� � � � � �� �

� � � � �� � � ��
 0
where

�� � � � � � � �� ��� � and
� � � � ��

� �
is the variance function evaluated at the � th observation.

6.8 Choosing the smoothing parameter

As for linear nonparametric regression models, the choice of the smoothing parameter is a crucial step in
local likelihood models. An extension of the Akaike Information Criterion (AIC) can be used to guide this
selection.

The AIC, which is an estimate of the expected Kullback-Leibler information (Burnham and Anderson,
1998), is defined as 
��

� � � 	 � � ��� � �� � ��� � 	 

where

������� � �� � ��� is the likelihood for the unknown parameter
�

evaluated at the estimate
��

based on data�
, and 
 is the number of estimated parameters which acts as a penalizing term. Recalling the definition of

the deviance, the AIC is proportional to the deviance from the fitted model plus a penalty term:
��
��� � � 	 
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The AIC criterion applied to a local likelihood model selects the smoothing parameter

$
for which the

following statistic is minimized: 
��
�*� $ �'� �� �

� �
� � � � � �� � ��� 	 


where 
 � � � ��� . The AIC criterion is valid asymptotically, so refinements have been proposed for small to
moderate sample sizes. In particular, when the ratio � � 
 is small (less than 40 it is generally recommended)
the penalizing term should be equal to

	 
 � � � � � � 
 � � �
� , so the corrected AIC criterion can be computed
as 
��

��� � 
�� � � 	 
 � 
 � � �� � 
 � �
6.9 The sm-glm function

The function sm-glm allows to estimate generalized linear models using the local likelihood approach.

sm-glm

Args: (x y &key (trials nil) (offset nil) (h nil) (family nil) (link nil)
(ngrid *sm-glm-ngrid*) (eval-points nil)
(display "estimate") (band nil)
(add nil) (verbose T)
(xlab "x") (ylab "y") (points-on-plot T)
(color ’black) (symbol ’disk)
(type ’solid) (width 1))

The required arguments are the covariate x (list or vector of values), the response variable y (a list or
vector of values), the smoothing parameter h, and the family.

The :family argument must be a string specifying the distribution for the response variable. Families
supported are: "normal", "binomial", "poisson", and "gamma". Strictly connected is the :link
argument, which must be a Xlisp-Stat link object. By default, canonical link functions are used:

Family Canonical link
"normal" identity-link
"binomial" logit-link

"poisson" log-link

"gamma" inverse-link

Other link functions are available (as probit-link, cloglog-link, power-link, sqrt-link)
or may be created by the user as described by Tierney (1991).

The argument :trials is used if the family is "binomial", and by default is assumed to contain
all 1’s. The argument :offset can be used to provide a list or a vector of offset values.

The graphical output is controlled by the keyword argument :display. The setting "none" or NIL
will prevent any graphical output from being produced. The default setting "estimate" or Twill produce
the estimated mean function to be plotted vs the covariate, while the setting "se" will in addition produce
a variability band. The latter may also be obtained setting the argument :band to T.

The smooth mean function is evaluated by default on a grid of equally spaced points with number of
points given by :ngrid. However, these may be specified through the argument eval-points (a list
or a vector of values). If the evaluation points are set equal to the observed points a summary of the local
likelihood fitting is printed.

The function sm-glm returns a sm-glm-proto object as its result. Then, the user may assign the
returned object to a variable and send messages to it.
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The slot values can be retrieved sending the messages summarized on Table 8, and the results from
the local likelihood fitting are stored in the slots reported on Table 9. As we saw for density and regres-
sion smoothing, slot values can be modified and the needed computations invoked sending the message
:compute, while a new plot may be obtained through the :plot method (see Table 6.9).

Table 8: Methods for accessing slot values in a sm-glm-proto object
Method Description
:x data for the covariate
:y data on the response variable
:h value of the smoothing parameter
:eval-points points where the local likelihood model have been fitted
:ngrid number of points used in a regular grid for estimation
:band this slot is set to T if a variability band must be plotted
:display controls the graphical output
:add object address which contains the graphical output if required,

NIL otherwise

The AIC criterion for choosing the smoothing parameter in local likelihood model can be invoked
through the following function:

haic-loclik

Args: (x y &key (trials nil) (family nil) (link nil)
(ngrid 10) (hstart nil) (hend nil)
(display n̈one)̈ (add nil) (verbose T)
(color ’black) (type ’solid) )

where the arguments have the same meaning as in the hcv, hgcv, and hcp functions for bandwidth
selection already discussed. Furthermore, arguments required by the sm-glm function must be provided
as well.

6.10 Local likelihood for logistic and Poisson regression and PRLT test

In the sm library for S-Plus two functions are available for fitting binomial and Poisson local likelihood
models with canonical link function. These functions are also available in the Xlisp-Stat version of the
library. Actually, they merely provide a quick way of calling the sm-glm function with the required
arguments but without specifying the family and link function to use.

sm-logit

Args: (x y &key (trials (repeat 1 (length y)))
(h nil)
(ngrid *sm-glm-ngrid*)
(eval-points nil)
(display "estimate")
(verbose t) (add nil)
(xlab "x") (ylab "y")
(points-on-plot T)
(color ’black) (symbol ’disk)
(type ’solid) (width 1))

This function estimates the logistic regression curve using the local likelihood approach for the observations
on a binomial response and an associated set of covariate values. The arguments have the same meaning
discussed for the sm-glm function (see Section 6.9).
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Table 9: Methods for accessing results from a sm-glm-proto object
Method Description
:estimate mean function estimates at each evaluation point (for binomial models

this provides estimated probability, while if an offset have been
provided it is not included)

:se standard errors at each evaluation point
:leverages leverages at each evaluation points
:scale scale parameter estimated from the corresponding global GLM model
:glm-model the glim-proto object for the fitted model based on the full likelihood
:span approximate span for the current fit
:mu list of estimated mean values

�

:variances list of variance values
�

:deviances list of deviance values
�

:deviance deviance
�

:pearson-x2 Pearson � 0 �

:raw-residuals list of raw residuals
�

:residuals list of Pearson residuals
�

:deviance-residuals list of deviance residuals
�

:chi-residuals list of Pearson � 0 residuals
�

:fitted-df approximate fitted degrees of freedom
�

:df approximate degrees of freedom for the error
�

:aic Akaike Information Criterion
�

:sm-weights matrix of smoothing weights for the current evaluation points
:variability-band a list of upper and lower limits of a variability band
:upper variability band upper limits at each evaluation point, computed

as the regression estimates plus 2 times the standard errors
:lower variability band lower limits at each evaluation point, computed

as the regression estimate minus 2 times the standard errors
:graph address of the last graph drawn from the object

�

The method applies only if the evaluation points are equal to the observed points.

sm-poisson

Args: (x y &key (h nil)
(offset nil)
(eval-points nil)
(ngrid *sm-glm-ngrid*)
(display "estimate")
(verbose T) (add nil)
(xlab "x") (ylab "y")
(points-on-plot T)
(color ’black) (symbol ’disk)
(type ’solid) (width 1))

This function estimates the regression curve using the local likelihood approach for a vector of Poisson
observations and an associated vector of covariate values. Also in this case, the arguments have the same
meaning discussed for the sm-glm function (see Section 6.9).



Journal of Statistical Software, 2001, Vol. 6 39

Table 10: Methods for computing and graphing nonparametric regression estimates
Method Description
:compute starts computing local likelihood estimates based on the information

stored in the slots of the current object
:plot draws a plot of the estimated mean function vs the covariate
:plot-residuals plots the deviance and Pearson residuals vs the covariate

�

:summary Prints a summary of the fitting for the local likelihood model
�

�

The method applies only if the evaluation points are equal to the observed points.

A comparison between a parametric GLM and a nonparametric model may be performed through the
so-called Pseudo-Likelihood Ratio Test (see Azzalini et al. 1989, Azzalini and Bowman, 1997, pp. 98–
104). This bootstrap goodness-of-fit test allows to test a parametric model vs a nonparametric model. The
functions for applying such tests are:

sm-logit-bootstrap

Args: (x y &key (trials (repeat 1 (length y)))
(h nil) (nboot 100)
(degree 1) (phi 1)
(plot nil) (xlab nil) (ylab nil))

This function performs a Pseudo-Likelihood Ratio Test for the goodness-of-fit of a standard parametric
logistic regression. The argument nboot gives the number of bootstrap samples (by default is set equal
to 100). The parametric model is fitted using a polynomial in x with degree given by :degree (default
1). A dispersion parameter can be provided through the argument :phi. The function returns a list of lists
containing:

� the plot object representing the bootstrap samples;

� the observed value of the Pseudo-Likelihood Ratio Test statistic;

� the observed p-value estimated via the bootstrap method.

A similar function is also provided for a Poisson regression model:

sm-poisson-bootstrap

Args: (x y &key (offset nil) (h nil)
(nboot 100) (degree 1) (scaled-dev nil)
(plot nil) (xlab nil) (ylab nil))

The arguments take the same meaning as in the previous function, except :scaled-dev which if set to
T allows the differences in deviance to be scaled by an estimate of the dispersion parameter. The function
returns a list as in the previous case.

Example 6.1 (mortality rate) The dataset from Henderson and Sheppard (1919) in the file mortable.lsp
reports the observed number of deaths (D) for ages from 55 to 99 (Age), and the corresponding total number
of patients in each class (N) . We could think to model this data as they come from a binomial distribution
where the response variable is the number of death people and the trials are the number of subjects in the
class.

Suppose we want to estimate a function that smooths the data and gives a summary of the mortality
rates. To apply a local likelihood fitting, we must choose the smoothing parameter. The AIC criterion
applied to this dataset gives the following results:
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> (load "mortable")
> (def h (haic-loclik Age D :trials N :family "binomial" :display T :ngrid 20))
AIC criterion for local likelihood models
-----------------------------------------

h AIC fitted df
2.20000 53.80545 9.34915
2.41756 53.59445 8.69225
2.65664 53.50962 8.08704
2.91937 53.55760 7.53128
3.20807 53.71496 7.00712
3.52533 53.97245 6.50615
3.87396 54.29760 6.01681
4.25706 54.65898 5.54063
4.67805 55.01668 5.08565
5.14068 55.33454 4.66456
5.64906 55.58525 4.28740
6.20771 55.75592 3.95722
6.82161 55.85155 3.67092
7.49621 55.89387 3.42291
8.23754 55.91216 3.20760
9.05217 55.93459 3.02082
9.94736 55.98114 2.85936

10.93109 56.06173 2.72068
12.01209 56.17750 2.60241
13.20000 56.32337 2.50225

> h
(2.69162 #<Object: 56c798, prototype = SCATTERPLOT-PROTO>)
> (sm-span Age 2.69)
0.366818

The bandwidth selected is 2.69162, which corresponds to a span of approximately 0.37. Then, the local
likelihood GLM can be fitted as follows:

> (def loclik (sm-glm Age D :trials N :family "binomial" :h 2.69 :band T
:xlab "Age" :ylab "Pr(Death)" :eval-points Age))

Computing local likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
Local likelihood model
Family = Binomial Kernel function: Normal(0,h)
Link = logit-link h = 2.690
Response = Pr(Death) span = 0.367
Term = Age

Scale: 1.000
Number of cases: 45
Fitted df: 8.011
Residual df: 36.989
Deviance: 37.487
AIC: 57.520
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Figure 11: AIC plot for bandwidth selection (left panel) and the fitted smooth curve obtained by local logistic model
with variability bands for the regression of death rates vs Age with ��� ��� ���	�

.

Figure 11 shows the smooth curve obtained applying the local likelihood estimation with smoothing
parameter

$ � 	 � � � . We also plot the variability bands for the estimated smooth curve. The death rate
increases as age increases up to age 88 approximately, then becomes constant and rapidly increases after 95
years. However, we must be careful in the interpretation of this latter shape, since there are few observations
after age 95, and for age 99 just one case, which is a death. This uncertainty is revealed also by the width
of the variability bands, which is quite large for older and younger ages.

Depending on the context we could stop here the analysis. Anyway, we proceed a little further, assuming
that, based on the nonparametric local fitting, we want to seek for a suitable parametric model that captures
the main features on the data. We fitted a polynomial logistic model and Table 11 shows that a linear and a
quadratic term in Age seem to be required.

Table 11: Analysis of Deviance Table
Source df Deviance p-value AIC
Null model 44 273.487 275.580
Age 43 54.344 0.00000 58.630
Age+Age

0
42 49.927 0.03558 56.512

Age+Age
0
+Age



41 49.135 0.37368 58.135

s(Age) 36.989 37.487 57.520

A way of testing the adequacy of a parametric model compared to a nonparametric one obtained through
local likelihood may be obtained via the pseudo-LRT:

> (sm-logit-bootstrap Age D :trials N :h 2.69 :degree 1
:xlab "Age" :ylab "Pr(Death)")

Bootstrap goodness-of-fit test for a logistic regression model.
------------------------------------
Dispersion parameter = 1
PLRT test statistic = 16.85730
Observed significance = 0.09000

> (sm-logit-bootstrap Age D :trials N :h 2.69 :degree 2
:xlab "Age" :ylab "Pr(Death)")

Bootstrap goodness-of-fit test for a logistic regression model.
------------------------------------
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Dispersion parameter = 1
PLRT test statistic = 12.44006
Observed significance = 0.16000

The observed significance seems to suggest that a second degree polynomial on Age should suffice, so
providing a further confirmation of what discussed previously.

Example 6.2 (birds in paramo vegetation) A study was conducted to investigate the number of bird
species in isolated islands of paramo vegetation in the northern Andes. The aim was to investigate how
the number of species is related to some covariates. The dataset is contained in the file paramo.lsp and
we focus on the relationship between the number of species and the area of the island, so a Poisson model
seems to be reasonable.

Again, the AIC criterion can be used for bandwidth selection. Since the number of observations is small,
we may adopt the corrected version of AIC (see Section 6.8) by setting the global variable *SM-GLM-AIC*
to T. Then, we fit the Poisson local likelihood model.

> (load "paramo")
> (def log[AR] (log AR))
> (def *SM-GLM-AIC* T)
> (setf h (haic-loclik log[AR] N :family "poisson" :ngrid 15 :display T))
(0.424878 #<Object: fa1580, prototype = SCATTERPLOT-PROTO>)
> (def loclik (sm-glm log[AR] N :family "poisson" :h 0.424878 :band T

:xlab "log[AR]" :ylab "N" :eval-points log[AR]))
Computing local likelihoods . . . . . . . . . . . . . .
Local likelihood model
Family = Poisson Kernel function: Normal(0,h)
Link = log-link h = 0.425
Response = N span = 0.595
Term = log[AR]

Scale: 1.000
Number of cases: 14
Fitted df: 5.378
Residual df: 8.622
Deviance: 23.594
AIC: 43.348

The fitted curve is shown on the right panel of Figure 12.

7 Nonparametric regression with survival data

The functionsm-survival creates a smooth, nonparametric estimate of the quantile of the distribution of
survival data as a function of a single covariate. A weighted Kaplan-Meier survivor function is obtained by
smoothing across the covariate scale. A small amount of smoothing is then also applied across the survival
time scale in order to achieve a smooth estimate of the quantile (for details on the methodology see Bowman
and Azzalini, 1997, pp. 59–62).

sm-survival

Args: (x y status h &key (hv 0.05) (p 0.5) (status.code 1)
(eval-points nil) (ngrid 50)
(display "lines") (add nil)
(xlab "x") (ylab "y")
(color ’black) (type ’solid) (widht 1))
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Figure 12: AIC plot for bandwidth selection (left panel) and the fitted smooth curve with variability bands for the
regression of N on log[AR]

The required arguments are x, a list of covariate values, y, a list of survival times, and status, a list
of indicator values defining the complete or censored survival times (by default an uncensored observation
is identified by the status given through the :status.code argument). Also required is h, the smoothing
parameter applied to the covariate scale. A normal kernel function is used and h is its standard deviation.

The smoothing parameter applied to the weighted Kaplan-Meier functions derived from the smoothing
procedure in the covariate scale is provided by :hv. This ensures that a smooth estimate is obtained.
The quantile to be estimated at each covariate value is given by :p, by default the median is estimated.
The remaining arguments have the same meaning already discussed for the functions sm-density, sm-
regression, etc.

This function returns a list whose elements are:

� the estimated quantiles at the covariate evaluation values;

� the covariate evaluation values;

� the smoothing parameter used for quantile estimation;

� the smoothing parameter used for the weighted Kaplan-Meier;

� the graph address of the plot.

Example 7.1 (Stanford data) As an example consider the data on the survival times of patients of differ-
ent ages from the Stanford Heart Transplant Study. Thus, the response variable is taken to be the survival
time on a log scale (Log.time) and the covariate is given the patient age in years (Age).

> (load "stanford")
> (def sm (sm-survival Age Log.time Status 7 :xlab "Age" :ylab "Log.time" :width 2))
> (sm-survival Age Log.time Status 7 :p 0.25 :add (select sm 4) :color ’blue)
> (sm-survival Age Log.time Status 7 :p 0.10 :add (select sm 4) :color ’red :type ’dashed)
> (send (select sm 4) :legend 58 4 ’("Est.Surv curves:" "p = 0.50" "p = 0.25" "p = 0.10")

:color ’(white black blue red)
:type ’(solid solid solid dashed)
:width ’(1 2 1 1)
:frame T)
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The first call to the function sm-survival estimates the median of the survival times, while the following
the 25th and 10th percentile respectively which are added to the first plot. A legend is also added to the
plot, which is shown in Figure 13.

Figure 13: Smooth survival curves for the Stanford data at selected percentiles.

8 Extra functions accompanying the sm library

The file sm-miscfun.lsp provides several functions which can be of interest to Xlisp-Stat programmers
and users. Most of them originated from existing S-Plus functions. They have been written during the
development of the Xlisp-Stat version of the sm library, but hopefully they can result useful per se. In the
following we briefly describe some of the most user-oriented, while the remaining functions can be read off
directly from the source code.

Perspective plot

persp.s

Args: (x1 x2 y &key (add nil) (spline 3)
(axes nil) (frame T)
(type ’solid) (color ’black)
(variable-labels nil))

Creates a perspective plot given a matrix that represents heights on an
evenly spaced grid (similar to a S-Plus function).

x1 = vector containing x1 coordinates of the grid over which y is evaluated.
The values should be in sorted order.

x2 = vector containing x2 coordinates of the grid over which y is evaluated.
The values should be in sorted order.

y = matrix of size length(x1) by length(x2) giving the surface height at grid
points, i.e. y[i,j] is evaluated at (x1[i], x2[j]). The rows of y are
indexed by x1, and the columns by x2.

add = if nil a new plot is returned, otherwise the perspective plot
is added to the graph object given as argument.



Journal of Statistical Software, 2001, Vol. 6 45

axes = if axis is T then axes are plotted on the graph.
frame = if frame is T then a frame box is drawn on the graph.
variable-labels = if not NIL they provide the labels for X, Y, and Z axes.

It must be a list of three strings.

Contour plot

contour.s

Args: (x1 x2 y &key (add nil) (variable-labels nil)
(nlevels 5) levels plevels
(color ’black) (type ’solid) (width 1))

Creates a contour plot given a matrix that represents heights on an
evenly spaced grid (similar to a S-Plus function).

x1 = vector containing x1 coordinates of the grid over which y is evaluated.
The values should be in sorted order.

x2 = vector containing x2 coordinates of the grid over which y is evaluated.
The values should be in sorted order.

y = matrix of size length(x1) by length(x2) giving the surface height at grid
points, i.e. x1[i,j] is evaluated at (x1[i], x2[j]). The rows of y are
indexed by x1, and the columns by x2.

add = if nil a new plot is returned, otherwise the contour is added to the
graph object given as argument.

variable-labels = if not NIL they provide the labels for X1, Y, and x2 axes.
It must be a list of three strings.

nlevels = the approximate number of contour intervals desired. This is not
needed if either levels or plevels are specified.

levels = list of heights of contour lines. By default, nlevels lines are
drawn which cover the range of y.

plevels = a list of heights of contour lines expressed as the proportion of
the maximum height of the surface.

color = color for contour lines (see *colors*)
type = line type, either ’solid or ’dashed
width = line width, an integer value by default equal to 1 (normal line)

Adds or draws polygons to a plot

polygon

Args: (x y &key (add nil) (frame nil) (color ’red)
(title "Polygon Plot") variable-labels)

Adds or draws a polygon with the specified vertices to a graph object.

X, Y = lists of values providing the coordinates of the vertices of a polygon.
Each list must be ordered, i.e. the ith point is connected to the i+1st.

ADD = if nil a new plot is returned, otherwise the polygon is added to the
graph object given as argument.

FRAME = if T a border is drawn around the polygonal region.
COLOR = specifies the color of the area within the polygon.
TITLE = a string for the plot title.
VARIABLE-LABELS = a list of two strings providing labels for the axes.

The function returns a plot object.
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To remove a polygon send the message :remove-polygon to a graph object.

A graph-proto method for formatting axes labels and tick marks of a graph

:set-axis

Meesage args: (axis &optional (min nil) (max nil)
(n.ticks nil) (n.minors nil)
(format nil))

This method allows formatting axes labels and tick marks.

axis = 0 for x axis and 1 for y axis.
min = the minimum of the axis
max = the maximum of the axis
n.ticks = the number of major tick marks
n.minors = the number of minor tick marks
format = a string specifying the format for labeling the major tick marks.

Standard lisp format parameters can be used.
Any values which are not to be changed should be specified as NIL.

A graph-proto method for adding a legend to a graph

:legend

Message args: (x y legend &key color type width symbol
(frame T) (outer nil))

Adds a legend to the plot at the location (x,y), the top left corner of the
rectangle. The content of the legend is specified by the argument legend, a
list of string to be associated with color, line types, plotting symbols and
width. If frame is T then the a box surrounding the legend is drawn.
To remove a legend send the :remove-legend message to a graph.

Functions related to matrices

var

Args: (x &key (print nil) (varname nil))
If x is a matrix the function returns the sample variance-covariance matrix,
if x is list or a vector it returns the sampling variance.
If print is t then a nice printing of the covariance matrix is returned, else
the matrix in lisp format. varname may be a list of strings with the name
of the variables.

corr

Args: (x &key (print nil) (varname nil) (r-squared nil))
Computes the correlation matrix of x, which can be a matrix or a list of lists.
If r-square is T the squared correlation matrix is returned.
If print is t then a nice printing of the correlation matrix is returned, else
the matrix in lisp format. varname may be a list of strings with the name
of the variables.

diag

Args: (x)
If x is a matrix, returns the diagonal of x. If x is a sequence, returns a
diagonal matrix of rank equal to (length x) with diagonal elements equal to
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the elements of x. If x is a number, returns an identity matrix of dimension
n x n.

dim

Args: (x)
Returns the dimensions of array x.

nrow

Args: (x)
Returns the number of rows of matrix x.

ncol

Args: (x)
Returns the number of columns of matrix x.

rbind

Args: (&rest args)
The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix
along their rows.
Example:
> (rbind (list 0 0) #2a((1 2)(3 4)) #(5 6))
#2A((0 0) (1 2) (3 4) (5 6))

cbind

Args: (&rest args)
The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix
along their columns.
Example:
> (cbind (list 0 0) #2a((1 2)(3 4)) #(5 6))
#2A((0 1 2 5) (0 3 4 6))

scale

Args: (x &optional (center nil))
Returns the standardized version of x, or if center is T the centered form
of x, which can be a list, a list of lists, or a matrix.
Both the standardization and the centering are performed by column.

block-matrix

Args: (x y)
Returns the block-diagonal matrix of dimension nrow(x)+nrow(y) by ncol(x)+ncol(y)
given by

x | 0
-----
0 | y

Functions related to time-series data

diff.s

Args: (x &key (lag 1))
Translation of the S-Plus diff function.

autocov
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Args: (x &optional (k 1) maxlag)
Returns the autocovariance function for the values in the list x.
The argument k provides the lags for the computation. If maxlag is
provided then k is set as a sequence of integer from 1 to maxlag.

autocorr

Args: (x &optional (k 1) maxlag)
Returns the autocorrelation function for the values in the list x.
The argument k provides the lags for the computation. If maxlag is
provided then k is set as a sequence of integer from 1 to maxlag.

acf-plot

Args: (y &key (time (iseq (length y)))
(maxlag nil)
(ACF nil)
(alpha 0.05)
(title "Correlogram"))

Plot autocorrelation function for the time series in the list y.
If ACF is provided, no autocorrelation function is computed but the values
provided are used instead.

9 Interface with Arc

Arc is a statistical software written by Cook and Weisberg (1999) in Xlisp-Stat for the analysis of regression
data. In addition to the standard Xlisp-Stat environment, Arc provides a set of utilities for reading, analyzing
and graphing data.

All the datasets used by Bowman and Azzalini (1997), as well as the datasets used for the examples of
this document, are provided in Arc format (see Cook and Weisberg, 1999, 554–559). This means that they
are plain text files containing the data values formatted by columns and some additional information, such
as variable names and dataset description.

A minimal interface with Arc is provided. Arc allows to use scatterplot smoothers acting on a slider
which appears on any 2D plot. By default a lowess smoother is used. A new item called sm-reg has
been added to the nonparametric slidebar, and it can be accessed through the corresponding pop-up menu.
This provides a very simple way of invoking the function sm-regression. The smoothing parameter,
expressed via the approximate span discussed in Section 4.1, is then selected by dragging the slider.

Local likelihood models may also be fitted through some items added to the nonparametric slidebar.
These allows to smooth binomial, Poisson and gamma data using canonical link functions. The smoothing
parameter is again selected through the corresponding slidebar. Finally, a slidebar has been added to any 3D
plot drawn from Arc, from which a smooth regression function for the two predictors case may be obtained
and the resulting smooth curve added to the plot.
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