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Abstract

A computer program for multifactor relative risks, confidence limits, and tests of hypotheses using regression
coefficients and a variance-covariance matrix obtained from a previous additive or multiplicative regression analysis
is described in detail. Data used by the program can be stored and input from an external disk-file or entered via
the keyboard. The output contains a list of the input data, point estimates of single or joint effects, confidence
intervals and tests of hypotheses based on a minimum modified chi-square statistic. Availability of the program
is also discussed.
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1 INTRODUCTION

Additive and multiplicative models are widely used in epidemiology to obtain maximum likelihood (ML) esti-
mates of relative risks (RR), odds-ratios (OR) and hazard ratios (HR). Numerous computer programs have been
developed that generate ML estimates of regression coefficients and variance-covariance matrices [1, 2, 3, 4, 5].
Despite this wide diversity of programs, there is a shortage of stand alone algorithms that allow the statistician to
generate multifactor relative risks and confidence limits, and conduct tests of hypotheses using results of previous
regression analyses.
This report documents a computer program to obtain point estimates and confidence intervals (CI) of RR for

single or joint effects using the regression coefficients and a variance-covariance matrix from a previous modeling
session.
The program has been developed mainly for Grizzle-Starmer-Koch (GSK) regression models for multinomial

categorical data, Cox proportional hazards (PH), logistic and Poisson regression results, but can be used with the
results of other models. The critical data required to apply the computer code are:

• Number of parameters
• Variable names and regression coefficients
• Variance-covariance matrix
• Probability (1-α) of the confidence interval of RR
• Number of coefficients used in RR or tests of hypotheses
• Units applied to each coefficient in RR estimation

There is only one output format, listing the regression coefficients, their names, variance-covariance matrix, point
estimates, corresponding CIs, minimum modified χ2 tests of hypotheses with one-sided tail probabilities and units
applied to each coefficient. The program and all of its subroutines are written in FORTRAN-77 and are run on
a desktop PC with an AMD-K6-166MHz chip. The algorithm may be compiled and run on Unix machines as
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well. The PC version of the executable requires about 176,000 bytes of random access memory (RAM) to operate.
Average execution time is about 1 second per run.

2 PROGRAM DESCRIPTION

The computer program proceeds as follows. The method of entering parameter names, regression coefficients, and
the variance-covariance matrix is specified by the user. The choices are to enter the data from the keyboard or
from an external disk-file. If the keyboard is selected as the means of entering data, the user is queried for all of
the necessary data. When using the disk-file for data entry, the number of parameters, p, is first read in, followed
by the p variable names and p regression coefficients. This is followed by entry of ((p2− p)/2) + p elements of the
variance-covariance matrix. One should note that, since the variance-covariance matrix is symmetric, only the
lower triangular is required.
Once the number of parameters, variable names, coefficients and variance-covariance matrix are entered via

the keyboard or disk-file, the user must enter the number of coefficients used in RR or tests of hypotheses to
be considered for this run. For each coefficient used in RR estimation, i.e., variable, the user must specify the
variable index and the units to be considered. Next, the user must specify for each factor one of the following three
options: (1) estimate RR and CI, (2) use contrast matrix for test of hypothesis about b=0, or (3) use a contrast
matrix to test for a trend in b=0. If RR and CI is specified, the program queries the user for the probability to
be used for estimating the CI of RR. The choices are 80%, 90%, 95%, 97.5% and 99%, with the last choice left as
an option to enter a probability that is different from those listed above.

2.1 NOTATION AND THEORY

Thus far we have discussed the program’s necessary input data. In this section we will address the relationship
between asymptotic likelihood theory and the ML estimation of the regression coefficients and variance-covariance
matrix. According to asymptotic likelihood theory, the score vectors of a regression model are

U(b) =
∂logL(b)

∂b
, (1)

where logL is the log of the likelihood function for the particular model under consideration, that is, the GSK,
Cox proportional hazards, logit, Poisson or other model. The Fisher information matrix I(b) of the score vectors
is

I(b) = E[U(b)UT (b)]

= −
[
E

(
∂2logL(b)

∂bj∂bk

)]
, (2)

the generalized-inverse of which is the variance-covariance matrix, Vb, written as

Vb =



σ2(b0) σ(b0, b1) · · · σ(b0, bj)
σ(b0, b1) σ2(b1) · · · σ(b1, bj)
...

...
. . .

...
σ2(b0, bj) σ(b1, bj) · · · σ2(bj)


 , (3)

which is a p × p real symmetric matrix whose principal diagonal consists of the parameter variances. The off-
diagonals are the covariances between each of the coefficients. Most computer programs print the diagonal and
the upper or lower triangular of the variance-covariance matrix, which makes no difference since the matrix is
symmetric. When Newton-Raphson iteration is used for convergence, Vb is the generalized-inverse of the Fisher
information matrix. For iteratively reweighted least squares (IRLS) regression, Vb is the generalized-inverse of
the weighted dispersion matrix shown as

Vb = I(b)

= (XTVX)−1 . (4)
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A best-asymptotic-normal (BAN) estimate of the parameter vector b is obtained by adding the solution vector

∆b = (XTVX)−1XTVY , (5)

to the previous parameter vector at each iteration

b(i+1) = bi +∆b(i+1) , (6)

which results in b at convergence

b =



b0
b1
b2
...
bp


 . (7)

In (5) X is the design matrix,W is a diagonal matrix of inverse variance weights and Y is the column vector of
residuals. Using b and Vb from, for example, a four-variable model including terms for an intercept b0 and three
risk factors (b1 ,b2 , and b3), the point estimate of RR for the three factors considered jointly is

RR = exp(b1u1 + b2u2 + b3u3) , (8)

where b1, b2, and b3 are the regression coefficients and u1, u2 and u3 are the units applied to the coefficients. The
RR in (8) is based on reference cell coding where each p-level risk factor is coded with p−1 independent variables.
The Taylor series-based (1− α) cofidence interval (CI) for the interval estimate can be expressed by

(1− α)CI RR = exp (ln(RR)± Zα ×
√
V ) . (9)

Abramowitz and Stegun [6] give a useful method for determining percentage points of the standard deviate, Zα,
in (9) for a specified a level in the form

Zα = t−
[
c0 + c1t+ c2t

2

1 + d1 + d2t2 + d3t3

]
(10)

where

t =

√
ln
(
1

α2

)
, (11)

and
c0 = 2.515517 d1 = 1.432788
c1 = 0.802853 d2 = 0.189269
c2 = 0.010328 d3 = 0.001308.
The variance, V , of the logarithm of the RR (9) takes on the form

V =

p∑
i

σ2(bi)(u
∗
i − ui)2 +

p∑
j

p∑
i6=j
σij(bi, bj)(u

∗
i − ui)(u∗j − uj) , (12)

where σ2(bi) is the variance of bi, σij(bi, bj) is the covariance between bi and bj (3) and (u
∗
i − ui) and (u∗j − uj)

are the change in units applied to the coefficients. A test of hypothesis of no significant effect due to the joint
factors of the parameters in (8) is

Ho : b1 = b2 = b3 = 0 , (13)

which can be rewritten as
Ho : Cb = 0 , (14)

where C is the contrast matrix forming the desired linear combination of the regression coefficients for the three-
parameter test. Thus, for the three joint factors in (8), the C matrix is

C =

(
0 1 0 0
0 0 1 0
0 0 0 1

)
. (15)
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Grizzle, Starmer, and Koch [7] introduced the test statistic of the linear hypothesis Ho : Cb = 0, given by

χ2 = SS(Cb = 0) = bTCT[CVbC
T]−1Cb , (16)

which is χ2 distributed with degrees of freedom equal to the number of independent rows in C. Matrix multipli-
cation in (16) is first carried out by obtaining the outer products bTCT and Cb. The variance-covariance matrix
Vb is premultiplied by C to give CVb, which is postmultiplied by the transpose of C (C

T ) to give CVbC
T .

The inverse of CVbC
T , that is, [CVbC

T ]−1, is obtained by using singular value decomposition, which avoids
such problems as nullity (zero elements), singularity and collinearity, which may be inherent in ill-conditioned
or “sparse” matrices. Lastly, [CVbC

T ]−1 is premultiplied by bTCT then postmultiplied by Cb to arrive at
bTCT [CVbC

T ]−1Cb. If the test statistic exceeds some tabled value of χ2(d.f.,1−α), then we conclude that there
is a statistically significant joint effect in the presence of the three factors in our example.

2.2 STRUCTURE

CALL VAR(N,A,B,CON,M,U,X,Z,ITRND,BEGTRND,ENDTRND,
ORDTRND,ITRD,ITER,IFLT,PLUS,RR,LL,UL,CHI2,PROB)
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NP Parameter Work: Maximum number of parameters
NTITER Parameter Work: Maximum number of cycles (runs

per session)
INFILE Character Input: Input filename (optional)
OUTFILE Character Input: Output filename
NCOL Integer Input: Number of parameters
B(NCOL) Real Input: Column vector of coefficients, b
SE(NCOL) Real Input: Standard error of coefficients
X(NCOL,NCOL) Real Input: Variance-covariance matrix, Vb
Z Real Input: Standard normal deviate
NEFF Integer Input: Number of coefficients used in RR

or tests of hypotheses
AUNIT(NCOL) Real Input: Units applied to coefficients
BEGTRND(NCOL) Integer Input: First coefficient in trend test
ENDTRND(NCOL) Integer Input: Last coefficient in trend test
IRTEST(NTITER) Integer Input: Type of test for each row of C ma-

trix
ITEST(NCOL) Integer Input: Dummy variable for test of trend

during each cycle (run per session)
ITER Integer Work: Cycle, or number of tests performed
B1(NCOL,1) Real Work: Column vector of coefficients, b
BT(1,NCOL) Real Work: Transpose of b vector
C(NCOL,NCOL) Real Work: Contrast matrix C
CON(NCOL,NCOL,NTITER) Real Work: Contrast matrix written at each cy-

cle
CB(NCOL,1) Real Work: Cross-product of C matrix and b

vector, Cb
CT(NCOl,NCOL) Real Work: Transpose of C matrix, CT

CX(NCOl,NCOL) Real Work: Cross-product of C and Vb matri-
ces, CVb

CXC(NCOl,NCOL) Real Work: Cross-product of CVb and C
T ma-

trices, CVb C
T

CXC1(NCOL,NCOL) Real Work: Generalized inverse of CVbCT ma-
trix, [CVbC

T ]−1

M1(1,NCOL) Real Work: Cross-product of bTCT

and [CVbC
T ]−1 matrices,

bTCT [CVbC
T ]−1

NUM(1,1) Real Work: Cross-product of bTCT [CVbC
T ]−1

and Cb matrices,
bTCT [CVbC

T ]−1Cb
PIND(NCOL) Integer Work: Column vector used to set each row

of contrast matrix, C
V Real Work: Variance of ln(RR)
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SD Real Work: Square-root of V
BU Real Work: Sum-product of coefficients and

units
∑
biUNITi

PLUS(NCOL) Character Output: Column vector of ‘+’ and ‘-’ sym-
bols, with ‘+’ representing the spec-
ified factors

RR Real Output: Relative risk
LL Real Output: Lower bound of relative risk
UL Real Output: Upper bound of relative risk
CHI2 Real Output: Chi-square test statistic
PROB Real Output: One-sided tail probability
IFLT Integer Output: Premature exit code

0=OK
1=(Z = 0)
2=(NEFF = 0)
3=(bi = 0)
4=(UNITi = 0)
5=(INDi = 0)
6=(V = 0)

2.3 AUXILIARY ALGORITHMS

The algorithms MATMUL, TRNPOS, MATINV, SVDCMP are required. MATMUL is used for matrix multi-
plication; TRNPOS is used to tranpose matrices, both given in [8]. MATINV performs a check on the singular
values returned from the singular value decomposition algorithm SVDCMP based on [9]; the function CUMNOR
returns Zα for a given α; the functions ALG and GAMAIN return the χ

2 tail probabilities for a given χ2 value
and d.f.

2.4 RESTRICTION

All input parameters are checked for nullity and a fault message is returned if there is an illegal entry.

2.5 TIME

A thorough investigation of absolute timing has not been performed; however, it should be noted that execution
time is a function of the number of model parameters and factors to be considered.

2.6 PRECISION

The algorithm may be converted to double precision by making the following changes:

1. Change REAL to DOUBLE PRECISION in the algorithm.

2. Change the constants to double precision.

3. Change EXP to DEXP and ALOG to DLOG in all applicable routines.

4. Make appropriate changes in auxiliary routinesMATMUL, TRNPOS, MATINV, SVDCMP, and in functions
ALG and GAMAIN.
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2.7 APPLICATION

2.7.1 Estimating Relative Risk for Multiple Risk Factors

Let us take, as an example, the results of a unconditional (unmatched) logistic regression analysis of oral contra-
ceptive use (OC), smoking and myocardial infarction (MI) found in [10]. The coefficients are given as

b =




b0
b1
b2
b3
b4
b5
b6



=




−9.2760
1.2756
0.1517
1.1977
2.0828
−1.1709
0.3392




Intercept
OC Use
Age

Smoke(1− 24)
Smoke ≥ 25

OCuse ∗ Smoke(1− 24)
OCuse ∗ Smoke ≥ 25

. (17)

where the variable names to the right of the coefficients are the intercept, OC use (coded 0-no, 1-yes), age
(continuous variable), smoking 1-24 cigarettes per day (coded 0-no, 1-yes), smoking ≥ 25 cigarettes per day (coded
0-no, 1-yes), interaction term for OC use and smoking 1-24 cigarettes per day and an interaction term for OC use
and smoking ≥ 25 cigarettes per day. The variance-covariance matrix Vb for our example is

C =




0.4045 . . . . . .

−0.0676 0.3345 . . . . .

−0.0087 0.0008 0.0002 . . . .

−0.0387 0.0324 0.0002 0.0476 . . .

−0.0470 0.0332 0.0004 0.0321 0.0489 . .

0.0140 −0.3294 0.0004 −0.0471 −0.0310 0.7212 .

0.0072 −0.3287 0.0006 −0.0313 −0.0472 0.3322 0.4424



. (18)

The RR for a woman who is an OC user that smokes ≥ 25 cigarettes per day would be determined by
substituting in the values of the coefficients and applying a unit of 1.0 to each in (8), we get

RR = exp(1.2756 × (1 + 2.0828) × (1 + 0.3392) × 1)
= exp(3.6976)

= 40.35.

(19)

If we now substitute into (12) the variances and covariances for the three variables in (18), we obtain V as

V = 0.3345(1 − 0)2 + 0.0489(1 − 0)2 + 0.4424(1 − 0)2 + 2(0.0332) + 2(−0.3287) + 2(−0.0472)
= 0.1404.

(20)

The 95% CI for the RR is then calculated from (9) as

95% CI RR = exp(ln(RR)± Zα
√
V )

= exp(3.6976 ± 1.96√0.1404)
= (19.4, 84.1).

(21)

Now that the RR and Taylor series-based CI have been estimated, we can conduct a simultaneous test of
hypothesis for no significant effect due to OC use, smoking ≥ 25 cigarettes per day with respect to the RR:

Ho : b1 = b4 = b6 = 0 . (22)
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For the three factors, the C matrix is

C =

(
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

)
. (23)

By substituting the appropriate values into (16) and performing the matrix manipulation to obtain χ2 we get

Cb =

(
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

)



−9.2760
1.2756
0.1517
1.1977
2.0828
−1.1709
0.3392



,

=

(
1.2756
2.0828
0.3392

)
, (24)

bTCT = (−9.2760 1.2756 0.1517 1.1977 2.0828 −1.1709 0.3392 )




0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1



,

= ( 1.2756 2.0828 0.3392 ) , (25)

CVb =

(
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

)



0.4045 . . . . . .

−0.0676 0.3345 . . . . .

−0.0087 0.0008 0.0002 . . . .

−0.0387 0.0324 0.0002 0.0476 . . .

−0.0470 0.0332 0.0004 0.0321 0.0489 . .

0.0140 −0.3294 0.0004 −0.0471 −0.0310 0.7212 .

0.0072 −0.3287 0.0006 −0.0313 −0.0472 0.3322 0.4424



,

=

(−0.0676 0.3345 0.0008 0.0324 0.0332 −0.3294 −0.3287
−0.0470 0.0332 0.0004 0.0321 0.0489 −0.0310 −0.0472
0.0072 −0.3287 0.0006 −0.0313 −0.0472 0.3322 0.4424

)
, (26)

CVbC
T =

(−0.0676 0.3345 0.0008 0.0324 0.0332 −0.3294 −0.3287
−0.0470 0.0332 0.0004 0.0321 0.0489 −0.0310 −0.0472
0.0072 −0.3287 0.0006 −0.0313 −0.0472 0.3322 0.4424

)



0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1



,

=

(
0.3345 0.0332 −0.3287
0.0332 0.0489 −0.0472
−0.3287 −0.0472 0.4424

)
, (27)

[CVbC
T]−1 =

(
11.0866 0.4724 8.2877
0.4724 22.8178 2.7855
8.2877 2.7855 8.7153

)
, (28)
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bTCT[CVbC
T]−1 = ( 1.2756 2.0828 0.3392 )

(
11.0866 0.4724 8.2877
0.4724 22.8178 2.7855
8.2877 2.7855 8.7153

)
,

= (17.9373 49.0723 19.3296 ) , (29)

bTCT[CVbC
T]−1Cb = (17.9373 49.0723 19.3296 )

(
1.2756
2.0828
0.3392

)
= 131.6453 . (30)

The resulting χ2 test statistic of 131.65 is significantly greater than the tabled χ2(3,0.95) value of 7.82, indicating
that there is a significant joint effect. Thus we reject the hypothesis (22) that there is no joint effect due to OC
use, smoking ≥ 25 cigarettes per day and the interaction between OC use and smoking ≥ 25 cigarettes per day.
After performing estimating relative risk or testing hypotheses, the user is asked to continue with processing.

If the response is “no,” the program is terminated, otherwise the algorithm recycles and queries the user for input
data for the next cycle (run).

2.7.2 Testing Hypotheses for Trends

This section describes how to use COVAR for conducting tests of hypothesis for trends in coefficients. The example
is based on multinomial categorical data related to pathological outcome among 2525 thryoid surgical patients.
These particular patients resided near the Semipalatinsk Test Site, Kazakstan, where the former Soviet Union
conducted nuclear weapons testing from 1949-89. These data are shown in Table 1, which contains 7 columns for
outcome (Goiter, Adenoma, Cancer, Hashimoto’s thyroiditis, Riedel’s thyroiditis, Dequervain’s thyroiditis, and
Other).
Our goal is to determine whether there has been an increase in the proportion of thyroid cancers identified

at surgery throughout the time periods. In the “Cancer” column of Table 1, one can notice the proportion of
cancer out of all other outcomes increases over time. Although inferences can be made by visualizing non-zero
effects and increasing trends of proportions, we nevertheless must perform hypothesis tests to discredit the null
hypothesis of no effect, no interaction, and no trend.

Table 1: Frequency distribution of 2525 thyroid abnormalities among surgical patients in the Semipalatinsk Region
of Kazakstan, number (%).

Calendar Goiter Hashimoto’s Riedel’s de Quervain’s
period (all forms) Adenoma Cancer thyroiditis thyroiditis thyroiditis Other Total

I (1966-1971) 324 (83.9) 12 (3.1) 5 (1.3) 37 (9.6) 3 (0.8) 3 (0.8) 2 (0.5) 386 (100)
II (1972-1976) 212 (59.9) 95 (26.8) 16 (4.5) 25 (7.1) 1 (0.8) - 5 (1.4) 354 (100)
III (1977-1981) 229 (60.4) 85 (22.4) 17 (4.5) 36 (9.5) 5 (1.3) 1 (0.3) 6 (1.6) 379 (100)
IV (1982-1986) 276 (60.1) 59 (12.8) 48 (10.5) 69 (15.0) 1 (0.2) 1 (0.2) 5 (1.1) 459 (100)
V (1987-1991) 353 (54.6) 68 (10.5) 105 (16.2) 111 (17.2) 4 (0.6) 2 (0.3) 3 (0.5) 647 (100)
VI (1992-1994) 201 (67.0) 29 (9.7) 29 (9.7) 34 (11.3) 2 (0.6) 2 (0.7) 3 (1.0) 300 (100)

First, we made a GSK regression by regressing the ratio of the count for each outcome (column) in each
time period by the total row count for each time period. As an example, the first record in the data file for the
GSK regression has 324/386 as the dependent variable, followed by 12/386 in the second record, 5/386 in the
third record, 37/386 if the fourth, 3/386 in the fifth record, 3/386 in the sixth, and 2/386 in the seventh. The
eighth record begins with 212/354 as the dependent variable, and so on. Dummy coding with 0 and 1 was used
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to specify the level of the outcome, time period, and interaction between cancer and time period. Arranged in
matrix notation, the column vector of coefficients is

b =




b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19




=




0.5557
0.0618
0.0013
0.0478
−0.0700
−0.0723
−0.0663
0.0770
0.0742
0.0802
0.0744
0.0747
0.0770
−0.0653
−0.0303
−0.0367
0.0289
0.0863
0.0183




Goiter
Adenoma
Cancer

Hashimoto′s
Riedel′s

Dequervain′s
Other
1966− 71
1972− 76
1977− 81
1982− 86
1987− 91
1992− 94

Cancer ∗ 1966 − 71
Cancer ∗ 1972 − 76
Cancer ∗ 1977 − 81
Cancer ∗ 1982 − 86
Cancer ∗ 1987 − 91
Cancer ∗ 1992 − 94

. (31)

In the parameter vector, we can see coefficients for 7 outcomes (Goiter, Adenoma, Cancer, Hashimoto’s
thyroiditis, Riedel’s thyroiditis, Dequervain’s thyroiditis, and Other), 6 time periods (1966-71, 1972-76, 1977-81,
1982-86, 1987-91, and 1992-94), and 6 interaction terms for Cancer and Period (Cancer * 1966-71, Cancer * 1972-
76, Cancer * 1977-81, Cancer * 1982-86, Cancer * 1987-91, Cancer * 1992-94). Using sum-to-zero constraints,
we have a total of 19 coefficients. (Sum-to-zero constraints do not use of a constant term nor p − 1 levels to
describe each factor. Rather, p terms are used for each factor without a constant). We notice that coefficients
for the outcomes (coefficients 1-7), periods (coefficients 8-13), and cancer*period interaction (coefficients 14-19)
are non-zero. The increasing proportion of cancer over time is also noticeable by the increasing trend in values of
coefficients 14 through 18, but the trend did not continue for the last time period (coefficient 19).
For the purpose of this example, we shall focus on three hypothesis tests. First, we would like to know if there

was a “period effect” present in the data, that is, if the apportionment of various thyroid outcomes changed over
time. In (31) the period effect is expressed by the 6 coefficients 8-13. Thus, we are conducting a simultaneous
test of the 6 coefficients with the hypothesis

Ho : b8 = b9 = b10 = b11 = b12 = b13 = 0. (32)

Since there are 6 coefficients to test and 19 total coefficients, this results in a 6× 19 C matrix shown as

C =




0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


 . (33)

The second test we will perform identifies whether the cancer*period interaction is significant. The interaction
terms are coefficients 14-19, so the test notation is

Ho : b14 = b15 = b16 = b17 = b18 = b19 = 0. (34)

The C matrix now becomes

C =




0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


 . (35)
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Table 2: Format specification for input disk-file (filename specified by user at run-time).

Description Form Columns Number of Records

Number of parameters Integer 1-2 1
Variable names Character 1-20 p
Regression coefficients Real 1-16 p
Variance-covariance matrix Real p(1-16) p

Our last test determines the presence of a statistically significant trend in the cancer*period interaction term.
Trend tests using contrast matrices are performed by using equal “spacing” throughout the coefficients to be
tested. Thus, we have the following notation

Ho : −3b14 − 2b15 − b16 + b17 + 2b18 + 3b19 = 0 , (36)

and the C matrix

C = ( 0 0 0 0 0 0 0 1 0 0 0 0 0 −3 −2 −1 1 2 3 ) . (37)

Results of the χ2 tests using (16) and C matrices above are 4575.67 (6 d.f.) for the period effect, 164.99 (6 d.f)
for the cancer*period interaction and 64.18 (1 d.f.) for the test of trend for the cancer*period interaction. These
results indicate that there is a significant period effect, a significant cancer*period interaction, and a significant
trend for the proportion of cancer to increase over time.

2.8 INPUT

There are seven forms of input into the computer program: the number of parameters, the variable names of
the regression coefficients, the regression coefficients, the variance-covariance matrix of the regression coefficients,
the number of coefficients used in RR or tests of hypotheses, the probability of the CIs, and the units applied to
each coefficient. The first four items, i.e., the number of parameters, variable names, regression coefficients, and
variance-covariance matrix can be entered from either the keyboard or a disk-file. The last three items, namely,
the number of coefficients used in RR or tests of hypotheses, probability of the CIs, and units applied to each
coefficient can only be entered by using the keyboard.

3 USER INPUT DATA FILE

This section discusses the data format when the user has specified that the regression coefficients and variance-
covariance matrix are to be entered using the input disk-file. Table 2 lists the data in each record (card) of
the input disk-file. When entering the regression coefficients and variance-covariance matrix with the keyboard,
however, the data must follow the form described below.
The examples in the Appendix give listings of input files according to the format specified in Table 2.

4 SAMPLE INPUT/OUPUT CASES

The output for all computer runs is in tabular form, giving the variable names, the coefficients, variance-covariance
matrix, single or joint effects, contrast matrices, units, point estimates and lower and upper bounds of the 1-α
CIs for each run, the chi-square test statistic with degrees of freedom and p-values. Two examples using an input
disk-file are given in the Appendix.
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Table 3: Names and descriptions of each COVAR file.

Filename Description Format

INFILE (optional)∗ Input file ASCII text
OUTFILE∗ Output file ASCII text
COVAR.FOR FORTRAN source code ASCII text
COVAR.EXE Executable file FORTRAN

∗ Input (optional) and output filenames are specified by the user at run-time.

5 FILENAMES

Table 3 lists the names of the files that were used to program, link and execute COVAR. As one notices, the
source code is an ASCII text file and the object and executable files have been compiled with Microsoft FORTRAN
Powerstation Version 4.10. There is only one optional input data file, which is read when the uses specifies data
input from disk. In this case, the filename to be read is specified by the user at run-time.

6 AVAILABILITY

The program and all of its subroutines are available from the Journal of Statistical Software free of charge at
http://www.stat.ucla.edu/journals/jss/

7 ACKNOWLEDGEMENTS

The author gratefully acknowledges Drs. Barry Davis, Ronald Forthofer and Wenyaw Chan of the University of
Texas for their review and helpful commentary. Work on this algorithm was partially performed under NASA
contract NAS-9 18236.

References

[1] Forthofer, R.N. and Koch, G.G. (1974). A program for the analysis of compounded functions of categorical
data. Comp. Prog. Biomed. 3:237-248.

[2] Cox, D.R. (1972) Regression Models and Life Tables. J. Royal Stat. Soc., Series B. 34:187-220.

[3] Engelman, L. (1991) Stepwise Logistic Regression, PLR Module. BMDP Statistical Software Manual. Berke-
ley: U. of California.

[4] Frome, E. L. (1981) PREG: A computer program for Poisson regression analysis. Oak Ridge Associated
Universities (ORAU). ORAU Publication 178. Oak Ridge: ORAU.

[5] Preston, D.L. and Pierce, D.A. (1989). AMFIT: A program for parameter estimation in additive and mul-
tiplicative rate models with grouped survival data - methods, models, and examples. AMFIT User’s Guide.
Hirosoft International Corporation. Seattle: Hirosoft.

[6] Abramowitz, M. and Stegun, A. (1965) Handbook of Mathematical Functions. New York: Dover.

[7] Grizzle, J.E., Starmer, C.F., Koch, G.G. (1969) Analysis of categorical data for linear models. Biometrics.
25:489-504.

[8] Heiberger, R. (1989) Computation for the analysis of designed experiments. New York: Wiley.

[9] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1989) Numerical Recipes: The Art of Scien-
tific Computing. New York: Cambridge University Press.

12



[10] Schlesselman, J.J. (1982) Case-Control Studies: Design, Conduct, Analysis. Oxford: Oxford University.

[11] Kalbfleisch, J.D., Prentice, R.L. (1980) The Statistical Analysis of Failure Time Data. New York: Wiley.

[12] Hosmer, D.W., Lemeshow, S. (1989) Applied Logistic Regression. New York: Wiley.

13



8 APPENDIX: SAMPLE INPUT/OUTPUT CASES

Example 1: Data from logistic regression analysis. Odds-ratios and 95
Contents of the input file, EXAMPLE1.DAT, provided in the distribution are listed below:

5

LWD

SMOKE

AGE

LWD x SMOKE

LWD x AGE

1.730

1.153

0.084

1.407

0.147

3.490000

0.006260 0.210000

0.044700 0.008630 0.002080

0.120000 0.165000 0.000776 0.670000

0.147000 0.002840 0.002030 0.010000 0.006870

Keyboard specifications at run-time for Example 1.

INPUT FROM KEYBOARD OR FILE (K/F)? F

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 2

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 1

ENTER UNIT FOR EFFECT #1:

1

SPECIFY TEST FOR ROW #2: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 5

ENTER UNIT FOR EFFECT #2:

30

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 3

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 1
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ENTER THE COEFFICIENT INDEX FOR ROW # 1: 1

ENTER UNIT FOR EFFECT #1:

1

SPECIFY TEST FOR ROW #2: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 4

ENTER UNIT FOR EFFECT #2:

1

SPECIFY TEST FOR ROW #3: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 5

ENTER UNIT FOR EFFECT #3:

30

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 1

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 2

ENTER UNIT FOR EFFECT #1:

1

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 2

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 2

ENTER UNIT FOR EFFECT #1:

1

SPECIFY TEST FOR ROW #2: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 4

ENTER UNIT FOR EFFECT #2:

1

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER
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SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 4

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 1

ENTER UNIT FOR EFFECT #1:

1

SPECIFY TEST FOR ROW #2: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 2

ENTER UNIT FOR EFFECT #2:

1

SPECIFY TEST FOR ROW #2: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 4

ENTER UNIT FOR EFFECT #3:

1

SPECIFY TEST FOR ROW #3: 1-RR 2-EFFECT 3-TREND: 1

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 5

ENTER UNIT FOR EFFECT #4:

30

CONTINUE(Y/N)? N

Output file for Example 1. Results are in agreement with those in Table 4.13 of [12].

RUN DATE: 4/10/1997

VARIANCE-COVARIANCE MATRIX OF COEFFICIENTS

B1 B2 B3 B4 B5

B1 3.4900000

B2 .62600000E-02 .21000000

B3 .44700000E-01 -.86300000E-02 .20800000E-02

B4 -.12000000 -.16500000 .77600000E-03 .67000000

B5 -.14700000 .28400000E-02 -.20300000E-02 -.10000000E-01 .68700000E-02

INDEX NAME COEFFICIENT STD. ERROR

1 - LWD -1.73000000 1.86815400

2 - SMOKE 1.15300000 .45825760

3 - AGE -.08400000 .04560702

4 - LWD x SMOKE -1.40700000 .81853530

5 - LWD x AGE .14700000 .08288547

EFFECTS, CIs AND TEST STATISTICS AT EACH CYCLE

CYCLE B1 B2 B3 B4 B5 CI RR LOWER UPPER CHI2 DF PROB

1 + - - - + 95.00 14.59 2.39 89.17 8.9594 2 .0113

2 + - - + + 95.00 3.57 .71 18.05 9.0557 3 .0286

3 - + - - - 95.00 3.17 1.29 7.78 6.3305 1 .0119

4 - + - + - 95.00 .78 .18 3.32 6.7952 2 .0335

5 + + - + + 95.00 11.31 2.08 61.51 13.5448 4 .0089

UNITS APPLIED TO COEFFICIENTS AT EACH CYCLE
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CYCLE U1 U2 U3 U4 U5

1 1.0 .0 .0 .0 30.0

2 1.0 .0 .0 1.0 30.0

3 .0 1.0 .0 .0 .0

4 .0 1.0 .0 1.0 .0

5 1.0 1.0 .0 1.0 30.0

Example 2: Data from multinomial categorical regression of data for thyroid pathologies among 2525 surgical
patients who lived near the Semipalatinsk Test Site, Kazakstan, where nuclear weaopns were tested from 1949-
89. Test of hypotheses for effects of time period, cancer and time period interaction, and trend for increasing
cancer over time periods. Regression coefficients obained from use of a Grizzle-Starmer-Koch additive model for
multinomially distributed data. All data stored in input data file EXAMPLE2.DAT.
Contents of input file EXAMPLE2.DAT provided in distribution are shown below:

19

Goiter

Adenoma

Cancer

Hashimoto’s

Riedel’s

Dequervain’s

Other

1966-71

1972-76

1977-81

1982-86

1987-91

1992-94

Cancer * 1966-71

Cancer * 1972-76

Cancer * 1977-81

Cancer * 1982-86

Cancer * 1987-91

Cancer * 1992-94

.5557

.0618

.0013

.0478

-.0700

-.0723

-.0663

.0770

.0742

.0802

.0744

.0747

.0770

-.0653

-.0303

-.0367

.0289

.0863

.0183

.79073110E-04

-.95527380E-05 .40990960E-04
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-.66085770E-05 -.36034480E-05 .18156760E-04

-.92355610E-05 -.57279850E-05 -.33316720E-05 .37546310E-04

-.60641810E-05 -.25531110E-05 -.63490720E-06 -.22354460E-05 .31471900E-05

-.59866910E-05 -.24739670E-05 -.57919900E-06 -.21561200E-05 .11089230E-05 .

-.61796430E-05 -.26697410E-05 -.72608150E-06 -.23522160E-05 .86166600E-06 .

.58893280E-05 .23836660E-05 .42398200E-06 .20666520E-05 -.10018460E-05 .

.59764610E-05 .24589970E-05 .49477690E-06 .21406180E-05 -.12317640E-05 .

.58217260E-05 .23477210E-05 .31618880E-06 .20342310E-05 -.66307480E-06 .

.59077310E-05 .23905490E-05 .53694550E-06 .20721830E-05 -.12833040E-05 .

.58233450E-05 .23068350E-05 .58408650E-06 .19885520E-05 -.13350450E-05 .

.60272670E-05 .25221220E-05 .31697150E-06 .22051640E-05 -.85483440E-06 .

.35120810E-06 .85173070E-06 -.14164310E-04 .89697650E-06 .12687060E-05 .

-.72239960E-06 -.21007690E-06 -.23973420E-05 -.16347970E-06 .51214890E-06 .

-.46918090E-06 -.32303120E-09 -.34006680E-05 .41403640E-07 .41954150E-07 .

-.15658960E-05 -.10538430E-05 .85072400E-05 -.10072680E-05 -.34852620E-06 .

-.15494840E-05 -.10381020E-05 .92756790E-05 -.99160810E-06 -.36476370E-06 .

-.26528570E-05 -.21528250E-05 .20336160E-04 -.21076640E-05 -.17444170E-05 .

Keyboard specifications at run-time for Example 2.

INPUT FROM KEYBOARD OR FILE (K/F)? F

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 6

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 1: 8

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 2: 9

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 3: 10

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 4: 11

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 5: 12

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 6: 13

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 6

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2
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ENTER THE COEFFICIENT INDEX FOR ROW # 1: 14

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 2: 15

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 3: 16

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 4: 17

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 5: 18

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 2

ENTER THE COEFFICIENT INDEX FOR ROW # 6: 19

CONTINUE(Y/N)? Y

1 - 80.0

2 - 90.0

3 - 95.0

4 - 97.5

5 - 99.0

6 - OTHER

SELECT PERCENTAGE FOR CONFIDENCE INTERVALS: 2

ENTER NUMBER OF ROWS IN CONTRAST MATRIX: 1

SPECIFY TEST FOR ROW #1: 1-RR 2-EFFECT 3-TREND: 3

ENTER BEGINNING COEFFICIENT INDEX: 14

ENTER ENDING COEFFICIENT INDEX: 19

CONTINUE(Y/N)? N

Output file for Example 2.

VARIANCE-COVARIANCE MATRIX OF COEFFICIENTS

B1 B2 B3 B4 B5 B6 B

B1 .79073110E-04

B2 -.95527380E-05 .40990960E-04

B3 -.66085770E-05 -.36034480E-05 .18156760E-04

B4 -.92355610E-05 -.57279850E-05 -.33316720E-05 .37546310E-04

B5 -.60641810E-05 -.25531110E-05 -.63490720E-06 -.22354460E-05 .31471900E-05

B6 -.59866910E-05 -.24739670E-05 -.57919900E-06 -.21561200E-05 .11089230E-05 .23669360E-05

B7 -.61796430E-05 -.26697410E-05 -.72608150E-06 -.23522160E-05 .86166600E-06 .96027090E-06 .43740

B8 B9 B10 B11 B12 B13 B1

B8 .57360130E-05

B9 .61598620E-06 .39929060E-05

B10 -.20915850E-07 .25510090E-06 .79012830E-05

B11 .65550000E-06 .99558190E-06 .29706330E-06 .35407700E-05

B12 .69092170E-06 .10233200E-05 .33625410E-06 .10592090E-05 .30728940E-05

B13 .16885510E-06 .46789670E-06 -.16786120E-06 .50748810E-06 .54302610E-06 .70760190E-05

B14 -.57919500E-05 -.74271730E-06 .72774950E-07 -.82439780E-06 -.90696110E-06 -.11778330E-06 .48295

B15 B16 B17 B18 B19

B15 .10982830E-03

B16 -.14714190E-04 .10707580E-03

B17 -.26892360E-04 -.26489030E-04 .16784310E-03
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B18 -.27701040E-04 -.27286250E-04 -.39481890E-04 .17181930E-03

B19 -.40216420E-04 -.39750260E-04 -.51993600E-04 -.52794410E-04 .23285270E-03

INDEX NAME COEFFICIENT STD. ERROR

1 - Goiter .55570000 .00889231

2 - Adenoma .06180000 .00640242

3 - Cancer .00130000 .00426108

4 - Hashimoto’s .04780000 .00612750

5 - Riedel’s -.07000000 .00177403

6 - Dequervain’s -.07230000 .00153848

7 - Other -.06630000 .00209143

8 - 1966-71 .07700000 .00239500

9 - 1972-76 .07420000 .00199823

10 - 1977-81 .08020000 .00281092

11 - 1982-86 .07440000 .00188169

12 - 1987-91 .07470000 .00175297

13 - 1992-94 .07700000 .00266008

14 - Cancer * 1966-71 -.06530000 .00694946

15 - Cancer * 1972-76 -.03030000 .01047990

16 - Cancer * 1977-81 -.03670000 .01034774

17 - Cancer * 1982-86 .02890000 .01295543

18 - Cancer * 1987-91 .08630000 .01310799

19 - Cancer * 1992-94 .01830000 .01525951

EFFECTS, CIs AND TEST STATISTICS AT EACH CYCLE

CYCLE B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12B13B14B15B16B17B18B19 CI RR LOWER UPPER CHI2

1 - EFFECT TEST, CONTRAST MATRIX BELOW N/A N/A N/A N/A 4575.676

CONTRAST MATRIX:

0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.

2 - EFFECT TEST, CONTRAST MATRIX BELOW N/A N/A N/A N/A 164.997

CONTRAST MATRIX:

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

3 - TREND TEST, SEE CONTRAST MATRIX BELOW N/A N/A N/A N/A 64.185

CONTRAST MATRIX:

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.-3.-2.-1. 1. 2. 3.
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UNITS APPLIED TO COEFFICENTS AT EACH CYCLE

CYCLE U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17
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