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Abstract 

This paper introduces a SAS/IML program to select among the multivariate model candidates 

based on a few well-known multivariate model selection criteria. Stepwise regression and all-

possible-regression are considered. The program is user friendly and requires the user to paste or 

read the data at the beginning of the module, include the names of the dependent and independent 

variables (the y�s and the x�s), and then run the module. The program produces the multivariate 

candidate models based on the following criteria: Forward Selection, Forward Stepwise 

Regression, Backward Elimination, Mean Square Error, Coefficient of Multiple Determination, 

Adjusted Coefficient of Multiple Determination, Akaike�s Information Criterion, the Corrected 

Form of Akaike�s Information Criterion, Hannan and Quinn Information Criterion, the Corrected 

Form of Hannan and Quinn (HQc) Information Criterion, Schwarz�s Criterion, and Mallow's PC . 

The output also constitutes detailed as well as summarized results. 

 

Keywords: Multivariate model selection; SAS/IML module; Stepwise regression; All-possible-

regression. 
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1. Introduction 

Applications where several quantities are to be predicted using a common set of predictor 

variables are becoming increasingly important in various disciplines (Breiman & Friedman, 

1997; Bilodeau & Brenner, 1999). For instance, in a manufacturing process one may want to 

predict various quality aspects of a product from the parameter setting used in the manufacturing. 

Or, given the mass spectra of a sample, the goal may be to predict the concentrations of several 

chemical constituents in the sample (Breiman & Friedman, 1997). A natural class of models that 

accommodate this would be generalization of a univariate multiple regression model, called 

multivariate multiple regression (MMR). In MMR, q dependent variables (y1, y2, �, yq) are to be 

predicted by linear relationships with k independent variables (x1, x2, �, xk).  

The statistical linear model for the MMR model is  

qnqkknqn XY ××++×× += ΕΒ )1()1(         (1.1) 

where Y represents n (independent) observations of a q-variate normal random variate, X 

represents the design matrix of rank k+1 with its first column being the vector 1, Β is a matrix of 

parameters to be estimated and E represents the matrix of residuals. 

In practice, MMR uses include a large number of predictors where some of them might be 

slightly correlated with the y's or they may be redundant because of high correlations with other 

x's (Spark et al., 1985). The use of poor or redundant predictors can be harmful because the 

potential gain in accuracy attributable to their inclusion is outweighed by inaccuracies associated 

with estimating their proper contribution to the prediction (Spark et al., 1985).  

The problem of determining the �best� subset of independent variables in multiple linear 

regression has long been of interest to applied statisticians, and it continues to receive 

considerable attention in recent statistical literature (McQuarrie & Tsai, 1998). Two approaches 
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are suggested in the statistical literature to deal with this problem. The first approach is to find the 

�best� set of predictors for each individual response variable using one (or more) of the multiple 

model selection criteria that are available in most of statistical packages such as S-plus, SAS, 

SPSS etc. In this approach, researchers perform model selection procedures on a univariate basis 

q times, where q is the number of the y�s in the model. This can lead to q different subset of 

predictors, one for each y. The second approach is to find the �best� set of predictors for all 

response variables simultaneously, where one subset of predictors that �best� predict all y�s using 

an analogous matrix expression of one of the univariate variable selection criteria is selected.  

Sparks et al. (1985) criticized univariate model selection methodology as compared to 

multivariate techniques and stated two reasons for dealing with target variables jointly rather than 

separately. One reason is simply that it is computationally more efficient because the number of 

times required doing necessary computations for model selection would be reduced from q to 

one. A second reason is that researchers sometimes need to establish which subset of predictors 

can be expected to perform well for all target variables, especially if there are costs associated 

with sampling the predictors. 

Although the second approach is becoming increasingly important in various disciplines, 

to-date statistical software such as SAS and SPSS cannot be utilized to implement the second 

approach (SAS/STAT User�s guide, 1990; and SPSS Base System, 1992). In this paper, we 

present a SAS module to select the �best� subset of predictors that can be conveniently used to 

predict all y�s jointly utilizing popular multivariate model selection criteria. Our SAS module 

performs model selection using three automatic search procedures (Forward Selection, Forward 

Stepwise Regression, and Backward Elimination), and nine all-possible- regression procedures 

(MSE, R2, AdjR2, AIC, AICC, HQ, QHC, BIC, and Cp).  
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Spark et al. (1983) were the first to introduce the multivariate version of variable selection 

using the multivariate Cp-statistic. Later, Spark et al. (1985) presented a multivariate selection 

method that uses the mean squared error of prediction rather than tests of hypotheses as the basis 

for selection. They also discussed the relationship between these two approaches. Bedrich and 

Tsai (1994) developed a small-sample criterion (AICC), which adjusts the Akaike information 

criterion (AIC) to be an exact unbiased estimator for the expected Kullback-Liebler information, 

for selecting MMR models. Another modification of AIC and Cp has been proposed by Fujikoshi 

and Satoh (1997); their modification of the AIC and Cp criteria were intended to reduce bias in 

situations where the collection of candidate models includes both underspecified and 

overspecified models. Recently, McQuarrie and Tsai (1998) present and compare the 

performance of several multivariate as well as univariate variable selection criteria for two 

special models and give comprehensive details on model selection. 
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2. Description of Model selection Methods 

Stepwise regression and all-possible-regression are two types of variable selection procedures 

that are employed by most of the statistical software packages, and used in practice. In the 

former, investigators delete or add variables one at a time using a stepwise method and in the 

later they examine all possible subsets and choose one model based on some criteria.  

Before presenting a detailed description of each procedure, we note that all variable 

selection criteria in MMR involve matrices and functions such as trace (tr(•)), determinant (| •  |), 

or the largest eigenvalue (λ(• )) can be used to obtain the scalar counterpart of the univariate 

criteria. Our module will use only the determinant function because tr(• ) deals only with diagonal 

elements and does not take into account the contribution of off-diagonal entries, and λ(• ) uses 

only one root which makes it unreliable (Spark et al., 1983). 

It would be helpful also to introduce a standard notation for all variables, vectors, 

matrices, and functions used before describing each criterion. The following table presents 

notations and definitions of variables and functions used in defining the criteria: 

Table 1 Notations and definitions of variables and functions used. 

Symbol  Definition 

n  The number of observations 
p  The number of parameters including the intercept 
k  The number of x�s in the �full model� 
q  The number of y�s 
Y  The matrix of dependent variables 

X  The matrix of all candidate independent variables with its first column being the 
vector 1 

Xp  The submatrix of X containing the vector 1 and the columns corresponding to 
selected variables xp in the model.  

J  The q×q matrix of ones 

Λ  The Wilks� Λ statistic, which is analogous to F random variable, defined as the 
ratio of two independent chi-square random variables divided by their respective 
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Table 1 Notations and definitions of variables and functions used. 

Symbol  Definition 

degrees of freedom 
Σ�   The sum squared error for a  �full-model� including the intercept 

pΣ�   The sum squared error for a  model with p parameters including the intercept 
ln  The natural logarithm 
|• |  The determinant function 

   

2.1 Stepwise Regression 

Stepwise regression consists of three procedures: Forward Selection, Forward Stepwise 

Regression, and Backward Elimination (Barrett & Gray, 1994; Rencher, 1995). Although the 

forward stepwise regression is probably the most widely used procedure (Neter et al., 1996), all 

three criteria will be presented and used in the module. 

 The usual criteria used for adding (or deleting) an x variable is either partial Wilks� Λ or 

partial F criterion. Our SAS module employs only the partial Wilks� Λ. The Wilks� Λ is 

analogous to F random variable, defined as the ratio of two independent chi-square random 

variables divided by their respective degrees of freedom (Rencher, 1998). It is defined as  

Y ]J I [ Y

Y ]X)XX(XI [ Y

N
1

p
-1

ppp

−′

′′−′
=),...,,,( 321 pxxxxΛ  which is distributed as Λq,1,n-p-1.  

A variable would be a candidate for addition when the minimum partial Wilks' Λ value 

falls below a predetermined threshold value. The variable would be a candidate for deletion when 

the maximum partial Wilks' Λ value exceeds a predetermined value. 
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2.1.1 Forward Selection 

The forward selection technique begins with no variables in the model. For each of the 

independent variables, the forward method calculates partial Wilks' Λ statistics that reflect the 

variable's contribution to the model if it is included. The minimum value for these partial Λ 

statistics is compared to a predetermined threshold value. If no Λ statistic falls below the 

predetermined threshold value, the forward selection stops. Otherwise, the forward method adds 

the variable that has the lowest partial Wilks' Λ statistic to the model. The forward method then 

calculates partial Wilks' Λ statistics again for the variables still remaining outside the model, and 

the evaluation process is repeated. Thus, variables are added one by one to the model until no 

remaining variable produces a significant partial Wilks' Λ statistic. Once a variable is in the 

model, it stays. (For more details, the reader is referred to Rencher, 1995) 

2.1.2 Forward Stepwise Regression 

The stepwise method is a modification of the forward selection technique and differs in that 

variables already in the model do not necessarily stay there. As in the forward selection method, 

variables are added one by one to the model, and the partial Wilks' Λ statistic for a variable to be 

added must have an entry significant value (i.e., the minimum value of partial Λ statistics falls 

below a predetermined threshold value). After a variable is added, however, the stepwise method 

looks at all the variables already included in the model and deletes any variable that does not 

produce an stay significant partial Λ statistic (i.e., its partial  Λ value exceeds a predetermined 

value). Only after this check is made and the necessary deletions accomplished can another 

variable be added to the model. The stepwise process ends when none of the variables outside the 

model has an entry significant partial Λ statistic and every variable in the model is significant to 

stay, or when the variable to be added to the model is the one just deleted from it. 
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2.1.3 Backward Elimination 

The backward elimination method begins with all x�s included in the model and deletes one 

variable at a time using a partial Λ. At the first step, the  partial Λ for each x is calculated and the 

variable with largest partial Λ statistic that exceeds the predetermined threshold value is deleted. 

At the second step, a partial Wilks' Λ is calculated for each of the q-1 remaining variables, and 

again the least important variable in the presence of the others is eliminated. This process 

continues until a step is reached at which the largest partial Λ is �significant� (i.e., does not 

exceed the predetermined value), indicating that the corresponding variable is apparently not 

redundant in the presence of the other variable in the model.  

2.2 All-Possible-Regression 

The all-possible-regression procedure calls for considering all possible subsets of the pool of 

potential predictors and identifying for detailed examination a few �good� subsets according to 

some criterion (Neter et al., 1996). Various criteria for comparing the regression model may be 

used with the all-possible-regression selection procedure. Residual mean square error (MSE), 

coefficient of multiple determination (R2), adjusted coefficient of multiple determination (AjdR 

2), Akaike�s information criterion (AIC), Hannan and Quinn information criterion (HQ), 

Schwarz criterion (BIC), and Mallow's PC  are some of these procedures (see e.g., Rencher, 1995 

and McQuarrie & Tsai ,1998). These techniques are included in the program because of their 

popularity in selecting the �best� subset of predictors. 

2.2.1 Residual Mean Square Error 

The residual mean square error is the variance estimator for each model and is defined by 



 

 
 

10 
 

pn −
= pΣMSE

�
         (2.3) 

where Y ]X)XX(X-[I YΣ P
-1

PPPp ′′′=�  is the sum squared error for a  model with p parameters 

including the intercept. It is often suggested that the researcher choose the model with minimal 

value of MSE.  

2.2.2 R 2 Selection Criterion 

R 2 is the coefficient of multiple determination and the method finds subsets of independent 

variables that best predict a dependent variable by linear regression in the given sample. It 

efficiently performs all possible subset regressions and displays the models in decreasing order of 

matrix (R 2) magnitude within each subset size. The R2 is computed as:  

 Y] J)X)XX( (X Y[Y] J)(I Y[ R n
1

p
-1

ppp
1

n
12 −′′′−′= −      (2.4) 

The R 2 method differs from the other selection methods; it always identifies the �best� 

model as the one with the largest R 2 for each number of variables considered. 

2.2.3 Adjusted R 2 Selection Criterion 

Since the number of parameters in the regression model is not taken into account by R 2, as R 2 

does not decrease as p increases, the adjusted coefficient of multiple determination (AjdR 2) has 

been suggested as an alternative criterion. The AjdR 2 method is similar to the R 2 method and it 

finds the �best� models with the highest AdjR 2 within the range of sizes. The criterion is 

pn
(n

−
−−

−=
)R)(

R
2

2 11
1Adj         (2.5) 
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2.2.4 Akaike�s information criterion (AIC) 

The AIC procedure (Akaike, 1973) is used to evaluate how well the candidate model 

approximates the true model by assessing the difference between the expectations of the vector y 

under the true model and the candidate model using the Kullback-Leibler (K-L) distance. The 

Kullback-Leibler (K-L) distance is the distance between the true density and estimated density 

for each model. The criterion is 

n
1)q(q2pq ++

+= ||ln pΣAIC
)

       (2.6) 

The model that best predicts the y�s jointly, with this procedure, is the one that has the minimum 

AIC�s value. 

2.2.5 The Corrected Form of Akaike�s information criterion (AICc) 

Bedrick & Tsai (1994) pointed out that the Akaike�s information criterion might lead to 

overfitting in small samples. Thus, they proposed a corrected version (AICC) of AIC, which is  

1qpn
p)q(n

−−−
++= ||ln pC ΣAIC

)
       (2.7) 

The �best� subset of x's, with this procedure, is the one that has the minimum AICC�s value. 

2.2.6 Hannan and Quinn (HQ) 

Although HQ information criterion introduced by Hannan and Quinn (1979) was intended for 

use with the autoregressive models, it also can be applied to regression models (McQuarrie & 

Tsai, 1998). The criterion is 

n
pq2ln(ln(n))+= ||ln pΣHQ

)
       (2.8) 

The �best� model is the model that corresponds to the minimum HQ value. 
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2.2.7 The Corrected Form of Hannan and Quinn (HQc) Information Criterion 

The Hannan and Quinn (HQ) Information criterion usually overfits when applied to small 

samples McQuarrie & Tsai (1998). Therefore, McQuarrie & Tsai (1998) proposed a corrected 

version of it, which is  

1qpn
pq2ln(ln(n))

p −−−
+= ||ln 2ΣHQ

)
C        (2.9) 

Similarly, the procedure identifies the �best� subset of the x's that yields the smallest value. 

2.2.8 Schwarz�s Criterion (BIC) 

The function computes Schwarz 's Bayesian information criterion for each model using the 

Kullback-Leibler (K-L) distance (Schwarz 1978; SAS/STAT User�s Guide, 1990), which can be 

utilized to identify the �best� model. The criterion is  

n
ln(n)p

p += ||ln 2ΣBIC
)

        (2.10) 

The �best� model by the procedure is the model that corresponds the minimal value.  

2.2.9 Mallow's PC  

The PC  criterion was initially suggested by Mallow's (1973) for univariate regression and 

extended by Spark et al. (1983) to multivariate multiple regression. It evaluates the total mean 

squared error of the n fitted values for each subset regression. The criterion is obtained by using 

the formula 

Inpkn )2()( −+−= −
p

1ΣΣ
))

PC                 (2.11) 

where Y ]X)XX(X-[I YΣ -1 ′′′=� , and I is the identity matrix of size (q × q). The procedure 

identifies the �best� subset of the x's with the one that gives both small PC  (in terms of scalar 
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function of matrix such as determinant) and near pI (Spark et al., 1983; Rencher, 1995). If 

02 <− np , however, | PC | is negative and unreliable (Spark et al., 1983). Hence, modification of 

| PC | has been suggested by Spark et al. (1983) to remedy this problem, the quality || p
1ΣΣ
)) −  is 

always positive and is written in terms of PC as 

kn
2pn

−
−+

=− IC
ΣΣ p

p
1 )())

        (2.12) 

When the bias is 0, pC = pI, and (2.12) becomes 

IΣΣ p
1

kn
pn

−
−=− ))

         (2.13) 

Hence, subsets are sought that satisfy 

  q

kn
pn

)(
−
−

≤−
p

1ΣΣ
))

         (2.14) 
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3. Practical Example 

 
Anderson and Bancroft (1952, p. 205) presented data on chemical components of 25 tobacco leaf 

samples. The dependent variables are 

Y1 : Rate of cigarette burn in inches per 1000 seconds 

Y2 : Percent sugar in the leaf 

Y3 : Percent nicotine 

The independent variables are 

 X1 : Percentage of Nitrogen  X4 : Percentage of Phosphorus 

 X2 : Percentage of Chlorine  X5 : Percentage of Calcium 

 X3 : Percentage of Potassium  X6 : Percentage of Magnesium  

Table 3-1 presents the data. 

Spark et al. (1983) considered these data and found the �best� subsets of predictors based 

on the multivariate Cp criterion. We use this data set here to obtain the �best� subset(s) of 

predictors using all the criteria mentioned. 

Three straightforward steps are needed in order to run the program properly for the data: 

(1) paste the data at the beginning of the program and read it using DATA statement, (2) name 

the dependent and the independent variables, and (3) run the program. 
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TABLE 3-1 The Tobacco Data 

Dependent Variables Independent Variables 
Subject ID 

Y1 Y2 Y3 X1 X2 X3 X4 X5 X6
1 1.55 20.05 1.38  2.02 2.90 2.17 0.51 3.47 0.91 
2 1.63 12.58 2.64  2.62 2.78 1.72 0.50 4.57 1.25 
3 1.66 18.56 1.56  2.08 2.68 2.40 0.43 3.52 0.82 
4 1.52 18.56 2.22  2.20 3.17 2.06 0.52 3.69 0.97 
5 1.70 14.02 2.85  2.38 2.52 2.18 0.42 4.01 1.12 
6 1.68 15.64 1.24  2.03 2.56 2.57 0.44 2.79 0.82 
7 1.78 14.52 2.86  2.87 2.67 2.64 0.50 3.92 1.06 
8 1.57 18.52 2.18  1.88 2.58 2.22 0.49 3.58 1.01 
9 1.60 17.84 1.65  1.93 2.26 2.15 0.56 3.57 0.92 

10 1.52 13.38 3.28  2.57 1.74 1.64 0.51 4.38 1.22 
11 1.68 17.55 1.56  1.95 2.15 2.48 0.48 3.28 0.81 
12 1.74 17.97 2.00  2.03 2.00 2.38 0.50 3.31 0.98 
13 1.93 14.66 2.88  2.50 2.07 2.32 0.48 3.72 1.04 
14 1.77 17.31 1.36  1.72 2.24 2.25 0.52 3.10 0.78 
15 1.94 14.32 2.66  2.53 1.74 2.64 0.50 3.48 0.93 
16 1.83 15.05 2.43  1.90 1.46 1.97 0.46 3.48 0.90 
17 2.09 15.47 2.42  2.18 0.74 2.46 0.48 3.16 0.86 
18 1.72 16.85 2.16  2.16 2.84 2.36 0.49 3.68 0.95 
19 1.49 17.42 2.12  2.14 3.30 2.04 0.48 3.28 1.06 
20 1.52 18.55 1.87  1.98 2.90 2.16 0.48 3.56 0.84 
21 1.64 18.74 2.10  1.89 2.82 2.04 0.53 3.56 1.02 
22 1.40 14.79 2.21  2.07 2.79 2.15 0.52 3.49 1.04 
23 1.78 18.86 2.00  2.08 3.14 2.60 0.50 3.30 0.80 
24 1.93 15.62 2.26  2.21 2.81 2.18 0.44 4.16 0.92 
25 1.53 18.56 2.14  2.00 3.16 2.22 0.51 3.73 1.07 

Sum 42.20 415.39 54.03  53.92 62.02 56.00 12.25 89.79 24.10 
  

The Stepwise and All-Possible-Regression Procedures 

Table 3-2 presents the �best� subset of predictors based on all stepwise regression procedures and 

all-possible-regression methods. It shows that the forward selection, forward stepwise regression, 

and mean square error criteria selected the model with x1, x2, x4, and x6, as the �best� model to 

predict y�s jointly. The backward elimination method selected the model with x1, x2, x3, and x6, 

as the �best� one. The adjusted R2 selected the model with x2 and x4. The Akaike�s information 
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criterion and its corrected form, and Hannan and Quinn information criterion and its corrected 

form selected the model with x1, x2, and x6. The Schwarz's Bayesian information criterion 

selected the model with all x�s in it.  

The Mallow�s Cp criterion, on the other hand, gave an array of �best� models because the 

program compares the values of p
1ΣΣ
)) − to q

kn
pn

)(
−
−

and selects the model with p
1ΣΣ
)) − ≤ 

q

kn
pn

)(
−
−

 as the �best� one. In using the Cp criterion, we seek to identify subsets of x�s for which 

(1) the | Cp | value is small and (2) the Cp value is near pI (i.e., q

kn
pn

)(
−
−

≤−
p

1ΣΣ
))

). Table 3-2 

shows the values of q

kn
pn

)(
−
−

at each p.  

TABLE 3-2 The upper limit values for each p 

p  2 3 4 5 6 7 

q

kn
pn

)(
−
−

  2.086248 1.825789 1.587963 1.371742 1.176097 1 
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TABLE 3-3 The �best� subset of predictors for all model selection criteria 

Model selection Criteria  Subset of Predictors 

 FORWARD  1246 

 BACKWARD  1234 

St
ep

w
is

e 
R

eg
re

ss
io

n 

 STEPWISE  1246 

 MSE  1246 
 ADJRSQ  24 
 AIC  126 
 AICC  126 
 HQ  126 
 HQC  126 
 BIC  123456 
    
  126 
  1236 
  1246 
  1256 
  12346 
  12356 

A
ll-

Po
ss

ib
le

-R
eg

re
ss

io
n 

 

Cp 

 12456 

Note: FORWARD = Forward Selection; BACKWARD = Backward Elimination; 
STEPWISE = Forward Stepwise Regression; MSE = Mean Square Error; ADJRSQ = 
Adjusted R2; AIC & AICC= Akaike�s information criterion and its corrected form, 
respectively; HQ & HQc = Hannan and Quinn information criterion and its corrected 
form, respectively; BIC = Schwarz's Bayesian information criterion; and Cp = Mallow�s 
criterion where. 
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4. Summary and Conclusion 

A SAS/IML program has been written to locate the multivariate candidate models for several 

multivariate model selection criteria. Three straightforward steps need to run the program 

properly for a new data: (1) Paste (or read) new data in the place of the example data at the 

beginning of the program and read it using DATA statement, (2) change the dependent and the 

independent variables� names in IML procedure, and (3) run the program. The program can also 

be used in a univariate linear regression case. 

Al-Subaihi (2002) stated that it is important for the investigator not to depend entirely on 

variable selection criteria because none of them works well under all conditions. A simulation 

study conducted by Bedrick and Tsai (1994) shows that factors such as sample size, number of 

dependent variables, number of independent variables, and the correlation between the y�s play a 

role in deciding which criterion should be used. Thus, the researcher needs to include predictors 

based on theory(ies) of the field under study and have low correlation with each other and high 

correlation with all y�s.  He needs to utilize more than one criterion in evaluating possible subset 

of x variables. Finally, the researcher needs to evaluate the final good models using various 

diagnostic procedures. 
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