
JSS Journal of Statistical Software
December 2007, Volume 23, Issue 9. http://www.jstatsoft.org/

WinBUGSio: A SAS Macro for the Remote

Execution of WinBUGS

Michael K. Smith
Pfizer Global

Research and Development

Helen Richardson
Pfizer Global

Research and Development

Abstract

This is a macro which facilitates remote execution of WinBUGS from within SAS. The
macro pre-processes data for WinBUGS, writes the WinBUGS batch-script, executes this
script and reads in output statistics from the WinBUGS log-file back into SAS native
format. The user specifies the input and output file names and directory path as well
as the statistics to be monitored in WinBUGS. The code works best for a model that
has already been set up and checked for convergence diagnostics within WinBUGS. An
obvious extension of the use of this macro is for running simulations where the input and
output files all have the same name but all that differs between simulation iterations is
the input dataset. The functionality and syntax of the macro call are described in this
paper and illustrated using a simple linear regression model.

Keywords: Bayesian, macro, remote execution, SAS, WinBUGS.

1. Introduction

WinBUGS version 1.4 (Spiegelhalter, Thomas, Best, and Lunn 2003) now incorporates a
batch script facility which allows the user to run WinBUGS models without having to point
and click their way through the graphical user interface. This new functionality opens the
way for remote running of WinBUGS models from other software packages. The aim of
the macro described below is to allow the user to run a WinBUGS model from within SAS
(SAS Institute Inc. 1999). It is assumed that the user has already tested the model within
WinBUGS, checking syntax, convergence criteria and other standard tasks. The macro itself
does not write the model or check its reasonableness but instead handles input and output
from SAS to WinBUGS and back including actually calling WinBUGS itself. The authors
assume that the reader knows sufficient SAS language to be able to create the requisite datasets
and call macros.

http://www.jstatsoft.org/

2 WinBUGSio: A SAS Macro for the Remote Execution of WinBUGS

WinBUGS is a powerful Bayesian analysis tool using Markov-Chain Monte-Carlo (MCMC)
methods (Gilks, Richardson, and Spiegelhalter 1995) to sample model parameters (nodes)
from the posterior distribution. The WinBUGS model specifies the model likelihood and
prior distributions for the analysis. Specification of the full conditional distributions required
for MCMC simulations is handled “behind the scenes”. The workflow for running the model
within WinBUGS is as follows:

1. Check the model syntax.

2. Load in the data from an ASCII file, in column format and / or constants specified in
S language list(...) format.

3. Compile the code.

4. Load the initial values for the MCMC process.

5. Perform a “burn-in” of the MCMC to reach the stationary distribution for sampling
values from the joint posterior distribution.

6. Set the model parameters that you wish to monitor and generate statistics from the
posterior distribution.

7. Perform iterations of the MCMC to generate samples of these model parameters from
the posterior distribution.

8. Calculate summary statistics of these MCMC samples for the model parameters.

9. Save the results to a log file.

2. Main features

The WinBUGSio macro provides functionality for the input and output of information to and
from WinBUGS as well as executing the batch code. The macro gives the user a number
of different options for specifying the dataset to be used in analysis. The dataset can be
an internal, working SAS dataset which will be written out to an ASCII text file in column
format and / or S language list(...) format, or the user can specify an external ASCII
file or external SAS dataset containing data in the appropriate format for WinBUGS. If the
users opt to use existing SAS datasets for analysis, then they are required to specify which
variables are required in the WinBUGS data file and also specify labels to be used for these.
Since WinBUGS is case-sensitive the user needs to be careful to use labels which correspond
to data items specified in the model, for example covariate labels, response variable names
etc. However this step leaves flexibility with the user to re-label data items between the
SAS dataset and WinBUGS, or to use a new SAS dataset with an existing WinBUGS model
without having to rename variables in the WinBUGS model. The second step is to write
the batch code for running the model remotely using WinBUGS. The standard WinBUGS
batch commands for checking model syntax, reading the appropriate datasets, compiling the
model and reading in initial value files are pre-specified in the macro. The user specifies
the appropriate directory path and filenames for the various files and a list of the model
parameters or nodes to be sampled from the joint posterior distribution. This list creates

Journal of Statistical Software 3

the necessary commands within the batch script to sample these parameters. WinBUGS
requires nodes to be monitored for them to be output as summary statistics from the posterior
distribution. Finally the batch code commands for producing summary statistics from the
posterior distribution are given, and the summary statistics are written out to a log file.
The batch script is written out to the default WinBUGS installation directory and the user
specifies the filename for the script. The macro then executes this batch script in WinBUGS
by executing a DOS command for running WinBUGS in batch mode. WinBUGS will open
and the batch commands executed. However, the macro code is written so that WinBUGS
runs in a minimised window and as soon as the batch script completes successfully the window
is closed and control is returned to SAS. This allows “quiet” running of the macro and impact
on the desktop work is minimised.

Finally the log file containing the summary statistics from the MCMC sample of the posterior
distribution for each monitored node is read into SAS and converted into a SAS dataset. The
macro also provides functionality for the user to select variables which will have all MCMC
iterations stored (CODA output, see Best, Cowles, and Vines 1997) and read in to SAS for
post-processing.

This completes the functionality of the macro, however it is possible to wrap the macro in a
simulation framework creating a new SAS input dataset at each iteration of the simulation,
running the macro as described above and then storing the output SAS dataset in a larger
appended dataset. This provides functionality for conducting simulations of operating char-
acteristics under a fully Bayesian framework using convenient, commonly available tools such
as SAS and WinBUGS.

3. Macro call syntax

The macro call allows the user to set up quickly the necessary parameters which will be
used to control the output of data to WinBUGS. Deeper functionality is available to more
experienced users who wish to use external data sources or control the output of data to
WinBUGS more closely.

%WinBUGSIO(
dsin=WBinput,
dir=c:/program files/WinBUGS14/,
datafile1=data1,
datafile2=data2,
constlist=%str((N=5, xbar=3)),
dsvar=(covar, Response),
dsfmt=(best12.,best12.),
varlab=(‘x[]’,‘Y[]’),
initsfile=(initfile1,...,initfilen),
modelfile=model,
burnin=100,
sample=500,
nodes=(alpha, beta, mu, sigma),
codavar=(alpha,beta,sigma),
logfile=log,

4 WinBUGSio: A SAS Macro for the Remote Execution of WinBUGS

batchfile=batch,
dsout=WBoutput);

Where default values exist for the macro variables in the macro call, these are included in
brackets below. If no default value exists this will be stated, and the user must supply a
value.

• dsin (default: WBinput)
Specifies the input SAS dataset to be used as the basis for the WinBUGS analysis. The
dataset should contain the variables and information to be used to create the ASCII file
dataset required for running WinBUGS. The dataset can be either a local SAS working
dataset (in the temporary WORK library) or an external referenced library dataset
with an associated LIBNAME extension. External SAS permanent datasets can also be
specified by their file path. If the dataset file is in the directory specified below then
no extra file path information is required, otherwise full file path information should be
given.

• dir (default: C:/PROGRAM FILES/WinBUGS14/)
Specifies the directory path for the ASCII dataset files, MCMC initial value file, model
file and log file. This will be the directory that stores all input and output files. Batch
files are always written to the WinBUGS default installation directory for convenience.
Since these are themselves created by the macro using the specified inputs and outputs
and can be recreated at any time when the macro is re-run it was decided that there
was little need to write this batch file to the same directory. All the filenames specified
below, except for the batch file, will be written to this path. The path must already
exist on the computer otherwise the macro will halt with an error.

• datafile1 (default: data1)
Specifies the filename for the column-format dataset. This file is an ASCII TXT file of
any length containing the WinBUGS variable names for each column of data and the
data itself. This allows for great flexibility in specifying quite large datasets as well as
larger rectangular style arrays if appropriate subscripting is used in the variable labels
(explained below). This macro variable in conjunction with the dsvar macro variable
allows the user to specify external ASCII text files containing preprepared WinBUGS
datasets. If dsvar=external and datafile1 specifies a full path and filename then this
external file will be used in the batch script.

• datafile2 (default: data2)
Specifies the filename for the ASCII file containing the constants used in the WinBUGS
model file. These are usually items such as the number of observations, number of
experimental units, fixed constants for the model which are readily available to Win-
BUGS etc. Similarly to datafile1, the user can specify external ASCII text files for
pre-prepared WinBUGS datasets. If constlist=external and datafile2 specifies a
full path and filename then this file will be used in the batch script.

• constlist (no default)
Specifies the constants described above in S language list(...) format. For ex-
ample constlist=%str(N=5, xbar=3) creates an ASCII file with contents list(N=5,

Journal of Statistical Software 5

xbar=3). The macro adds the ‘list’ statement and parentheses. The context and mean-
ing of this example can be seen in the worked example below. Items in this list will be
constructed into a list format and written to the file specified in the datafile2 macro
variable. If constlist has an assigned value and dsvar has no assigned value then
the macro assumes that list format data only is being used for WinBUGS analysis.
If constlist = EXTERNAL then the external constants list file given in the datafile2
statement will be used in the batch script.

• dsvar (no default)
This macro variable contains a list of the input SAS dataset variables to be written to
the column format data file specified in the datafile1 macro variable. The list should
contain SAS variable names. Only the specified variables from the SAS dataset that
appear in this list will be written to the datafile. Similarly to constlist, if dsvar is
assigned a value, but constlist is not then the macro assumes that list format data
only is being used in analysis. If dsvar = EXTERNAL then the external column format
dataset specified in the datafile1 statement will be used in the batch script.

• varlab (no default)
This macro variable gives labels to be used as column headers for the column format
dataset specified in the datafile1 macro variable. These titles will refer to WinBUGS
data, covariates and other variables as specified in the WinBUGS model, and will use
the WinBUGS model names and labels. As WinBUGS is case sensitive, case sensitivity
is important in specifying these labels. Each variable label is enclosed in quotes to allow
easy parsing of the list. The labels are interpreted by WinBUGS in the same way as S
language vectors or arrays - subscripted by square brackets. Thus the label ‘Y[]’ is a
vector variable called Y in the WinBUGS code, likely to be subscripted within a loop
within the WinBUGS model code:

for (i in 1:N){
Y[i] ~ dnorm(mu[i],tau)
mu[i] <- alpha+beta*(x[i]-xbar)
}

This construct also allows the user to specify matrix structures within the column format
dataset thus:

c(‘x[]’,‘Y[,1]’,‘Y[,2]’,‘Y[,3]’,‘Y[,4]’)

This choice of varlab would specify a covariate x and a two-dimensional array for Y
which has four columns and the number of rows equal to the length of the number of
observations in the datafile.

• initsfile (default: inits)
Specifies a list of the filenames for the locations of the MCMC initial values for each
model parameter. If more than one chain is required then a list of initial value files can
be specified e.g. (inits1, inits2, inits3).

• modefile (default: model)
Specifies the location of the WinBUGS model file for the analysis. We assume that the

6 WinBUGSio: A SAS Macro for the Remote Execution of WinBUGS

user has already written this model file and has performed basic checks that the model
provides sensible inferences and converges to the stationary distribution of the MCMC
process for sampling from the joint posterior distribution. The warning in the WinBUGS
help file and manual that MCMC sampling can be dangerous is not to be taken lightly,
and the users are encouraged to work from known results and expand complexity slowly
in their modelling. The authors of this macro cannot be held responsible for failure by
the user to check properly their own models.

• burnin (default: 100)
Specifies the number of MCMC iterations to treat as the burn in on the Markov Chain.
Inference on the specified nodes will not include these iterations as we assume that
during this time the Markov Chain has not yet converged to a stationary distribution.

• samples (default: 500)
Specifies the number of MCMC iterations to be used in inference about the nodes of
interest. Depending on the priors used (whether they are conjugate or not) and prop-
erties of the Markov Chain and how well it is ‘mixing’ i.e. how well it is sampling from
the whole joint posterior distribution we may need more or fewer samples in order to
make sensible inferences. We assume that the users have already determined how many
samples will be needed to make valid inferences by running their model interactively
within WinBUGS and performing standard diagnostic criteria.

• nodes (no default)
Specifies a list of model parameters for which the user wants to report summary statistics
of the MCMC sample from the joint posterior distribution. These summary statistics
are provided by WinBUGS and include the mean, standard deviation, median, lower
5% and upper 95% quantiles, the number of samples and a measure of the Monte Carlo
standard error of the mean which is given by the sample standard deviation divided by
the square root of the number of simulation draws (number of samples taken). Due to
limitations of the WinBUGS batch language other quantiles are not available, although
these can be found in the GUI interface tool within WinBUGS. Other quantiles can be
specified by hard-coding an option deep within the WinBUGS framework but since this
persists across WinBUGS runs, it is not offered as an option here and further discussion
will be limited. If this option interests the reader, please contact the first author. It
is also worth pointing out that only stochastic nodes and functions of stochastic nodes
are available for monitoring. It is not possible to monitor data or constants. The SAS
macro code does not check whether the values input in this macro variable are valid
stochastic nodes. Instead WinBUGS ignores any that are not valid stochastic nodes
in the batch command statements and prints an error in the log file. Unfortunately
WinBUGS will not display summary statistics for any model parameters that are not
specified in this list, however it is not necessary, and often not desirable, to print out
summary statistics for all stochastic nodes in a model and so the user should identify
the elements of the model that are important for inference. The WinBUGS wildcard *
can be used to monitor all nodes in the WinBUGS model.

• CODAvar (no default)
Specifies a list of monitored nodes for which the values of the MCMC iterations will be
written to file. CODA is a set of S language diagnostic functions which can be used

Journal of Statistical Software 7

to assess model fit and show summaries of the posterior distribution. The iteration
values are stored in a text file, read into SAS and stored in the session WORK library.
If no nodes are listed in the CODAvar variable then no output is produced. The user
may specify any of the node variables listed in the NODES macro variable, or choose
the wildcard * which outputs all monitored nodes to the CODA output file. If specific
nodes are given in CODAvar then SAS datasets are created in the WORK directory with
CODA output for each variable. If the wildcard * is used then a SAS dataset called
‘CODA’ is created in the WORK directory.

• logfile (default: log)
Specifies the location of the WinBUGS log from the batch run. The macro automatically
includes a batch statement to echo commands and write output statistics to an ASCII
text log file. In order to facilitate easy reading of this file for SAS we have limited output
to summary statistics although it is possible to output diagnostic graphs, kernel density
plots, MCMC sample history etc. to the log.

• batchfile (default: batch)
Specifies the filename of the batch file for running WinBUGS. Since this file is written
with each invocation of the macro and the content of the batch file is regulated by the
macro it is not essential to rename the batch file for each run. The batch file is automat-
ically written to the default WinBUGS installation directory. This is purely to facilitate
calling the file from the DOS command statement used for executing WinBUGS from
the SAS macro.

• dsout (default: WBoutput)
Specifies the SAS dataset that the node summary statistics will be written to. The SAS
macro reads the log file, identifies the location of the start and end of the summary
statistics block and reads all data between these markers. Thus the number of nodes
monitored becomes irrelevant and SAS simply creates a dataset of the appropriate size.
All the variables, except for the node name, in the resulting SAS dataset are numeric
variables. This facilitates further processing of this dataset for example in identifying
model parameters that have a 95% probability of being larger than a null value. In
the example below we can easily identify whether the slope parameter beta has a 95%
probability of being larger than zero. In cases where the monitored node is a vector
then the vector subscript may appear in the variable name. In this case simple SAS
code could be used to extract these subscripts. This could be used for example to find
the dose where the estimated mean effect gives a clinically relevant difference or the
time point at which a certain growth level is attained.

4. Example

As an illustrative example we will show the settings that might be used to analyse the Win-
BUGS ‘Line’ example. In this trivial example we wish to fit a simple linear regression to 5
observations. The dataset is as follows, x=(1,2,3,4,5) and Y=(1,3,3,3,5). We will center
the x covariate on its mean value, 3. We have N=5 observations. The model is Yi=alpha +
beta*(xi-xbar). The WinBUGS code for this model is given by:

8 WinBUGSio: A SAS Macro for the Remote Execution of WinBUGS

for (i in 1:N){
Y[i] ~ dnorm(mu[i],tau)
mu[i] <- alpha+beta*(x[i]-xbar)
}

This model specifies that the observations Yi are normally distributed with residual error
1/tau. WinBUGS uses precision = 1/variance in its specification of Normal distributions.
The expected regression fit for each observation is given by the usual linear regression function.
Within the WinBUGS model we also specify the prior distributions

tau ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau)
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)

Note that the precision tau is given a conjugate Gamma prior distribution, and that we
transform this to give us an estimate of sigma. Alpha and beta are given the conjugate
Normal prior distributions, centered on zero and with low precision (high variance). We
assume from this point on that this model is available in an ASCII TXT file format, that the
syntax has been correctly specified and that the user has checked convergence and inferences
for reasonableness before running the SAS WinBUGSio macro.

The dataset for this analysis can be specified in two ways. Either as column format with
columns for x and Y (note the case!) and a second datafile with the constants N and xbar,
or as one list format datafile with vectors for x and Y, and constants N and xbar. We will
illustrate how to set up the column format version here as this is probably how data will most
often be passed to WinBUGS. Let us assume that a SAS dataset called Line has been created
with columns covar and response containing the data for x and Y respectively. The model
file is called Linemodel.TXT, WinBUGS MCMC initial value file is called Lineinits.TXT and
all outputs are to be written to the directory C:\Temp. The macro automatically assumes
that the extensions for the input and output files are *.TXT and so we do not need to specify
this extension. We wish to monitor the nodes alpha (intercept), beta (slope), mu (expected
model fits), and sigma (residual standard error). The macro call for this problem would be
as follows:

%WinBUGSIO(
dsin=line,
dir= c:\temp\,
datafile1=data1,
datafile2=data2,
constlist=\%str(N=5, xbar=3),
dsvar=\%str(x, y),
dsfmt=\%str(),
varlab=\%str(‘x[]’, ‘Y[]’),
initsfile=lineinits,
modelfile=linemodel,
burnin=100,
samples=500,

Journal of Statistical Software 9

Node Mean Sd MCerror 2.5% Median 95.5% Start sample
alpha 2.971 0.5993 0.02599 1.61 2.984 4.02 101 500
beta 0.7682 0.431 0.01646 -0.06315 0.7883 1.512 101 500
mu[1] 1.435 1.061 0.0395 -0.3374 1.408 3.505 101 500
mu[2] 2.203 0.7464 0.0291 0.8154 2.207 3.688 101 500
mu[3] 2.971 0.5993 0.02599 1.61 2.984 4.02 101 500
mu[4] 3.74 0.73 0.03234 2.268 3.773 5.117 101 500
mu[5] 4.508 1.038 0.04425 2.341 4.563 6.194 101 500
sigma 1.012 0.7447 0.06597 0.4013 0.7932 3.203 101 500

Table 1: Expected WinBUGS MCMC summary output for the line example.

nodes=\%str(alpha, beta, sigma),
codavar=\%str(),
logfile=log,
batchfile=batch,
dsout=WBoutput);

Note the case of the variables x and Y for the WinBUGS model code. Within SAS the case is
not important, but it is important for the user to check that the case of these variable labels
for the WinBUGS dataset are matched by what is expected in the model code. Table 1 below
shows the expected SAS dataset of WinBUGS MCMC summary output using the macro
parameters described above.

The macro reads in the variable names from the log file as well as the numeric values. Note
that the number of samples used for inference is 500, starting at iteration 101. This shows
that a burn-in of 100 samples was used and that the samples of the nodes of interest were
taken from sample 101.

5. Discussion

The SAS macro presented here has been written to facilitate easy interface between SAS and
WinBUGS and to act as a “one stop shop” for data output and input to and from WinBUGS.
Interested readers are encouraged to visit the “Remote Running” page of the WinBUGS
website: http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml which has addi-
tional helper functions and code for running WinBUGS from SAS as well as other packages
such as R, Excel, Stata etc. The excellent Excel plugin of Woodward (2005) takes this to the
next level, adding a very useful front end for the users to specify their model which is then
parsed and interpreted by WinBUGS. Additional functionality for this macro is planned to
include the ability to write out the datasets and batch files ready for running in WinBUGS
then stop prior to actually running the batch script. This should enable users to run the model
interactively within WinBUGS and allow error trapping, diagnostics of MCMC convergence
etc.

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml

10 WinBUGSio: A SAS Macro for the Remote Execution of WinBUGS

Acknowledgments

The authors would like to thank Nebele Bekele of MD Anderson Cancer Center, Houston,
TX and James H. Roger of Glaxo SmithKline, UK for their input to the development of this
macro; to beta testers who provided useful feedback on the macro and its functionality and
to the reviewers of this manuscript for their comments.

References

Best NG, Cowles MK, Vines K (1997). CODA: Convergence Diagnosis and Output Analysis
Software for Gibbs Sampling Output, Version 0.4. MRC Biostatistics Unit, University
of Cambridge, Cambridge, UK. URL http://www.mrc-bsu.cam.ac.uk/bugs/classic/
coda04/readme.shtml.

Gilks WR, Richardson S, Spiegelhalter DJ (1995). Markov Chain Monte Carlo in Practice.
Chapman and Hall, New York.

SAS Institute Inc (1999). SAS/STAT Software, Version 8. Cary, NC. URL http://www.sas.
com/.

Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2003). WinBUGS Version 1.4 User Manual.
MRC Biostatistics Unit, Cambridge. URL http://www.mrc-bsu.cam.ac.uk/bugs/.

Woodward P (2005). “BugsXLA: Bayes for the Common Man.” Journal of Statistical Software,
14(5). URL http://www.jstatsoft.org/v14/i05/.

Affiliation:

Michael K. Smith
Pharmacometrics Statistics
Pfizer Global Research and Development
Sandwich, CT13 9NJ, United Kingdom
E-mail: Mike.K.Smith@Pfizer.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 23, Issue 9 Submitted: 2005-12-16
December 2007 Accepted: 2007-09-07

http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
http://www.sas.com/
http://www.sas.com/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.jstatsoft.org/v14/i05/
mailto:Mike.K.Smith@Pfizer.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Main features
	Macro call syntax
	Example
	Discussion

