
Orientlib: An R Package for Orientation Data

D.J. Murdoch

December 12, 2003

Abstract

Orientlib is an R package to facilitate working with orientation
data, i.e. elements of SO(3). It provides automatic translation be-
tween different representations of orientations, including rotation ma-
trices, quaternions, Euler angles and skew-symmetric matrices; it also
has functions for fitting regression models and displaying orientations.
This paper reviews simple properties of orientation data and describes
Orientlib.

Keywords: SO(3), orientation data, Euler angles, quaternions, ro-
tation matrices

1 Introduction

This paper describes Orientlib, an R package that provides routines
for working with data describing the orientation of solid objects in
3-space. R (Ihaka and Gentleman, 1996) is an open source imple-
mentation of the S language (Chambers and Hastie, 1992; Chambers,
1998). The aim of Orientlib is to facilitate research into statistical
methods using orientation data, by providing general support routines,
including conversions between commonly used representations, simple
transformations and statistical summaries, and one form of modelling
function.

Orientlib was motivated by work done several years ago in cal-
ibrating the Polhemus FasTrak system used by the Ergonomics Re-
search Group (ERG) at Queen’s University. The FasTrak system is
composed of a radio frequency transmitter that broadcasts a polar-
ized signal, and a number of detectors that measure received signal
strength in three orthogonal planes. A central unit collects all of the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6305109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information and outputs an estimate of the spatial position and ori-
entation of each of the detectors.

The ERG was using the FasTrak on site at an industrial plant, and
found that structural steel in the building distorted the measurements
unacceptably. We were involved in developing calibration procedures
for it; these have been described elsewhere (Day, Murdoch and Dumas,
2000). Other recent work in orientation data includes that of Rancourt
et al. (2000) on modelling and Shin et al. (2001; 2003) on design of
experiments. Orientlib is designed to provide the support necessary
to test and implement such work.

2 Orientation data

Orientation data describes the spatial orientation of a rigid object.
An orientation may be represented as the transformation necessary to
rotate standard vectors to the desired orientation, or as the inverse
transformation, which rotates the desired orientation into a standard
orientation. Orientations form the non-commutative compact group
SO(3).

There are a number of different ways in which elements of SO(3)
may be represented.

2.1 3× 3 matrices

Rotations are linear transformations that preserve length and hand-
edness; they may be represented by 3 × 3 orthogonal matrices (i.e.
matrices A satisfying AAt = AtA = I), with determinant 1. Each
such matrix uniquely identifies an orientation, but uses 9 numerical
components to do it, with 6 nonlinear constraints. Though SO(3) is a
3 dimensional manifold, there is no subset of 3 of the 9 matrix entries
that uniquely identifies the orientation.

2.2 Quaternions

Any SO(3) matrix may be represented as a rotation through angle θ
about a single axis parallel to (x, y, z). A four component unit vec-
tor, whose first three components are parallel to (x, y, z) and whose
fourth component is cos(θ/2), corresponds to Hamilton’s definition of
quaternions: the cosine forms the real part and the components of the

2

vector parallel to (x, y, z) form the three imaginary parts. Quaternion
multiplication corresponds to composition of rotations. Each quater-
nion q and its negative −q represent the same orientation; other than
this, the representation is unique.

2.3 Euler angles

Any orientation may be written as the composition of 3 rotations
about standard axes. There are in common use a large number of con-
ventions specifying the order of rotations. Two are the “x-convention”
in which rotations are specified as counter-clockwise rotations about
the Z axis, then about the X axis, then Z axis again, and the pitch-
roll-yaw convention, in which the rotations are about the Z, then
Y , then X axes. All Euler schemes give a number of different rep-
resentations for each orientation: multiples of 2π may be added to
any rotation angle, and certain combinations of angles lead to other
non-uniqueness.

2.4 Skew-symmetric matrices

A skew symmetric matrix is a matrix S satisfying S + St = 0. It is
easy to see that a 3× 3 skew symmetric matrix can be written as

S =

0 c −b
−c 0 a

b −a 0

and it is not hard to verify that Exp(S) =
∑∞

i=0 Si/i! is a rotation ma-
trix with rotation axis (a, b, c). Less obvious is that the rotation angle
is the Euclidean norm

√
a2 + b2 + c2; thus each orientation matrix has

multiple representations as “component vectors” (a, b, c) differing in
length by multiples of 2π.

2.5 Properties of Orientations

Given any pair of orientations U and V , there is a unique orientation
A1 = V U t such that V = A1U , where the product indicates compo-
sition of rotations. When the orientations are represented as 3 × 3
matrices, the product is the usual matrix product; using quaternions,
it is the usual quaternion product. In the other representations com-
position of rotations does not have a simple form.

3

Because SO(3) is non-commutative, the matrix A2 = U tV solving
V = UA2 is generally different from A1 as defined above. If U and V
share an axis of rotation, or if both are rotations of π radians (i.e. are
symmetric) with orthogonal axes of rotation, then A1 = A2.

The rotation angle of A1 will always match that of A2; this gives
a natural distance measure between U and V . It turns out that this
is a monotone transformation of coordinatewise Euclidean distance.
Stephens (1979) described an algorithm for finding the nearest SO(3)
matrix to a given matrix.

Prentice (1989) defined a model for matched pairs (Ui, Vi) of ori-
entations, in which Vi = At

1UiA2Ei, where Ui is treated as fixed, and
Ei is a random orientation having a distribution depending only on
the magnitude of the rotation angle, but not on the direction of the
rotation axis. Shin (1999) derived conditions on the choice of the Ui

orientations under which both A1 and A2 were identifiable.
A simple generalization of Prentice’s model to incorporate covari-

ates is to allow A1 and A2 to depend on the covariates. One way to
do this is to write each as the nearest SO(3) matrix to a matrix whose
entries are modelled as linear combinations of covariates, i.e.

Ak(x1, x2, . . .) = argminA∈SO(3)||A−
∑

j

xjBkj ||

where Bkj , k = 1, 2, j = 1, . . . , pk are arbitrary 3×3 matrices regarded
as regression coefficients in the model, and the xj values are scalar
covariates.

If for either k = 1 or k = 2 the Bkj matrices are all known, then
the rest may be estimated by least squares. For example, we may
know the coefficients for k = 1, so that A1 is known. A common ex-
ample would be to know that A1 is the identity matrix. Then the B2j

coefficients involved in calculating A2 are estimated by coordinatewise
least squares fitting of the linear model to coordinates of the matrices
U t

i A1Vi. Similarly, if A2 is known, the B1j coefficients are obtained
by least squares on the entries of UiA2V

t
i .

In the case where both sets of coefficients are unknown, nonlinear
least squares is necessary. By analogy with Prentice (1989), one ap-
proach is to alternate between treating A2 as fixed and using linear
least squares to estimate B1j , and treating A1 as fixed and estimat-
ing B2j . It is known (Shin, 1999) that Prentice’s algorithm sometimes
fails to find the global minimum, so care must be taken to try multiple
starting values when good initial estimates are not known.

4

The Orientlib package includes an example fitting this model to
artificial data; see ?orientlm. Different regression models using other
representations of orientations are possible, but the non-uniqueness of
those representations complicates fitting.

2.6 Graphical Displays of Orientations

Displaying orientations is challenging. One approach is to display
various one-dimensional statistics in scatterplots; for example, the
rotation angle or components of the rotation axis. These plots are
straightforward to produce, but fail to give the whole picture about
the orientation.

Murdoch (1996) introduced the use of stylized sailboats to dis-
play orientations. These are drawn with polygons, and have enough
asymmetry to allow visual identification of the amount and direc-
tion of rotation (Figures 1 and 2). Sailboats can be rendered using
the djmrgl package (Murdoch, 2001), available from http://www.
stats.uwo.ca/faculty/murdoch/software, the rgl package (Adler
and Nenadic, 2003), available from http://wsopuppenkiste.wiso.
uni-goettingen.de/~dadler/rgl/ or wireframe versions can be ren-
dered using scatterplot3d (Ligges and Mächler, 2003). Other 3D
rendering packages could also be used.

3 Design of the package

R currently has two systems for object-oriented programming: one
based on version 3 of the S language (Chambers and Hastie, 1992)
and another based on version 4 (Chambers, 1998), which we call the
“Sv4 classes”. The former uses conventions in function names to at-
tach them to objects of different classes, whereas the latter uses a
registration system to connect methods to classes.

The Orientlib package is designed around an Sv4 class called
orientation. This is an abstract class: users cannot create instances
of orientation. Instead, they create instances of concrete descendant
classes rotmatrix (3 × 3 rotation matrices), rotvector (the same
matrices written out as 9 component vectors), eulerzxz or eulerzyx
(Euler angles), quaternion (quaternions as 4 component vectors),
skewmatrix or skewvector (skew-symmetric matrices stored whole or
as their component vectors respectively). The orientation class is

5

http://www.stats.uwo.ca/faculty/murdoch/software�
http://www.stats.uwo.ca/faculty/murdoch/software�
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler/rgl/�
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler/rgl/�

Figure 1: Four orientations displayed using sailboats and rendered using the
djmrgl package. From left to write, they are the identity orientation, then
rotations of π/4 about the z, y and x axes.

declared to be a descendant of the vector class, so methods are defined
in each descendant type for finding the length of an orientation,
setting and extracting sub-vectors (e.g. x[1:10] <- x[11:20]), and
extracting and setting elements (e.g. x[[3]] <- c(1,2,3)).

Conversion methods are also defined to allow conversion between
all of the orientations. These may be called with the same names
as the constructor functions, so that the following code creates an
orientation using the eulerzyx class, then coerces it to a rotmatrix,
and back to an eulerzyx:

> x <- eulerzyx(1,2,3)
> y <- rotmatrix(x)
> z <- eulerzyx(y)

Most other functions are designed to work on the orientation
class. They coerce their arguments to whichever storage form is most
convenient. For example, the mean method is defined as

6

Id z y x

Figure 2: The same orientations as in Figure 1 rendered using the
scatterplot3d package.

setMethod(’mean’, ’orientation’,
function(x) {

x <- rotmatrix(x)@x
nearest.SO3(apply(x,c(1,2),mean))

}
)

The first line of the method definition converts the orientation to
rotmatrix form and extracts the array of 3× 3 matrices; the second
line takes the usual mean of those matrices, and then finds the nearest
SO(3) matrix to the result. Implicit in this style of computation is
the assumption that the user usually doesn’t care which method of
storage is being used. If they do, they should coerce the result to the
desired storage class when necessary.

The package provides a single regression function, orientlm. Be-
cause the model discussed in Section 2.5 allows covariates to appear
in either A1 or A2, and the standard R modelling functions don’t sup-
port Sv4 vectors in formulas, this function needs an unusual design.
We give it four main arguments, as well as several optional ones. The

7

main arguments are the response orientation Vi, a formula for the
model for A1, the “true” orientation Ui, and a formula for the model
for A2. If any of the last three arguments above are missing, they
are treated as identity orientations. With this design, the standard R
functions model.frame and model.matrix may be used to construct
the design matrices for the linear regressions.

4 List of classes, methods and func-

tions

In this section we present an overview of the classes, methods and
functions in the Orientlib package. For full documentation on each,
see the help files in the package itself.

4.1 Class orientation

This is the abstract base class, descending from vector. Most meth-
ods are designed to work on orientation objects.

4.2 Descendant classes

Each of the descendant classes has one slot named x which holds the
data.

The rotmatrix class uses a 3×3×n array to hold 3×3 matrix rep-
resentations. The skewmatrix class stores skew-symmetric matrices
in the same shape of array.

The other descendant classes all use n×m matrices to hold their
data, where m is 3, 4 or 9. The rotvector class holds vectorized
3 × 3 matrices, stored in column-major order. The eulerzyx class
holds 3 Euler angles using the roll-pitch-yaw scheme. The eulerzxz
class holds 3 Euler angles using the x-convention. The quaternion
class holds the 4 components of the quaternion representation. The
skewvector class holds the 3 element component vector of the skew-
symmetric matrix representation.

4.3 Methods

The following methods are defined for the orientation class:

8

coerce: Methods are defined to coerce orientation objects to any
concrete descendant class.

%*%: Matrix multiplication acts on orientation objects component
by component. The product of two orientations is the rotation
formed by applying the right term followed by the left term.

^: An orientation is raised to a power by multiplying its rotation
angle by that power.

t: The transpose of an orientation is its inverse.

mean: The mean of an orientation object is the nearest SO(3)
matrix to the element-by-element mean of its 3× 3 matrix rep-
resentation.

weighted.mean: The weighted mean of an orientation object is
defined analogously to the mean.

The following methods are defined separately for each descendant
class:

coerce: Coercion methods are defined to coerce between all pairs of
concrete classes of orientations.

[and [<-: Extract or assign to a subvector of an orientation.

[[and [[<-: Extract or assign to an entry of an orientation.

length: Find the length of an orientation.

4.4 Functions

The following functions are defined. Some of them are defined as
methods to take advantage of the method dispatch mechanism in R,
but it is simpler to describe them as functions.

rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion, skewmatrix,
skewvector: These functions create objects of the corresponding
class, or coerce one class to another.

rotation.angle: The rotation angle of an orientation is the angle
(in radians) by which it is rotated from the standard (identity)
orientation.

rotation.distance: The rotation distance between two orienta-
tions is the angle by which one may be rotated to produce the
other.

9

nearest.SO3: The nearest SO(3) matrix to a given 3×3 matrix is the
one which is nearest in componentwise Euclidean distance. This
function works on a 3× 3× n array of matrices using Stephens’
(1979) algorithm, producing an orientation object.

nearest.orthog: The nearest orthogonal matrix to a given 3 × 3
matrix is the one which is nearest in componentwise Euclidean
distance. This function produces an array of the same shape as
the input.

boat3d: Draw stylized sailboats.

orientlm: Fit the generalized Prentice linear model.

References

Adler, D. and Nenadic, O. (2003). A framework for an R to OpenGL
interface for interactive 3D graphics. Submitted.

Chambers, J. M. (1998). Programming with Data: A Guide to the S
Language. Springer-Verlag.

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S.
Wadsworth and Brooks/Cole.

Day, J. S., Murdoch, D. J., and Dumas, G. S. (2000). Calibration
of position and angular data from a magnetic tracking device.
Journal of Biomechanics, 33:1039–1045.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis
and graphics. Journal of Computational and Graphical Statistics,
5(3):299–314.

Ligges, U. and Mächler, M. (2003). Scatterplot3d–an R package for
visualizing multivariate data. Journal of Statistical Software,
8(11):1–20.

Murdoch, D. J. (1996). User’s Manual for CALIBRATE: A Program
to Calibrate FasTrak Data. Unpublished manual for computer
program.

Murdoch, D. J. (2001). RGL: An R interface to OpenGL.
In Hornik, K. and Leisch, F., editors, Proceedings of
the 2nd International Workshop on Distributed Statis-
tical Computing, Vienna, March 2001. ISSN 1609-
395X, http://www.ci.tuwien.ac.at/Conferences/DSC-
2001/Proceedings.

10

Prentice, M. J. (1989). Spherical regression on matched pairs of orien-
tation statistics. Journal of the Royal Statistical Society, Series
B, 51:241–248.

Rancourt, D., Rivest, L. P., and Asselin, J. (2000). Using orientation
statistics to investigate variations in human kinematics. Applied
Statistics, 15:39–50.

Shin, H. H. (1999). Experimental Designs for Orientation Models.
PhD thesis, Queen’s University.

Shin, H. H., Takahara, G. K., and Murdoch, D. J. (2001). Uniqueness,
consistency and optimality in spherical regression experiments.
Statistics and Probability Letters, 54:61–65.

Shin, H. H., Takahara, G. K., and Murdoch, D. J. (2003). Minimal
optimal designs for orientation experiments. In preparation.

Stephens, M. (1979). Vector correlation. Biometrika, 66:41–48.

11

