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This paper reviews current quadrature methods for approximate calcula-
tion of integrals within S-Plus or R. Starting with the general framework,
Gaussian quadrature will be discussed first, followed by adaptive rules and
Monte Carlo methods. Finally, a comparison of the methods presented is
given. The aim of this survey paper is to help readers, not expert in comput-
ing, to apply numerical integration methods and to realize that numerical
analysis is an art, not a science.
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1 Introduction

Numerical integration, also called quadrature, is the study of how the numerical value of
an integral can be found. The purpose of this paper is to discuss quadrature methods
for approximate calculation of integrals. All are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of points within
the range of integration. Hence, most of the approximations we consider have the form

∫

· · ·
∫

Rm

w(x1, . . . , xm)f(x1, . . . , xm)dx1 · · · dxm ≈
M
∑

i=1

Wif(yi,1, . . . , yi,m), (1.1)

where Rm is a given region in a m-dimensional Euclidean space Em and w(x1, . . . , xm)
is a given weight function. The (yi,1, . . . , yi,m) lie in Em and are called the points of the
formula. The Wi are constants which do not depend on f(x1, . . . , xm) and are called the
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coefficients of the formula. We say that formula (1.1) has degree r (or degree of exactness
r) if it is exact for all polynomials in x1, . . . , xm of degree ≤ r and there is at least one
polynomial of degree r + 1 for which it is not exact. See also Stroud (1971) or Evans
(1993, chap. 6).

The theory of integration formulae for functions of one variable (m = 1) is well
developed. A great deal of this theory can be found in the books by Engels (1980),
Davis and Rabinowitz (1984), Evans (1993) or Press et al. (1993, chap. 4). For m = 1
equation (1.1) can be written as

∫

R
w(x)f(x)dx =

∫ b

a
w(x)f(x)dx ≈

M
∑

i=1

Wif(yi). (1.2)

In the classical formulae the integral of a function is approximated by the sum of its
values at a set of equally spaced points, multiplied by certain aptly chosen coefficients of
the formula. Examples include the trapezoidal and Simpson’s rules. Hence only the Wi

are free to be used to force the quadrature rule to have a certain degree of exactness. The
freedom to fix the points yi has been thrown away, presumably in the interests of getting
linear equations for the Wi. If the yi are also left free, the result is a set of non-linear
equations which can be shown to have solutions based on the zeros of the associated sets
of orthogonal polynomials for the given interval [a, b] and weight function w(x). This
leads to the elegant theory of Gaussian quadrature, which will be discussed in Section
3. Gaussian quadratures are formulae which are said to be progressive, as the points
for any point-number M are in general quite different from those for any other point-
number. Another term used to describe quadrature rules is adaptive. A rule is adaptive
if it compensates for a difficult subrange of an integrand by automatically increasing the
number of quadrature points in the awkward region. As we will see in Section 4 adaptive
rules are usually based on a standard underlying quadrature rule, often a progressive one.
For very high dimensionality Monte Carlo or random sampling methods (Section 5) can
begin to be competitive, though in this regime all methods tend to be very inaccurate for
a reasonable computer effort. Finally, a comparison of the presented methods is given
in Section 6. But, first we describe the computing environment used.

2 Computing Environment

Calculations were made on a Sun SPARC Ultra 60 workstation with 1Gb RAM using
S-Plus or R. S-Plus is a value-added version of S (Becker et al., 1988; Chambers, 1998)
sold by Insightful Corporation. The S language is often the vehicle of choice for research
in statistical methodology and R (Ihaka and Gentleman, 1996; www.R-project.org)
provides a free software route to participation in that activity. Good reference books for
S-Plus and R are Venables and Ripley (2000, 2002).

The tools available in S-Plus to measure resources differ between versions. The
principal resource considered in this paper is CPU time. It is clear that more resources,
like memory usage, should be considered but we found it sufficient to consider CPU time
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in order to illustrate our remarks. To do so we used the S-Plus function resources

given in Venables and Ripley (2000, pp. 151–152).

3 Gaussian Quadrature

The idea of Gaussian quadrature is to give ourselves the freedom to choose not only the
coefficients Wi, but also points at which the function is to be evaluated. Moreover, the
formula (1.2) is forced to have degree of exactness 2M−1. Because of the computational
expense of generating a new Gaussian formula, only commonly used combinations of the
interval and weight functions are normally tabulated (Evans, 1993, sec. 2.3). The most
commonly used rule is the Gauss–Legendre rule with interval [−1, 1] and weight function
w(x) = 1.

Neither S-Plus or R offer the Gauss–Legendre rule, nor any other standard Gaus-
sian quadrature rule, by default. Nevertheless, the integrate2 library for S-Plus

(lib.stat.cmu.edu/S/integrate2) contains the function intgauss, which performs
the numerical integration of a function over a given region using a classical 10 point
Gaussian formula. To give more flexibility for the choice of M and to extend it to higher
dimensions, we wrote a S-Plus function GL.integrate.1D to compute (1.2) by means
of the Gauss–Legendre rule and based on a modified version of the C function GAULEG
given in Press et al. (1993, p. 151). The function is entirely written in S-Plus; a C
version is available. We used the fact that any finite range quadrature on the interval
[a, b], can be transformed using the linear transformation

x =
b− a

2
t +

b + a

2

to the standard interval [−1, 1]. The function GL.integrate.1D is given in Kuonen
(2001, app. A, Table A.1). It uses the function GL.YW which computes, if needed,
the points yi and the weights Wi for the interval [low, upp], for i = 1, . . . ,M , where
M = order. The function GL.YW is given in Kuonen (2001, app. A, Table A.2).

For the multi-dimensional case we reduce the multiple integral on the left-hand side
of (1.1) into repeated integrals over [−1, 1],

∫ 1

−1
dx1

∫ 1

−1
dx2 · · ·

∫ 1

−1
f(x1, . . . , xm)dxm. (3.1)

Then we apply a classical quadrature formula to each integral in (3.1), which yields using
the right-hand side of (1.1) a product rule of the form

M
∑

im=1

· · ·
M
∑

i1=1

Wi1 · · ·Winf(yi1 , . . . , yim), (3.2)

where the weights Wij and the points yij , j = 1, . . . ,m, are chosen to be appropriate for
the specific dimension to which they are applied (Evans, 1993, chap. 6). The number of
function evaluations using the Mm integration points may be quite large. For m = 2 this
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is illustrated by the S-Plus function GL.integrate.2D given in Kuonen (2001, app. A,
Table A.3). For example

> tmp.fct <- function(x,y) {1/(1-x*y)}

> GL.integrate.2D(tmp.fct, low=c(0,0), upp=c(1,1), order=128)

[1] 1.644886

took 5.48 seconds CPU time to perform 16,384 function evaluations when the calculation
of the array containing the points and the weights was needed, and 0.09 seconds CPU
time when previously tabulated values were taken.

Multi-dimensional Gaussian quadrature up to m = 20 over hyper-rectangles could
also be computed with the subroutine D01FBF from the commercial NAG Fortran li-
brary (www.nag.co.uk), and loaded dynamically into S-Plus or R. There is ongoing
development of a free software library of routines for numerical computing: the ‘GNU
Scientific Library’ (GSL) available at sources.redhat.com/gsl/. Current releases look
promising.

There are many different ways in which the Gaussian quadrature has been ex-
tended. An example is the Gauss–Kronrod formulae; see, for instance, Davis and Rabi-
nowitz (1984, sec. 2.7.1.1). An optimal extension can be found for Gauss–Legendre
quadrature, giving a degree of exactness of 3M + 1. This is for instance the case
with the S-Plus or R function integrate, which implements uni-dimensional adap-
tive 15-point Gauss–Kronrod quadrature based on the Fortran functions DQAGE, and
DQAGIE from QUADPACK (Piessens et al., 1983; www.netlib.org/quadpack/). This
function is the only numerical integration function implemented in the S-Plus or R

standard packages. A similar function, gkint from the S-Plus library integrate2

(lib.stat.cmu.edu/S/integrate2) uses a (7–15)-point Gauss–Kronrod pair by means
of the routine DQAG from QUADPACK.

As mentioned, for M quadrature points in each dimension the sum in (3.2) is over
Mm terms. Therefore the numerical effort of Gaussian quadrature techniques increases
exponentially with the integral dimension. Hence when m is large this method is nearly
useless. Furthermore, the trouble with Gaussian quadrature is that you have no real idea
of how accurate the answer is. You can always increase the accuracy by using a higher
order Gauss method or by applying it piecewise over smaller periods but you still do not
know the accuracy in terms of correct decimal places. To get a prescribed accuracy one
needs adaptive integration, which keeps reducing the step size until a specified error has
been achieved.

4 Adaptive Methods

Adaptive algorithms are now used widely for the numerical calculation of multiple inte-
grals. These algorithms have been developed for a variety of integration regions, includ-
ing hyper-rectangles, spheres, and simplices. A globally adaptive algorithm for integra-
tion over hyper-rectangles was first described by van Dooren and de Ridder (1976) and
programmed as a Fortran function HALF. It was improved by Genz and Malik (1980).
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Implementations of the Genz and Malik modified algorithm (programmed as a Fortran
function ADAPT) have appeared in the NAG Fortran library (www.nag.co.uk, subrou-
tine D01FCF). The routine operates by repeated subdivision of the hyper-rectangular
region into smaller hyper-rectangles. In each subregion, the integral is estimated using
a rule of degree seven, and an error estimate is obtained by comparison with a rule of
degree five which uses a subset of the same points. These subdivisions are designed to
dynamically concentrate the computational work in the subregions where the integrand
is most irregular, and thus adapt to the behaviour of the integrand. Genz (1991) gives
a detailed description in the context of adaptive numerical integration for simplices.

Berntsen et al. (1991a) improved the reliability of previous algorithms, and developed
a new algorithm for adaptive multidimensional integration. Tests (Berntsen et al. 1988)
of a Fortran implementation, DCUHRE (Berntsen et al., 1991b), have shown that the
improvement has been successful.

Both DCUHRE and ADAPT can be dynamically loaded into S-Plus or R. The
Fortran routine DCUHRE is implemented in the S-Plus function dcuhre, which is
contained in the integrate2 library (lib.stat.cmu.edu/S/integrate2), and ADAPT
comes with the S-Plus function adapt included in the S-Plus library adapt (lib.stat.
cmu.edu/S/adapt). The function adapt is in the R package integrate, which is avail-
able on CRAN (cran.r-project.org).

Genz (1992) suggested that such subregion adaptive integration algorithms can be
used effectively in some multiple integration problems arising in statistics. The key to
good solutions for these problems is the choice of an appropriate transformation from
the infinite integration region for the original problem to a suitable finite region for the
subregion adaptive algorithm. Genz (1992, sec. 3.2) also discussed different types of such
transformations; see also Davis and Rabinowitz (1984) for further examples of possible
transformations.

Traditional quadrature methods (even newer adaptive ones) have been almost for-
gotten in the recent rush to ‘Markov Chain Monte Carlo’ (MCMC) methods; Evans and
Swartz (1995) provided a nice recent summary focusing on these methods. They indi-
cate that significant progress has been made using five general techniques: asymptotic
methods, importance sampling, adaptive importance sampling, multiple quadrature and
Markov chain methods. More recently, Genz and Kass (1997) argued that the rea-
son why existing quadrature methods have been largely overlooked in statistics, even
though they are known to be more efficient than Monte Carlo methods for well-behaved
problems of low dimensionality, may be that when applied they are poorly suited for
peaked-integrand functions. Hence they proposed transformations based on split-t dis-
tributions to allow integrals to be efficiently computed using a subregion-adaptive nu-
merical integration algorithm. Fortran routines are already available (BAYESPACK at
www.sci.wsu.edu/math/faculty/genz/genzhome/software.html) and work on con-
structing a version for use with S-Plus is underway.
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5 Monte Carlo Methods

Numerical methods known as Monte Carlo (MC) methods can be loosely described as
statistical simulation methods. For a complete introduction to MC integration we refer
to Stroud (1971, chap. 6), Kalos and Whitlock (1986) or Robert and Casella (1999,
chap 3). The classical MC method for approximating a multiple integral as given in the
left-hand side of (1.1) with w(x1, . . . , xm) = 1, denoted by I(f), is as follows. We choose
M set of points {y1,1, . . . , y1,m}, . . . , {yM,1, . . . , yM,m} at random, uniformly distributed
in Rm. The integral is then estimated using Wi = V/M in the right-hand side of (1.1),

I(f) ≈ Î(f) =
V

M

M
∑

i=1

f(yi,1, . . . , yi,m), (5.1)

where V = I(1) is the m-dimensional volume of Rm. The basic MC method iteratively
approximates a definite integral by uniformly sampling from the domain of integration,
and averaging the function values at the samples. The integrand is treated as a random
variable, and the sampling scheme yields a parameter estimate of the mean, or expected
value of the random variable. Since Î(f) in the right-hand side of (5.1) estimates I(f)
the absolute error ε in this mean can be evaluated by considering the corresponding
standard error of the mean,

ε =
∣

∣

∣
Î(f)− I(f)

∣

∣

∣
≈ σ

M1/2
, (5.2)

where σ2 is V I(f 2) − I2(f). If {y1,1, . . . , y1,m}, . . . , {yM,1, . . . , yM,m} are regarded as

independent random variables then Î(f) is a random variable with mean I(f) and
variance σ2/M , which can also be estimated from the random sample through

V

M2

M
∑

i=1

{f(yi,1, . . . , yi,m)− Î(f)}2.

Furthermore, the error estimate (5.2) may be inverted to show the number of samples
needed to yield a desired error, M = σ2/ε2. For m = 1 this is illustrated by the S-Plus

functions MC.integrate.1D and for the two-dimensional case by MC.integrate.2D; both
given in Kuonen (2001, app. A, Tables A.5–A.6). An example of their use is

> MC.integrate.1D(function(z) sqrt(z), 0, 1, 1000, 2/3)

To achieve an error of 0.0001 you need at least 314516 points.

[1] 0.6670135

This clearly reflects the slow convergence of the MC methods; the absolute error (5.2)
has an average magnitude of O(M−1/2). Hence to reduce the error, for example, by a
factor of 10 requires a 100-fold increase in the number of sample points. In the previous
example one would need M = 314, 516 points to get an accuracy of 0.0001. Therefore,
other methods have been studied for decreasing the error. Such approximations are
called ‘Quasi Monte Carlo’ (QMC) methods. The QMC method uses a formula which is
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formally identical to that of the MC method, except that the points used for evaluating
the function are generated deterministically. Unlike the MC method, the QMC method
has a deterministic error bound, and the accuracy of the integral is generally significantly
better than in the MC method. Many different QMC methods are known. One method
makes use of results from the the theory of numbers and is called the number-theoretic
method; see Stroud (1971, sec. 6.3), Fang and Wang (1994) or Fang et al. (1994).

Additional methods have been employed to reduce the error of the MC method,
such as importance sampling, stratified sampling, antithetic variates and non-random
sequences (Press et al., 1993, sec. 7.6–7.8; Evans and Swartz, 1995). These methods
are mostly concerned with finding sets of points that yield smaller integration errors.
Importance sampling concentrates samples in the area where they are more effective by
using a priori knowledge of the function. Stratified sampling tries to distribute samples
evenly by subdividing the domain into subregions such as grids. It is possible to combine
some of these techniques, or to apply them adaptively (Press et al., 1993, sec. 7.8). For
example, uniformly distributed samples generated by stratification can be employed for
importance sampling.

As described above, MC integration draws samples from the required distribution,
and then forms sample averages to approximate expectations. MCMC methods draw
these samples by running a constructed Markov chain for a long time. An example of a
way to construct such a chain is the Gibbs sampler. An introduction to MCMC methods
and their applications is given in Gilks et al. (1996) or Robert and Casella (1999). But
questions on convergence of the chains and efficient implementation remain unresolved
(Cappé and Robert, 2000).

It is well known that for high-dimensional integrals MC techniques should be pre-
ferred to the standard quadrature methods given in Sections 3 and 4 since the sum in
(5.1) is only over M terms instead of the Mm terms in (1.1). Nevertheless, we do not feel
so comfortable using the MC methods mentioned in this section for mainly one reason:
one needs too many function evaluations to get a certain accuracy. So we will consider
their simplest versions (Kuonen, 2001, app. A, Tables A.5–A.6) in the next section only
for purposes of illustration.

6 Comparison

The testing of numerical quadrature methods involves the practical realization of the
theoretical claims, and is well illustrated by applying a method to a set of well-designed
examples. For m = 1 two extensive sets of test integrals which appear in the numerical
analysis literature have been used to make a comparative computation. The first set is
due to Casaletto et al. (1969) and contains 50 functions ranging from polynomials up
to degree 20 through functions with discontinuities; see also Evans (1993, Table 2.3).
The second set of 21 examples is due to Kahaner (1971) which includes in addition some
harder examples (Evans, 1993, Table 2.4). These 71 test examples have been integrated
using the various S-Plus functions described in the previous sections. Namely, from
Section 3 the default S-Plus function integrate, the function intgauss using a 10-
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Figure 1 Absolute integration errors for C3, C26, C29, C48, K2, K7 (given in Table
1) using the S-Plus functions integrate, intgauss, gkint, GL.integrate.1D

(GL) and MC.integrate.1D (MC) with the number of points in brackets.

point Gaussian formula, the (7–15)-point Gauss–Kronrod method implemented in gkint

and GL.integrate.1D given in Kuonen (2001, app. A, Table A.1) which uses the Gauss–
Legendre (GL) rule with M points. And from Section 5 the function MC.integrate.1D

(Kuonen, 2001, app. A, Table A.5).
In an extensive comparative study we applied them to the 71 test examples. We

used GL with 4, 8, 16, 32, 64 and 128 points, and MC with 103, 104, 105 and 106 points.
The polynomials were easily integrated with lower order (> 4) GL rules. For the other
examples it appeared that a 64-point GL procedure is necessary to get reliable results.
For the MC methods choices of the number of points below 10, 000 were unsatisfactory.

The most interesting of the 71 test functions are given in the upper and middle blocks
of Table 1, where Ci denote the selected test integrals from Casaletto et al. (1969) and
Kj the ones of Kahaner (1971). Note that i = 3, 26, 29, 30, 34, 48 or j = 7, 15, 16, 21
correspond to n in Evans’ Tables 2.3 or 2.4 respectively. The resulting absolute errors of
the procedures compared to their analytical values (right column of Table 1) are given
in Figure 1 for C3, C26, C29, C48,K2 and K7, and in Table 2 for C30, C34,K15,K16 and
K21. As illustrated in Figure 1 the polynomial C3 was easily found, as well as C26

which contains an oscillation in the denominator (Figure 2, top middle panel). Integrals
C29 and C30, C34 (Table 2), represented in the top right, bottom left and bottom middle
panels of Figure 2, all exhibit oscillatory behaviour which gives only very high order
methods any chance of success. This is especially true with C34 when MC integration
and orders inferior to 128 are used. Similarly the discontinuities in C48 and K2 did
not cause surprising results in Figure 1. An oddity occurred with K21 (Table 2) which
appears to defeat all the methods due to its nature shown in the bottom right panel of
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Table 1 A selection of test integrals used in the comparative study.

Integrals Analytic values

C3 =
∫ 1
0 (x2 − 2x + 3) dx 2.333333

C26 =
∫ 1
0 2/{2 + sin(10πx)} dx 1.154700

C29 =
∫ 2π
0 x sin(30x) cos x dx −0.209672

C30 =
∫ 2π
0 x sin(30x) cos(50x) dx 0.117809

C34 =
∫ 100π
0 {(100π)2 − x2}1/2 sinx dx 298.435716

C48 =
∫ 1
0 c48(x) dx, c48(x) =

{

1/(x + 2), 0 ≤ x ≤ e− 2
0, e− 2 < x ≤ 1

0.306852

K2 =
∫ 1
0 k2(x) dx, k2(x) =

{

0, 0 ≤ x < 0.3
1, 0.3 ≤< x ≤ 1

0.7

K7 =
∫ 1
0 x−1/2 dx 2

K15 =
∫ 10
0 25 exp(−25x) dx 1

K16 =
∫ 10
0 50/{π(1 + 2500x2)} dx 0.499363

K21 =
∫ 1
0 k21(x) dx, k21(x) = [1/ cosh{10(x − 0.2)}]2

+[1/ cosh{100(x − 0.4)}]4
+[1/ cosh{1000(x − 0.6)}]6 0.210802

E1 =
∫ 1
0

∫ 1
0 1/(1 − x1x2) dx1dx2 π2/6

E3 =
∫ 1
−1

∫ 1
−1(2 − x1 − x2)

−1/2 dx1dx2 16(2 −
√

2)/3

E4 =
∫ 1
−1

∫ 1
−1(3 − x1 − 2x2)

−1/2 dx1dx2 4
√

2(3
√

3− 2
√

2− 1)/3

E6 =
∫ 1
−1

∫ 1
−1 |x2

1 + x2
2 − 0.25| dx1dx2 5/3 + π/16

E7 =
∫ 1
−1

∫ 1
−1 |x1 − x2|1/2 dx1dx2 8/15

Figure 2.
The default S-Plus function integrate, which implements uni-dimensional adap-

tive 15-point Gauss–Kronrod quadrature, and a 128-point GL rule, as implemented in
GL.integrate.1D, performed best, and this within the entire comparative computation
of the 71 test examples. The S-Plus function intgauss and the MC rules were less
accurate.

In order to enable the testing of the other adaptive methods described in Section 4
we considered the two-dimensional test integrals listed in Evans (1993, Table 6.2). A
selection is given in the lower block of Table 1, where Ei denote the Ii in Evans’ Table
6.2 for i = 1, 3, 4, 6, 7. We considered the following adaptive rules: the ADAPT routine
(Genz and Malik, 1980) using the S-Plus function adapt and DCUHRE (Berntsen
et al., 1991b) by means of the S-Plus function dcuhre. We compared both with
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Table 2 Absolute integration errors for C30, C34, K15, K16, K21 (given in Table 1)
using the S-Plus functions integrate, intgauss, gkint, GL.integrate.1D (GL)
and MC.integrate.1D (MC) with the number of points in brackets. The values
are rounded to three decimal places.

integrate intgauss gkint GL GL MC MC
(64) (128) (10,000) (100,000)

C30 0.000 3.186 0.000 0.239 0.176 0.228 0.064

C34 0.000 5,476.455 0.000 3,425.142 0.000 886.795 131.527

K15 0.000 0.681 0.000 0.000 0.000 0.022 0.024

K16 0.000 0.362 0.000 0.001 0.000 0.061 0.047

K21 0.211 0.211 0.210 0.211 0.211 0.210 0.210
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Figure 2 Plot of the integrands of C3, C26, C29, C30, C34 and K21 (clockwise from
top left) given in Table 1.

GL.integrate.2D (GL) and MC.integrate.2D (MC), given in Kuonen (2001, app. A,
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functions adapt, dcuhre, GL.integrate.2D (GL) and MC.integrate.2D (MC)
with the number of points in brackets. Left panel: Absolute integration errors.
Right panel: CPU times in seconds.

Tables A.3 and A.6), using several choices for the number of points per dimension. For
example the use of a 32-point GL would result in 1024 function evaluations. The perfor-
mance of these methods is illustrated in the left panel of Figure 3. The maximal absolute
error achieved over all integrals was 0.0326 with E1 using adapt. This illustrates that
all methods work reasonably well when applied to Ei, i = 1, 3, 4, 6, 7. Nevertheless,
adapt and the MC methods (even with one million points) perform slightly worse than
the others, whereas dcuhre and a 128-point GL seem to be the most accurate methods
under consideration. But the right panel of Figure 3 illustrates that the use of dcuhre
results in significantly larger CPU times. This fact is not surprising for the MC methods
as the number of points and hence the number of function evaluations is impractically
large.

Once again, the use of a 128-point GL rule (GL.integrate.2D) delivered very accu-
rate results within small CPU times as well as did adapt. Moreover, we noticed that
dcuhre outperformed adapt in accuracy, but used much more CPU time. This was
underlined with additional examples which are not given here.

7 Discussion

Numerical integration methods for use in S-Plus or R were discussed and reviewed in
this paper. However, questions on convergence and efficient implementation still remain.
Some future approaches stated herein are promising.

As noted integrals over infinite domains should be transformed to a finite region
in view of the accuracy and convergence of the quadrature method in use. This is
especially true for adaptive integration algorithms which require repeated subdivision of
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the integration region. When the integration is infinite, the point along the axis where
the current subregion is to be cut is not clearly defined. Hence it is convenient to consider
some appropriate transformations from the infinite integration region to a finite region.
Then quadrature can be applied directly on the transformed integrand over the finite
integration region. A number of simple one-variable transformations have been used for
integration problems. Care must be taken in the selection of the transformation. As
a check on consistency and efficiency we encourage use of several transformations for
different computations of the same integral, and then comparison of their results.

An important point to realize is that when using quadrature methods, like the Gauss–
Legendre rule, the only information such a method has about the integrand is a sequence
of numerical values for it. To get a definite result for the integral, such a procedure then
effectively has to make certain assumptions about the smoothness and other properties
of the integrand. If a sufficiently pathological integrand is given, these assumptions may
not be valid, and as a result, we may simply obtain the wrong answer. This problem
may occur, for example, if one tries to integrate numerically a function which has a very
thin peak at a particular position, like the integrand of K21 shown in the bottom right
panel of Figure 2. The numerical integration routine samples the function at a number
of points, and then assumes that the function varies smoothly between these points. As
a result, if none of the sample points come close to the peak, then it will go undetected,
and its contribution will not be correctly included. Therefore it is very important to
get an idea of the effective range of the integrand in a preliminary analysis. But, if
such a problem is thought to have arisen, one could bypass these problems using the
split-t transformations proposed in Genz and Kass (1997) prior to the use of adaptive
numerical integration algorithms.

Kuonen (2001, chap. 5–7) was devoted to the use of saddlepoint approximations in
order to replace the computer-intensive bootstrap. The examples in the latter clearly
illustrated the drawbacks of numerical integration for the computation of the distribution
of studentized bootstrap distributions. They become useless in practice as their running
time is outperformed by direct simulation of the bootstrap replicates. One may think
that this is due to the use of interpreted languages like S-Plus or R, but we do not
think that this is the case as numerical integration in statistics, especially in multi-
dimensional problems still raises many open questions. Nevertheless, it was illustrated
in Kuonen (2001, sec. 6.5) that in such complex situations one should not use integrate
as the computation may then become very time-intensive and may lead to inaccurate
approximations. But, a GL rule with 128 points seems to be a good choice in practice.

Although the integrands discussed in Section 6 may not appear similar to integrands
arising in statistics, the comparisons are nonetheless useful to statisticians. Further
information on the numerical computation of multiple integrals in statistics may be
found in Evans and Swartz (2000).
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