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Abstract

Item response theory (IRT) models are a class of statistical models used by researchers
to describe the response behaviors of individuals to a set of categorically scored items. The
most common IRT models can be classified as generalized linear fixed- and/or mixed-effect
models. Although IRT models appear most often in the psychological testing literature,
researchers in other fields have successfully utilized IRT-like models in a wide variety of
applications. This paper discusses the three major methods of estimation in IRT and
develops R functions utilizing the built-in capabilities of the R environment to find the
marginal maximum likelihood estimates of the generalized partial credit model. The
currently available R packages ltm is also discussed.
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1. Introduction to item response theory models

Item response theory (IRT) models are a class of statistical models used by researchers to
describe the response behaviors of individuals to a set of categorically scored items. The most
common IRT models can be classified as generalized linear fixed- and/or mixed-effect models.
Although IRT models appear most often in the psychological testing literature, researchers
in other fields have successfully utilized IRT-like models in a wide variety of applications.
Fienberg, Johnson, and Junker (1999) employ an item response model for population size
estimation when the assumption of homogeneous capture probabilities fails. Sinharay and
Stern (2002) use an item response model to investigate whether the clutch, or family a baby
turtle belongs to plays any role in whether or not the turtle survives. The USDA utilizes an
IRT model for the measurement of a construct they call Food Insecurity, a measure of one’s
ability to obtain enough food to live a healthy life. The edited volume Rasch Measurement
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in Health Sciences (Bezruczko 2005) discusses the use of IRT models in a number of health
science disciplines.

To formalize the item response problem, let Xvi be the score of individual v ∈ {1, . . . , N} to
item i ∈ {1, . . . , J}, scored on a discrete scale from m = 0, . . . ,Ki. Further let Pim(θv) ≡
Pr{Xvi = m | θv}, denote the mth category response function for item i. When item i is
dichotomous we often denote the first category response function by Pi(θ) ≡ Pi1(θ) and the
0th category response function by Pi0(θ) = 1 − Pi(θ); Pi(θ) is often called the item response
function (IRF) for item i or the item characteristic curve for item i.

A number of item response models exist in the statistics and psychometric literature for the
analysis of multiple discrete responses. The models typically rely on the following assump-
tions:

• Unidimensionality (U): There is a one-dimensional, unknown quantity associated with
each respondent in the sample that describes the individuals propensity to endorse the
items in the survey (or exam). Let θv denote the propensity of individual v.

• Conditional Independence (CI): Given an individual’s propensity θ, the elements of the
item response vector for respondent v, Xv = (Xv1, . . . , XvJ)>, are independent.

• Monotonicity (M): Pr{Xvi > t | θv} is a non-decreasing function of an individual’s
propensity θv, for all i and all t ∈ R. Respondents with high propensities are more
likely to endorse items than those with low propensities.

In educational testing psychometricians often refer to the propensity θv as the latent ability,
or proficiency of individual v.

The monotonicity assumption (M) allows us to use the observed item response vector for
individual v (xv) as repeated measures of the latent variable θ. In fact, in the dichotomous
case, under the conditions U, CI and M the total score for individual v, defined as Xv+ =∑J

i=1Xvi has a monotone likelihood ratio in θ (Grayson 1988; Huynh 1994). That is

Pr{Xv+ > s | θ}
Pr{Xv+ > r | θ}

is increasing in θ for s > r,

and the score Xv+ consistently orders individuals by their latent variable θ

This paper discusses the use of R (R Development Core Team 2007) for the estimation of
item response models. Section 2 reviews models for the analysis of polytomous item responses.
Section 3 discusses the most common methods for the estimation of such item response models.
Section 4 describes the ltm and gpcm packages for the estimation of item response models;
gpcm contains functions for the estimation of the generalized partial credit model (described
below) and ltm (Rizopoulos 2006) is a multi-purpose package for the estimations of latent
trait models, including the graded response model described below. Section 5 demonstrates
the use of the packages to simulate and analyze data, and analyzes a data set from the USDA’s
survey of food insecurity. The paper concludes in Section 6 with a discussion of the limitations
of the two packages.
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2. Item response models

2.1. Models for polytomous data

Partial credit models

The (non-parametric) partial credit model (np-PCM; Hemker, Sijtsma, Molenaar, and Junker
1997) assumes that the adjacent category logits are monotone increasing functions of the latent
propensity θ, that is, they assume

log
{

P [Xvi = m|θ,Xvi ∈ {m− 1,m}]
P [Xvi = m− 1|θ,Xvi ∈ {m− 1,m}]

}
= ψim(θ)

is an increasing function for all i ∈ {1, . . . , J} and m ∈ {1, . . . ,Ki}; by definition ψi0(θ) = 0
for all i and all θ.

The adjacent-category logit functions ψim(θ) describe how the probability of responding in
category m changes relative to the probability of responding in category m−1 as a function of
θ. Let βim denote the point that satisfies ψim(−βim) = 0. Then an individual with propensity
θ = −βim has equal probabilities of responding in categories m and m− 1 on item i. Because
of the monotonicity of the adjacent category function ψim any individual with propensity
θ > (<)− βim is more (less) likely to respond in category m than category m− 1.

The category-response functions (CRFs) resulting from the definition above are

Pim(θ) =

exp

{
m∑

k=0

ψik(θ)

}
Kj∑
h=0

exp

{
h∑

k=0

ψik(θ)

} (1)

The parametric generalized partial credit model (GPCM; Muraki 1992) assumes that the
adjacent category logit function ψim(θ) is a linear function of θ; the parametrization utilized
herein defines

ψim(θ) = αiθ + βi + δim

= (θ, 1, e>m)>

 αi

βi

δi

 , (2)

where em is a Ki-vector with a one in the mth position and zeroes in the remaining Ki − 1
positions. Throughout the paper, we refer to the parameters αi, βi, and the vector δi as
the slope, intercept, and item-step parameters for item i. The original partial credit model
introduced by Masters (1982) assumed that the slopes were equal across items, i.e., α1 =
α2 = · · · = αJ .

Graded response models

The partial credit models are by no means the only models available for the analysis of
polytomous item response data. One popular alternative class of models is the graded response
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models, which assume that the log-odds of scoring m or higher on item i is an increasing
function of the latent propensity θ. The parametric graded response model (GRM; Samejima
1969) assumes that these log-odds are linear in the latent trait, i.e.,

log
{
Pr[Xvi ≥ m | θ]
Pr[Xvi < m | θ]

}
= αiθ + βim.

Unlike the partial credit model the graded response model requires that the item-category
parameters βim are ordered by the category index m, βi1 < βi2 < · · · < βiKi . The R package
ltm has the capability to estimate the graded response function under various constraints on
the item parameters.

Sequential scale models

The sequential scale models assume that the continuation ratio logits are increasing func-
tions of the propensity θ. The parametric sequential scale model (SSM) assumes that the
continuation ratio logits are linear in the propensity score:

log
{

Pr[Xvi ≥ m | θ,Xvi ≥ m− 1]
Pr[Xvi = m− 1 | θ,Xvi ≥ m− 1]

}
= αiθ + βim,

Assuming that the continuation logits are linear results in the following item-category response
functions:

Pim(θv) =
exp{

∑m
`=1 αiθv + βi`}∏m

`=1(1 + exp{αiθv + βi`})

Tutz (1990) introduced the sequential or step-wise Rasch model, which is a sequential scale
model that assumes that the slopes are constant across item, i.e., α1 = α2 = · · · = αJ .

Relationships between the models

The three classes of parametric IRT models above, namely the GPCM, GRM, and SSM
models are disjoint classes of models. Therefore, the parameters derived from one of the
models cannot be mapped to meaningful parameters in one of the other classes of models.
For a good review of the relationships among these three classes of models see van der Ark
(2001) and the references therein.

2.2. Models for dichotomous data

The two-parameter logistic model

When items are dichotomous (Kj = 1), the partial credit model, graded response model,
and rating scale model all reduce to the two-parameter logistic model (2PL; Birnbaum 1968).
Specifically the 2PL models the item response function of a two-parameter logistic model
Pj(θ) ≡ Pj1(θ) as

logit{Pj(θ)} = αjθ + βj

Pj(θ) =
1

1 + exp{−αjθ − βj}
(3)
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The slope parameter, sometimes called the discrimination of the item, is a measure of how
much information an item provides about the latent variable θ. As α→∞ the item response
function approaches a step function with a jump at βj ; such item response functions are
sometimes referred to as Guttman items (Guttman 1950).

The Rasch model

The one-parameter logistic model, or Rasch model (Rasch 1960) assumes that the item slopes
are constant across items, i.e., α1 = α2 = · · · = αJ = α, and therefore is the dichotomous
version of Masters’ partial credit model.
The slope parameter α in the Rasch model can be fixed to some arbitrary value without
affecting the likelihood as long as the scale of the individuals’ propensities is allowed to
be free. Common values for the discrimination are α = 1 and α = 1.7, which is used so
that the item response function is similar to the normal CDF (the standard deviation of
the logistic distribution is π√

3
≈ 1.8 and a MacLauren expansion yields the approximation

logit{Φ(x)} ≈ 1.6x) .
Another attractive property of the Rasch model is that the raw score Xv+ =

∑J
i=1Xvi is

a minimal sufficient statistic for the individual propensity parameter θv. In fact, the Rasch
model is the only dichotomous item response model for which there exists a one-dimensional
minimal sufficient statistic for the propensity parameter Andersen (1977).

Three parameter logistic model

The response functions Pi(θ) → 1 as θ → ∞ and Pi(θ) → 0 as θ → −∞ for both the Rasch
and 2PL models. However, for multiple choice test items, cognitive theory suggests that
when an examinee does not know the correct response, the individual will guess. In situations
where guessing is possible, the assumption limθ→−∞ Pi(θ) = 0 is not a reasonable assumption
of the cognitive process the model is attempting to measure. For this reason Birnbaum (1968)
developed a generalization of the 2PL that allows the IRF Pi(θ) to have a lower asymptote
different from zero. The generalization is

Pi(θ) = γi +
1− γi

1 + exp{αi(βi − θ)}
(4)

The 3PL assumes that the examinee knows the correct answer of the item with probability
equal to (3) or guesses the item correctly with probability γi.
The 3PL model may be useful in applications other than educational testing. In many attitu-
dinal surveys, there are items for which it makes sense to assume that all individuals have a
probability that is bounded below by some non-zero number γ, regardless of the individual’s
propensity.

2.3. Non-parametric IRT models

Many researchers have suggested using the total score xv+ as the independent variables in a
non-parametric logistic regression as a way to examine the shape of the unknown response
function Pi(θ). Ramsay (1991), for example, uses Kernel regression as a way to estimate Pi(θ).
Although Douglas (1997) shows that this method consistently estimates both the shape of
the item response function and the rank order of examinees, the method does not work well
for small data sets.



6 MML Estimation of IRT Models in R

Ramsay and Abrahamowicz (1989) and Winsberg, Thissen, and Wainer (1984) on the other
hand suggest methods for the estimation of the non-parametric response function Pim(θ),
which utilizes B-splines to model model the adjacent-category logit ψim. Although the B-
spline item response model is likely too complicated to use operationally, it can be utilized to
examine the appropriateness simpler item response models.

3. Estimation

Estimating the model parameters for any item response model requires additional thought
about the items and the respondents participating in the survey. Basic estimation techniques
for item response models assume that the individuals participating in the survey are indepen-
dent of one another and that items behave in the same way for all individuals (i.e. there is
no differential item functioning present).

There are four basic techniques for the estimation of item response models: joint maximum
likelihood, conditional maximum likelihood, marginal maximum likelihood, and Bayesian es-
timation with Markov chain Monte Carlo. All four basic estimation methods rely heavily on
the assumption that individuals are independent of one another, and that the item responses
of a given individual are independent given that individual’s propensity score θv. Under the
assumption of conditional independence the joint probability of the item response vector xv

conditional on θv is

Li(θ | xv,φ) = Pr{xv | θv,φ} =
J∏

i=1

Pr{Xvi = xvi | θv,φi}, (5)

where φi is the vector of all item parameters for item i. For example, the likelihood for
propensity θ under the 2PL model, where φi = (αi, βi)>, is:

Lv(θv | xv,φ) =
exp{θv

∑
i xviαi −

∑
i xviαiβi}∏

i[1 + exp{αi(θv − βi)}]

The following sections describe the four basic methods for the estimation of item response
models.

3.1. Joint maximum likelihood

The joint maximum likelihood (JML) estimation procedure treats both item parameters (e.g.
βi) and propensities θv as unknown, but fixed model parameters. Under the JML procedure
the N × J item responses are essentially treated as the observational units in the analysis.
The JML procedure estimates the item parameters (φ) and examinee abilities by maximizing
L(φ,θ;X) =

∏
v Lv(θv | xv,φ) with respect to φ and θ simultaneously.

The model is not identified, which means there is no unique solution to the maximization. A
unique solution does exist if further constraints are placed on the parameters of the model.
For two parameter models like the 2PL, two constraints are necessary: a location constraint,
and a scale constraint. The location constraint can be made by constraining either a single
propensity or difficulty to some fixed number, or by constraining the average propensity or
difficulty to some fixed number (typically zero). The scale constraint can be made by forcing
the product of the discrimination parameters to one (i.e.

∏
i αi ≡ 1).
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One of the problems with JML estimates in models similar to IRT models is that the estimates
are inconsistent (Neyman and Scott 1948; Andersen 1970; Ghosh 1995). In terms of IRT
models, this means that no matter how many individuals are included in the sample, the
estimates for the item parameters may still be biased.

3.2. Conditional maximum likelihood

Andersen (1970) suggests an alternative method for maximum likelihood estimation of the
Rasch model. His method conditions on the vector of raw scores Xv+ =

∑
iXvi, which is a

sufficient statistic for the propensities of individuals in the sample:

Pr{xv | θv,φ, Xv+ = rv} =
exp{−

∑
i xviβi}∑

{y:
P

i yi=rv} exp{−
∑

i yiβi}
,

where r = (r1, . . . , rN )> denotes the vector of observed raw scores. The quantity above does
not depend on the value of the individual’s propensity θ. The conditional maximum likeli-
hood estimates the item parameters by maximizing the conditional likelihood L(φ | X, r) =∏

i Pr{xi | ψ, si}. The paper by Mair and Hatzinger (2007) in this volume discusses the use
of R for conditional maximum likelihood estimation in IRT.

Although Andersen (1970) shows that conditional maximum likelihood estimates for the item
difficulties are consistent, an ad hoc procedure must be implemented to estimate the propensi-
ties of individuals. In addition, the conditional maximum likelihood method only works when
there is a simple sufficient statistic like the raw score for the Rasch model. However, as noted
earlier more complex IRT models, including the 2PL, do not have simple sufficient statistics.

3.3. Marginal maximum likelihood

Marginal maximum likelihood (MML) takes a different approach to removing the propensities
from the likelihood. Unlike joint maximum likelihood estimation techniques, which treat each
of the N×J item responses as separate observational units, the marginal technique treats only
the N individuals as the observational units. To accomplish this the MML technique assumes
that the propensities are random effects sampled from some larger distribution, denoted F (θ).
The distribution may or may not have support on the whole real line. When the distribution
F (·) is discrete, we typically call the resulting model a ordered latent class model. Latent
variable models usually refer to models where F (·) is continuous.

Integrating the random effects (i.e. propensities) out of the individual likelihoods defined in
(5) defines the marginal probability of observing the item response vector xi,

Pr{xv | φ} =
∫

Θ
Li(θ | xv,φ)dF (θ). (6)

Taking the product of the probabilities in (6) over individuals v defines the marginal likelihood
of the item parameter vector φ

L(φ | X) =
∏
v

Pr{xv | φ},

which is is maximized with respect to the item parameters φ to derive the MML estimates.
Like the JML estimation method, location and scale constraints are required to identify the
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model. The constraints can either be placed on the mean and standard deviation of the
propensity distribution F or on the item parameters.

The propensity distribution F is now a part of the IRT model and care must be taken when
choosing the parametric form of F . Typically IRT modelers assume that the distribution F
is the normal distribution with mean zero and standard deviation one. However, the normal
distribution does not necessarily work for all applications.

Another possible way to get around the difficulty of defining the distribution F is to assume
some non- or semi-parametric form. For example, the analysis of the National Assessment of
Educational Progress, a large scale educational survey, assumes examinee propensities θv are
independently and identically distributed according to a discrete distribution on 41 equally
spaced points from −4 to 4 with unknown mass. That is, the probability mass function for
the propensity θ is

fΘ(t) =

{
pt if t ∈ {−4,−3.8, . . . , 4}
0 otherwise

where
∑

t pt = 1. For this distribution of propensities the marginal probability in (6) becomes

Pr{xv | φ} =
∑

t∈{−4,...,4}

Pr{xv | t,φ}pt.

The masses pt are estimated simultaneously with the item parameters φ. Mislevy and Bock
(1982) and Muraki and Bock (1997) provide more information on this estimation technique.

In addition to requiring numerical methods to accomplish the maximization of the likelihood,
the MML technique also requires numerical integration techniques to approximate the integral
in (6).

3.4. Bayesian estimation with Markov chain Monte Carlo

The Bayesian method for estimation of IRT models is similar to the marginal likelihood
technique described in the previous section. However, in addition to assuming a mixing
distribution for the propensities, Bayesian analysis places a prior distribution on each of the
model parameters. It is also possible to simultaneously estimate posterior quantities for both
the items and the respondents in the data set.

One of the shortcomings of a Bayesian analysis of an IRT model is that numerical integra-
tion techniques must be used to approximate the posterior distributions (Patz and Junker
1999). The numerical method, called Markov chain Monte Carlo (MCMC), can be quite time
consuming for large data sets, and requires extreme care to make sure that the resulting
approximations to the posterior distribution are valid.

4. Marginal estimation of item response models

The R package ltm (Rizopoulos 2006) contains a large number of functions for the analysis
of item response data, including functions for estimation and inference for the Rasch, 2PL,
and GRM models described above. The gpcm developed here is a relatively basic package
designed to produce parameter estimates and standard errors for the generalized partial credit
model.
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Both packages rely on the expectation-maximization (EM; Dempster, Laird, and Rubin 1977)
algorithm for marginal maximum likelihood estimation of their models. Below I review the
EM algorithm as it relates to the generalized partial credit model and give some details about
the gpcm package.

4.1. An EM algorithm for the GPCM

The EM algorithm is a numerical method for the maximization of a likelihood that depends
on missing, or latent data. For latent variable models such as the GPCM and IRT models
in general, we can think of the latent propensity θv, for each individual v, as the missing
data. Combining the vector of all missing data θ with the observed data matrix X produces
the “complete” data Z = (X,θ). In the E-step the expected value of the log-likelihood of
the parameters given the complete data is calculated, with the expectation being taken over
the conditional distribution of the missing data θ, given the observed data X. The M-step
maximizes the objective function resulting from the E-step.

Below I summarize the the EM algorithm for the generalized partial credit model. See Muraki
(1992) for more detail on implementing the EM algorithm for the GPCM.

For the generalized partial credit model, the complete data log-likelihood is

`c(φ|X,θ) =
N∑

v=1

{
f(θi) +

J∑
i=1

{
xvi∑

m=1

ψim(θv) + lnPi0(θv)

}}

=
N∑

v=1

{
f(θv) +

J∑
i=1

{
y>viψi(θv) + lnPi0(θv)

}}
, (7)

where f(θv) is the density of the prior (mixing) distribution assumed for the latent propensities
(we assume that all parameters of f are known). The vector yvi is a Ki-vector with

yvim =

{
1 if xvi ≥ k

0 if xvi < m

and

ψi(θ) =
[
θ1Ki 1Ki CKi

] αi

βi

δi


= D(θ)φi;

φi denotes the vector of item parameters for item i, φ, without an index, denotes the vector
of all model parameters, and ψi(θ) denotes the vector of adjacent-category logit functions of
θ. The matrix CKi is a Ki × (Ki − 1) matrix of contrasts of the form

CKi =
[
IKi−1

−1>Ki−1

]
,

which ensures identifiability of the model.
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The E-step

Let φ(s) denote the approximation of the maximum likelihood estimates of the model param-
eters at step s of the EM algorithm. To update the approximation at step s+ 1, the E-step
defines the objective function Q(φ|φ(s)) by calculating the expected value of the complete
log-likelihood in (7) with respect to the conditional (posterior) distribution of the vector of
the propensities θ given the observed data X. Under the assumption that the individuals in
the study are independent the expectation simplifies to

Q(φ|φ(s)) =
N∑

v=1

∫ {
f(t) +

J∑
i=1

{
y>viD(t)φi + lnPi0(t)

}}
dFθ|x(t|xv,φ = φ(s)),

where the conditional posterior distribution of θ given the response vector xv, Fθ|x(t|xv,φ =
φ(s)), is calculated assuming the current estimate of the item response parameters, φ(s).

The integration required is analytically intractable and therefore a numerical method to ap-
proximate it is required. R provides a number of resources for approximating integrals. The
gpcm package described below uses Gauss-Hermite quadrature to approximate the integrals.
The package gpcm utilizes the function gauss.quad.prob available from the stamod package.

The M-step

The maximization step of the EM algorithm maximizes the objective function Q(φ|φ(s)) with
respect to the parameter vector φ. The objective function is maximized by solving the system
of equations

∇φQ(φ|φ(s)) = 0.

The gradient function is

∇φQ =

 ∇φ1
Q

...
∇φJ

Q

 ,

where Eθ|x denotes the expected value operator over the conditional distribution of θ given
the response vector X,

∇φi
Q =

N∑
v=1

Eθ|x

[
D>(θ) (yvi −WKiP i(θ))

∣∣∣xv,φ
(s)

]
,

and WKi is the Ki×Ki matrix with ones on the diagonal and the upper triangle, and zeroes
in the lower triangle:

WKi =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . 1

. . .
...

0 0 · · · 0 1


It is analytically intractable to solve the system of equations required to optimize the objective
function Q. We therefore are required to solve the system numerically. The gpcm and ltm
packages use the Newton-Raphson algorithm to approximate the maximizing values of the
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parameter vectors. The method requires the Hessian matrix of second derivatives of the
objective function Q. For the generalized partial credit model, the Hessian can be calculated
separately for each item j, because of the assumption of conditional independence of the
items given the latent propensity θ. The Hessian matrix corresponding to item j is the
(Kj + 1)× (Kj + 1) matrix

∇2
ψj
Q = −

N∑
v=1

Eθ|x

[
D>(θ)WKi

(
diag(P i)− P i(θ)P>

i (θ)
)
W>

Ki
D(θ)

]
An updated parameter vector for item i is obtained by setting

φ
(s+1)
i = φ

(s)
i −

[
∇2
φi
Q

]−1 [
∇φi

Q
]

The algorithm could iterate this step until the objective function Q is maximized, and then
recalculate a new Q function via the E-step. The approach taken in the gpcm package takes
only a single step before updating the Q function. Because of the high computational cost
of recalculating the gradient vector and Hessian matrix, this approach was found to be more
computationally efficient.

Approximating standard errors

The variances of the maximum likelihood estimates are approximated by inverting the ob-
served Fisher information matrix. The observed Fisher information matrix for the item pa-
rameters φi of item i can be written

I(φ̂i) = −∇2
φi
Q− Eθ|x

[
(∇φi

`c)(∇φi
`c)>

]
The vector ∇φi

`c is function of the vector θ all N latent propensities and the notation Eθ|x
illuminates the fact that expectation is taken with respect to the entire vector of propensities.
The observed Fisher information for the entire set of item parameters φ, across all items, is
not block-diagonal. However, the implementation in gpcm does not calculate the cross-item
information, and therefore the complete covariance matrix cannot be obtained. The standard
errors reported are derived by inverting the item-specific information matrix defined above.

4.2. The gpcm package

The gpcm package is an R package for the estimation of the generalized partial credit model.
The package contains one data set, named foodsec, described in greater detail below, and
eight functions:

• gpcm: The main function of the package is the gpcm function, which estimates the
parameters of the GPCM and approximates the standard errors of those estimates
assuming one of the distributions handled by the stamod function gauss.quad.prob
(normal, uniform, beta, and gamma). The algorithm used is an iterative one, where,
at first, parameter estimates are updated via the EM algorithm described above. Once
the difference in parameter estimates reaches a pre-determined tolerance level (set by
the option tol1), the algorithm utilizes the negative of the Fisher information to obtain
updated parameter values, i.e.,

φ(s+1) = φ(s) + [I(φ)]−1[∇Q].
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The algorithm stops after the difference between iterations is below a pre-determined
tolerance level (tol2).

At the time of this article gpcm could not handle missing values. However, work is
underway to handle data that is missing at random.

• update.gpcm.em and update.gpcm.nr are the functions that update the parameter
estimates. The ‘.em’ function uses the EM algorithm to update parameter values,
the ‘.nr’ function replaces the Hessian in the EM algorithm with the negative of the
approximate Fisher information.

• gpcm.p calculates the the category response functions for the generalized partial credit
model. The function handles a vector of propensities (θ) and can handle several items.

• plot method for gpcm objects: It plots the estimated category response functions or item
response functions based on the estimated item parameters from the gpcm function.

• print method for gpcm objects: It simply prints the item parameter estimates obtained
from gpcm.

• rgpcm simulates individuals’ propensities from a normal distribution and then simulates
their responses to items defined by the item parameters input by the user.

• logLik method for gpcm objects: It extracts the value of the log-likelihood from a gpcm
object.

5. Examples

5.1. Analysis of simulated data

We begin by simulating the responses of N = 1000 individuals to J = 10 items, where
item parameters have been simulated from appropriate normal distributions; the vector a is
the vector of item slopes, b is the vector of item intercepts, and d is a matrix of item-step
parameters.

R> library("gpcm")
Loading required package: statmod
R> a <- rnorm(10, 1.5, 0.3)
R> b <- rnorm(10, 0, 1)
R> d <- matrix(rnorm(40), 10, 4)

The matrix of item-step parameters is 10 × 4. However, if not all items have five score
categories, we must first set the appropriate columns of the matrix to NA. An NA in the matrix
indicate that the category associated with that column is not possible for the item designated
by that row of the matrix. In our simulated data, the first two items are dichotomous, so the
the last three columns of the first two rows of d must be set to NA.

R> is.na(d[1:2,2:4]) <- TRUE
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The third and fourth items are trichotomous.

R> is.na(d[3:4,3:4]) <- TRUE

The fifth and sixth have four categories.

R> is.na(d[5:6,4]) <- TRUE

The remaining items have five categories. Finally, we force the item-step parameters to sum
to zero.

R> d <- d - apply(d, 1, mean, na.rm = TRUE)

To investigate the shape of the category response functions we create a list containing a
data.frame named est that holds the parameter values and then invoke plot.gpcm by issuing
the command plot.

R> parms <- list(est = data.frame(cbind(a,b,d)))
R> class(parms) <- "gpcm"
R> plot(parms)
R> plot(parms,plot.type = "irf")

The first plot.gpcm plots the category response functions. The second invocation plots the
expected score function or item response function,

E[Xj |θ] =
Kj∑
k=1

kPjk(θ)

For sake of brevity we do not include the graphics here.

Use print (print.gpcm) to print out the item parameters

R> parms
a b V3 V4 V5 V6

1 1.620 -0.135 0.0000 NA NA NA
2 1.703 -0.294 0.0000 NA NA NA
3 1.010 1.881 0.4244 -0.424 NA NA
4 1.246 0.871 0.6313 -0.631 NA NA
5 1.595 1.399 0.0410 -0.155 0.114 NA
6 1.378 0.690 -0.5429 1.536 -0.993 NA
7 1.670 -0.381 -0.7683 -1.211 1.082 0.897
8 0.929 -0.524 0.7124 -1.322 0.301 0.309
9 1.372 1.002 1.0860 -1.229 -0.328 0.470
10 1.092 -0.158 -0.1687 0.653 -1.315 0.830

We simulate the data by invoking the rgpcm function.

R> Y <- rgpcm(1000, a, b, d)
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To estimate the model parameters of the GPCM for the simulated data set, we use the gpcm
function

R> (Y.gpcm <- gpcm(Y))
Slope Intercept Cat.1 Cat.2 Cat.3 Cat.4

Item 1 1.66 -0.122 0.0000 NA NA NA
Item 2 1.73 -0.162 0.0000 NA NA NA
Item 3 1.08 1.884 0.4266 -0.4266 NA NA
Item 4 1.26 0.842 0.6280 -0.6280 NA NA
Item 5 1.76 1.434 -0.0581 0.0563 0.00183 NA
Item 6 1.40 0.719 -0.6667 1.6377 -0.97098 NA
Item 7 1.62 -0.363 -0.9969 -0.7613 0.92697 0.831
Item 8 1.00 -0.554 0.7222 -1.1128 0.10692 0.284
Item 9 1.41 0.970 0.9942 -1.2378 -0.35188 0.595
Item 10 1.13 -0.145 -0.2950 0.6941 -1.28271 0.884

The standard errors of the estimates are contained in the matrix Y.gpcm$se.

The default usage of gpcm uses 41 quadrature points to approximate the necessary integrals.
Experience suggests that using too few quadrature points leads to slope estimates that are
biased; specifically, using too few quadrature points leads to slope estimates that are too low
on average.

We can estimate the GPCM assuming a number of different mixing distribution. The statmod
function gauss.quad.prob allows for normal, uniform, beta, and gamma mixing distributions.
The code below compares the fits for various choices of the mixing distribution

R> logLik(Y.gpcm)
’log Lik.’ -8668.953 (df=38)
R> logLik(gpcm(Y, prior.dist = "uniform"))
’log Lik.’ -8691.243 (df=38)
R> logLik(gpcm(Y, prior.dist = "beta", a = 2, b = 2))
’log Lik.’ -8675.137 (df=38)
R> logLik(gpcm(Y, prior.dist = "beta", a = 20, b = 20))
’log Lik.’ -8668.863 (df=38)
R> logLik(gpcm(Y, prior.dist = "gamma", a = 1, b = 1))
’log Lik.’ -8777.399 (df=38)

The uniform mixing distribution clearly does not fit this data well, which is not surprising
considering the true propensities were generated from a normal distribution. The Beta(2,2)
and Gamma(1,1) mixing distributions also fit significantly worse. The Beta(20,20) distribu-
tion fits slightly better than the normal distribution. This is not surprising considering how
closely a normal distribution can approximate a Beta(20,20) distribution.

Finally we examine the expected a posteriori estimates of the propensity scores. These are
defined as the posterior mean of the latent propensity given the individuals response vector
xi and the maximum likelihood estimates of the item parameters ψ,

EAPi = Eθ|x[θ|xi, ψ̂],
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Figure 1: Plots examining the EAPs from the simulated data set. The figure in the left panel
is a plot of the EAPs by the observed scores. The right panel contains a histogram of the
EAPs.

which is approximated with Gauss-Hermite quadrature. The EAP estimates for each unique
response vector are contained in the vector Y.gpcm$eap.

To compare the EAPs to the observed scores we begin by calculating the observed scores and
then plotting the EAPs against the observed score.

R> max.score <- apply(Y.gpcm$data.unique, 2, max, na.rm = TRUE)
R> prop.score <- t(Y.gpcm$data.unique)/max.score
R> obs.score <- apply(prop.score, 2, mean)
R> plot(obs.score, Y.gpcm$eap, xlab = "Observed Score", ylab = "EAP")

The resulting scatterplot is contained in the left panel of Figure 1. The right panel of Figure 1
contains a histogram representing the distribution of EAPs in the data set.

R> hist(Y.gpcm$eap, freq = FALSE, main = "EAPs from Simulated Data",
+ xlab = "EAP")

5.2. The USDA’s Food Insecurity scale

The United States Department of Agriculture’s (USDA) US Food Security Measurement
Project administers a battery of survey questions as a supplement to the Current Population
Survey (CPS) in an attempt to estimate the proportion of the population that is (in)secure
in their ability to obtain “enough food for an active, healthy life.” Responding households
without children are classified into one of three food security levels (food secure, food insecure
without hunger, food insecure with hunger) based on their responses to the ten items listed
in Table 1.
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1. We worried whether our food would run
out.

2. Food bought didn’t last.

3. Adult unable to eat balanced meals.

4. Adult cut size or skipped meals.

5. . . . this happened in three or more
months over the past year.

6. Adult ate less than they felt they should.

7. Adult hungry but couldn’t afford to eat.

8. Adult lost weight because couldn’t afford
to eat enough.

9. Adult didn’t eat for an entire day because
couldn’t afford to eat.

10. . . . this happened in three or more
months.

Table 1: The ten food security items. Respondents were asked if statements 1-3 were “often,”
“sometimes,” or “never” true over the last twelve months. For the remaining items, except 5
and 10, respondents responded by answering “yes” or “no”. Follow-up items 5 and 10 asked
respondents whether the preceding statement was true in “only 1 or 2 months,”“some months
but not every month,” or “ almost every month.”

The USDA utilizes the Rasch model to measure the unidimensional latent construct “food
insecurity” by dichotomizing all of the items listed in Table 1. Responses of “often” and
“sometimes” to items 1-3 are treated as successes (xij = 1), and “never” is treated as a failure
(xij = 0). Follow up questions 5 and 10 are dichotomized by treating responses of “only in
1 or 2 months” as failures. The Food Security Project treats all missing responses as failures
(xij = 0) and we will do the same here.
A number of studies have suggested that the unidimensional Rasch model may not be adequate
for the ten items listed above. Johnson (2004) fit a 2PL to Food Security data from the 2002
CPS. That paper found that differences in the discrimination parameters were statistically
significant. Specifically the paper found that the discrimination parameter for the item that
asks if an “Adult was hungry but couldn’t afford to eat” was significantly larger than the
discrimination parameters for all other items. Johnson (2006) compared the fit of the Rasch
model to a free-knot B-spline response model and found that the Rasch model fit significantly
worse.
Below we use the data from Johnson (2004) to perform a number of analyses on the 2002 Food
Security data with the ltm and gpcm packages. The data is included in the gpcm package and
can be accessed by issuing the command data(foodsec). The data set contains the responses
of 9804 respondents on the ten questions described in Table 1.

Dichotomous analysis

We begin by performing an analysis of the food security data that dichotomizes the data.
The data in foodsec is the polytomous data, and, therefore, must be transformed to the
dichotomous data utilized by the USDA.

R> data("foodsec")
R> food <- foodsec
R> food[,c(5,10)] <- ifelse(food[,c(5,10)]==0,0,1)
R> food <- t(ifelse(t(food)==apply(food,2,max,na.rm=TRUE),1,0))
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Although ltm claims to be able to handle missing data that is missing at random, all three
functions: grm, rasch, and ltm were unable to handle the food security data with missing
values. So moving forward we will examine the food security data that treats missing data
as zeroes (“failures”). This is exactly what the USDA does in analysis.

R> food[is.na(food)] <- 0

Using the R packages gpcm and ltm we test the significance of the differences in the item
slopes by first fitting the 2PL with the ltm functions ltm, grm, and gpcm function gpcm and
comparing to the fit of the Rasch model, fit using the ltm function rasch.

To fit the 2PL to the food data we use the ltm function as follows:

R> food.2pl1 <- ltm(food ~ z1)

where z1 represents the propensity θ. To fit the 2PL using the grm function, we must add
one to the all responses, because the function requires the smallest category in the data to be
one rather than zero.

R> food.2pl2 <- grm(food + 1)

The rasch and gpcm functions take the raw matrix of zeroes and ones to fith the Rasch and
2PL models respectfully.

R> food.rasch <- rasch(food)
R> food.2pl3 <- gpcm(food)
Error in drop(.Call("La_dgesv", a, as.matrix(b), tol, PACKAGE = "base")) :
system is computationally singular: reciprocal condition number = 1.32921e-16

The first thing we notice is that the function gpcm produces an error because the function has
encountered a nearly singular matrix. So lets compare the results of the other three models

R> rbind(logLik(food.2pl1), logLik(food.2pl2), logLik(food.rasch))
[,1]

[1,] -45604.56
[2,] -45512.70
[3,] -46156.29

The first peculiar result is that the two “2PLs” produce different log-likelihoods at the max-
imum likelihood estimated values. Closer inspection of the parameter estimates reveals that
there is something strange going on with the slope parameters of the last two items.

R> food.2pl1

Call:
ltm(formula = food ~ z1)

Coefficients:
Dffclt Dscrmn
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HESS2 0.784 1.167
HESS3 1.264 1.298
HESS4 1.351 1.212
HESH2 -0.801 1.779
HESHF2 0.043 2.018
HESH3 -1.167 0.820
HESH4 0.715 1.603
HESH5 1.285 1.577
HESSH1 1.232 3.672
HESSHF1 1.382 6.671

Log.Lik: -45604.56

R> food.2pl2

Call:
grm(data = food + 1)

Coefficients:
Extrmt1 Dscrmn

HESS2 0.781 1.133
HESS3 1.267 1.251
HESS4 1.345 1.184
HESH2 -0.833 1.681
HESHF2 0.037 1.911
HESH3 -1.190 0.812
HESH4 0.702 1.586
HESH5 1.267 1.553
HESSH1 0.936 11.963
HESSHF1 1.252 9.607

Log.Lik: -45512.7

The discrimination parameters for the last two items are outliers when compared to the
remaining items. Closer inspection reminds us that the last question was a follow up question
to the ninth question, and because missing data was converted to 0’s, the resulting item
responses clearly violate the assumption of conditional independence of the item responses.
When small groups of slope parameters have estimated values that are considerably larger
than the rest of the items, there is usually a good indication that local dependence may be
presence. This is likely what caused gpcm to run into problems too. The fifth item is also
a follow-up to the fourth question, so we remove the fifth and tenth items and continue our
analysis.

R> logLik(food.grm <- grm(food[,-c(5,10)]+1))
’log Lik.’ -38670.18 (df=16)
R> logLik(food.gpcm <- gpcm(food[,-c(5,10)]))
’log Lik.’ -38670.11 (df=16)
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R> logLik(food.gpcm <- gpcm(food[,-c(5,10)], n.quad.pts = 15))
’log Lik.’ -38669.93 (df=16)
R> logLik(food.rasch <- rasch(food[,-c(5,10)]))
’log Lik.’ -38893.11 (df=9)

The default implementation of gpcm uses 41 quadrature points and produces a slightly dif-
ferent log-likelihood than the ltm function grm produced. Running the gpcm function with
15 quadrature points (the default number used in grm) produces the same value of the log-
likelihood. If we use −2 log(LRT ) as a test statistic to compare the 2PL fit with the fit of the
Rasch model to this data we find

R> -2*as.numeric(logLik(food.rasch) - logLik(food.gpcm))
[1] 446.3603
R> pchisq(446.3603, 7)
[1] 1

So we have nearly indisputable evidence against the Rasch model in favor of the two-parameter
logistic model.

Analysis of the polytomous food security data

It is rather wasteful to collapse the polytomous data into dichotomous data. Here we examine
the polytomous food security data and compare the EAPs from the dichotomous analysis to
those from the polytomous analysis of the data.

We begin by treating missing values as zeroes (as is done operationally with this data) and
fixing the problem with the follow-up questions (questions 5 and 10), by adding the results
of those two items to their respective “stem” questions.

R> food.poly <- foodsec[,-c(5,10)]
R> food.poly[is.na(food.poly)] <- 0
R> food.poly[,4] <- food.poly[,4] +
+ ifelse(is.na(foodsec[,5]), 0, foodsec[,5])
R> food.poly[,8] <- food.poly[,8] +
+ ifelse(is.na(foodsec[,10]), 0, foodsec[,10])

We then compare the fits of the GPCM and GRM for this data

R> logLik(food2.gpcm <- gpcm(food.poly))
’log Lik.’ -58343.08 (df=23)
R> logLik(food2.grm <- grm(food.poly + 1))
’log Lik.’ -58363.02 (df=23)

The generalized partial credit model fits this data better than the graded response model. The
difference in log-likelihoods is nearly 20, and the models have the same number of parameters.

Some have suggested that the mixing distribution for the food security data should be a
right-skewed distribution because of the way that the subjects are sampled for the study.
We compare the fits above, which assume a normal mixing distribution to a Gamma(1,1)
distribution, which is clearly skewed to the right.
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R> logLik(food2.gpcm.gam <- gpcm(food.poly, prior.dist = "gamma", a = 1, b = 1))
’log Lik.’ -58106.28 (df=23)

So, indeed the GPCM with a Gamma(1,1) prior distribution fits the data better than one that
assumes a normal prior distribution. Clearly it would be nice to have a method by which we
could estimate the prior mixing distribution on the propensities. One approach might allow
the weights on the quadrature points to be estimated. Another might model the distribution
as a spline function.

Finally we compare the EAP estimates from the 2PL fit of the data to the two GPCM fits of
the data. Because the gpcm function only gives us EAPs for the unique response patterns, we
must first expand those estimates across all 9804 observations so that we can compare across
the two treatments of the problem.

R> eap.2pl <- as.vector(food.gpcm$eap)
R> names(eap.2pl) <- apply(food.gpcm$data.uniq, 1, paste, collapse = "")
R> eap.2pl <- eap.2pl[apply(food[,-c(5,10)], 1, paste, collapse = "")]

R> eap.gpcm <- as.vector(food2.gpcm$eap)
R> names(eap.gpcm) <- apply(food2.gpcm$data.uniq, 1, paste, collapse = "")
R> eap.gpcm <- eap.gpcm[apply(food.poly, 1, paste, collapse = "")]

R> eap.gpcm.gam <- as.vector(food2.gpcm.gam$eap)
R> names(eap.gpcm.gam) <- apply(food2.gpcm.gam$data.uniq, 1, paste, collapse = "")
R> eap.gpcm.gam <- eap.gpcm.gam[apply(food.poly, 1, paste, collapse = "")]
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Figure 2: Scatterplots comparing the expected a posteriori estimates of the latent propensities
from the food security data. The left panel compares the EAPs from the GPCM assuming a
normal distribution to the EAPs from a 2PL Analysis. The right panel compares EAPs from
two GPCM analyses; one utilizing a normal mixing prior and the other a gamma distribution.
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We first compare the the EAPs derived from the 2PL estimation to those from the GPCM
estimation assuming a normal mixing distribution.

R> plot(eap.2pl, eap.gpcm)
R> abline(a = 0, b = 1)

The resulting scatterplot is displayed in the left panel of Figure 2. The relationship is clearly
positive and appears to be linear. However, it is clear that the 2PL EAPs tend to be shrunk
towards zero more than the GPCM estimates, which results from the fact that the GPCM
estimates use more information.

Finally we compare the EAPs from the GPCM assuming a normal mixing distribution to the
GPCM assuming a Gamma distribution.

R> plot(eap.gpcm, eap.gpcm.gam)

The resulting scatterplot appears in the right panel of Figure 2. The relationship between the
two sets of EAPs is strong and clearly non-linear, resulting from the difference in assumptions
about the shape of the mixing distribution.

6. Discussion

R is an extremely powerful statistical environment. Historically, there was not good, openly-
available, R functionality for the analysis of item response data. With the recent advances in
the ltm package and the gpcm package introduced here, it appears that we can expect to see
more and more researchers utilizing R for their item response theory analyses.

R has clear advantages over commercial software for IRT analyses, because the user has a
single environment in which he/she can complete their entire project. A user of commercial
software would have to export their item parameter estimates into another software to produce
figures, or non-standard statistics. With ltm and/or gpcm in R, IRT analysts now have a single
environment to complete their entire analysis.

The ltm package is quite a bit more sophisticated than the gpcm package introduced here.
Probably the greatest shortcomings of the ltm package is that it only estimates one polytomous
item response theory model, the graded response model, and it does not allow users to utilize
non-normal mixing distributions. The gpcm package is quite limited, in that it only fits the
generalized partial credit model.

Moving forward I hope to add functionality to the gpcm package to give the user greater
control over how the items are constrained. For example, the function should allow users
to constrain any linear function of the parameters to some fixed value. Such functionality
would allow users to utilize the gpcm function to fit the Rasch, and partial credit models by
constraining the slopes to be equal.

Extensions to both the gpcm and ltm packages should allow for the use of more flexible
item response functions and prior distributions on the latent propensities. One relatively
straightforward extension to the gpcm package could allow the adjacent category logits (ψjk)
to be modeled with B-spline functions. The resulting EM algorithm would be only slightly
more difficult to implement than the one discussed here.
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