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Abstract

We introduce General Multilevel Models and discuss the estimation pro-

cedures that may be used to fit multilevel models. We apply the proposed

procedures to three-level binary data generated in a simulation study. We

compare the procedures by two criteria, Bias and efficiency. We find that

the estimates of the fixed effects and variance components are substantially

and significantly biased using Longford’s Approximation and Goldstein’s

Generalized Least Squares approaches by two software packages VARCL

and ML3. These estimates are not significantly biased and are very close to

real values when we use Markov Chain Monte Carlo (MCMC) using Gibbs

sampling or Nonparametric Maximum Likelihood (NPML) approach. The

Gaussian Quadrature (GQ) approach, even with small number of mass

points results in consistent estimates but computationally problematic. We

conclude that the MCMC and the NPML approaches are the recommended

procedures to fit multilevel models.
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1 Introduction

Many kinds of observational and design data are such that the observations are

clustered within groups and the groups in terms are nested in upper groups

and form multilevel data. Two types of multilevel data are longitudinal and

multicenter clinical trial data. In longitudinal studies, we investigate changes

over time in characteristics which is measured repeatedly for each individual.

In medical studies, the measurements may be the number of epileptic seizures

which are recorded for each patient over time (Thall and Vail, 1990). In social

sciences, the measurements may be residential states which are observed for each

individual over time (Clark et al., 1979). Longitudinal data are examples of two

level data and the observations, in first level for each individual, in second level,

are correlated. In a multicenter clinical study, subjects within a given site are

prospectively studied over time. An example of this type of data is the data from

the Multicenter AIDS Cohort Study or MACS (Kaslow et al., 1987). Here data

exists at three levels: measurement occasion, subject, and site. There may be

correlation between the repeated experiences of an individual subject as well as

possible correlation between the experiences of subjects within a sit.

Generally speaking, in multilevel data, the observations within the same group

are more likely to be correlated than the observations from different groups. So in

each level we have some type of correlation. The correlations from all levels should

be taken into account and ignoring any one of them may lead to inconsistent

estimates and misleading inferences. A well known method of representing this

common variation is by adding a common unobserved random effect to the linear

predictor for each lower level unit in the same upper level unit. If the distribution

of this random effects is conjugate to the distribution of the responses, then

maximum likelihood is straightforward. Otherwise the likelihood function does

not have a closed form and we need an approach to deal with the problem when

we assume a specific distribution for the random effects in each level. A common
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distribution for the random effects is normal distribution with mean zero (Breslow

and Clayton, 1993; McGilchrist, 1994). If the distribution of the responses is

not normal then we will have an integral in each level (except for the random

coefficient if there exists). In this case the dimension of integrals in the likelihood

function is equal to the number of the levels. Some approaches to solve the

integrals are:(a) The likelihood can be integrated numerically using Gaussian

Quadrature (GQ) points. (b) The log likelihood function can be approximated

by a second order Taylor series expansion. (c) A fully Bayesian approach can

be used with the additional structure of a prior distribution on all the model

parameters. The Markov Chain Monte Carlo (MCMC) methods can be used to

obtain marginal posterior distributions of the parameters.

In these three approaches we assume a specific parametric form of the mixing

distribution of the unobserved random effects. Heckman and Singer (1984) and

Davies (1987) have shown that the parameter estimation is sensible to the choice

of the mixing distribution. This problem can be solved by Nonparametric Max-

imum Likelihood (NPML) estimation on mixing distribution on a finite number

of mass points. This approach is used by Aitkin (1999) for fitting two-level data.

For the data that are clustered and / or longitudinal, random effects regres-

sion models have been developed to model continuous data (Laid andWare, 1982;

Bock, 1989; Jennrich and Schluchter, 1986; Bryk and Raudenbush, 1987). The

same models have also been developed for dichotomous data (Stiratelli, Laird

and Ware, 1984; Anderson and Aitkin, 1985; Wong and Mason, 1985; Zeger and

Liang, 1986; Gibbons and Bock,1987; Qu et al. , 1972). Goldstien (1991) has

discussed nonlinear multilevel models and their application to discrete response

data. Qaqish and Liang (1992) have presented marginal models for correlated

binary response within multiple classes and multiple levels of nesting. Hedeker

and Gibbons (1994) have proposed a random effects ordinal regression model for

multilevel analysis. Their model is proposed for analyzing the clustered longitu-
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dinal ordinal response data. Gibbons and Hedeker (1997) have explained random

effects probit and logistic regression models for three level data. Aitkin (1999)

has described an EM algorithm for nonparametric maximum likelihood estima-

tion in generalized linear models with variance components structure. Various

approaches have been proposed in recent years to model survival data with two

level clustering. For example, Clayton (1991), Gray (1992), Klein (1992), Nielsen

et al. (1992), McGilchrist (1993), Lin (1994). Currently Yau (2001) has described

and applied a method for modeling survival data with multilevel clustering and

random effects.

There are many software for multilevel data analysis and a number of com-

parisons have been done by some researchers. Kreft et al. (1994) have compared

HLM, ML3, VARCL, BMDP5-V, and GENMOD. Rodriguez and Goldman (1995)

have evaluated two software packages VARCL and ML3 for fitting models to bi-

nary response data by using a Monte Carlo study. Van der Leeden et al. (1996)

have compared HLM, ML3, and BMDP5-V on repeated measures data. De Leeuw

and Kreft (2001) have compared software MLn, HLM, VARCL, MIXFOO, MLA,

BMDP, SAS, SPSS, and MLwiN for multilevel analysis. They have indicated

what the programs can do, where one can get the program, the cost, on what

systems the software run, and how easy it is to use them.

Very little work has been done on using and comparing the four mentioned

approaches, GQ, Taylor series, MCMC, and NPML in analyzing multi level data.

The purpose of this paper is to model a multilevel data in a general form and

explain, apply and compare the above approaches through simulation study. Our

analysis focuses on bias and efficiency of estimates produced by the mentioned

approaches. However the results will compare some software in fitting multilevel

models.

The rest of this paper is organized as follows. In section 2 we introduce mul-

tilevel model. In section 3 we describe the estimation procedures. In section 4 we
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present the simulation study and compare the results from different procedures.

Section 5 summarizes our conclusions.

2 Multilevel Models

Before introducing multilevel models in a general form consider a simple three

level model. Suppose that the data consists of N1 communities and each com-

munity consists of N2 families with N3 children within each family. Here com-

munities, families and children define level one, two and three for a three level

data respectively. Suppose that we are interested in estimating the effect of

xijk, xij, and xi, the explanatory variables in levels one, two, and three respec-

tively, on the binary response measured for each child. Moreover assume that we

believe the community and the family populations are heterogeneous. To con-

trol for heterogeneity we introduce two random effects uij and ui at the second

and first level. With these specifications the linear predictor will be of the form

β1xijk + β2xij + β3xi + ui + uij, i = 1, 2, ..., N1, j = 1, 2, ..., N2, k = 1, 2, ..., N3.

Assuming any link function, for example logit, one may estimate β1, β2, β3 the

fixed effects of xijk, xij, and xi and the variances of uij and ui by using appropri-

ate estimation procedure. Following we introduce multilevel models in a general

form and in the next section we will discuss about various estimation approaches.

2.1 Multilevel Linear Model

consider the situation that the data have L levels, such that in level i we have

fi fixed effects, ri random effects, and gi units. We first define the following

notations.

Xi = diaggi[X(j)] (diaggi refers to a gi×gi diagonal matrix), whereX(j) is ai×fi
model matrix for the fixed effects for jth unit of level i. βi = [β1

...β2
... · · · ...βgi] ,

where : βj is fi × 1 column vector of fixed effects for jth unit of level i. Now
if X = diagL[Xi] and β = [β1

...β2
... · · · ...βL] then X is a matrix of N × P where
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N =
L

i=1

gi

j=1
aj and P =

L

i=1
gifi and β is P × 1 vector of fixed effects across all

levels. Zi = diaggi [Z(j)], where Z(j) is cj × ri model matrix for the random effects
for jth unit of level i. ui = [u1

...u2
... · · · ...ugi ] , where : uj is ri × 1 column vector of

random effects for jth unit in level i. Now if Z = diagL[Zi] and u = [u1
...u2
... · · · ...uL]

then Z is a matrix of N ×Q where N =
L

i=1

gi

j=1
cj and Q =

L

i=1
gifi and u is Q× 1

vector of random effects across all levels. Using these notations a multilevel linear

model is defined as,

Y = Xβ + Zu+ ε. (1)

where Y is N × 1 vector of responses and ε is N × 1 vector of error terms.
Assume that the random effects from different units are mutually independent

with mean 0 and V ar(ui) = Ωi. We then have V ar(u) = Ω and Ω =diagL[Igi ⊗
Ωi]. Moreover assume that V ar(ε) =σ2W and Cov(ε,u) = 0. With these as-

sumptions we have E(Y) = Xβ and,

V =V ar(Y) = ZΩZ + σ2W =
L

i=1
Zi(Igi ⊗Ωi)Zi + σ2W.

The model introduced by Rodriguez and Goldman (1995) is a especial case

of our model in equation (1). Their model includes three levels and no random

effects in the first level. There are many cases in applications that the analyst

is interested in considering random coefficients for individuals in the first level

especially a random effect to control omitted variables.

2.2 Multilevel Nonlinear Model

Following Goldstein (1991) a Multilevel Nonlinear Model consists of a nonlinear

component and a linear component, both of which may contain fixed and random

effects as,
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Y =f(Xβ + Zu) +Gη +Hδ (2)

where X,Z,β, and u have the same definition as above and G,H,η, and δ

have the similar structure to X,Z,β, and u. Model (1) is a special case of model

(2) if we omit the second and the third terms and f is an identity function.

An important especial case of model (2) is when the response is a vector of

proportions, there is no linear component, and f is logit function. The multilevel

logit model then is of the form,

logit(µ) = η = Xβ + Zu (3)

where µi = Pr(Yi = 1|β,Ω,X,Z); for i = 1, ..., N and η is a conditional linear

predictor.

3 Estimation Approaches

We assume that the elements of Ωi are unknown parameters andW is a known

matrix. Further we assume that ε has multivariate normal distribution and we

look for Maximum Likelihood Estimation (MLE) of the parameters. Under these

assumptions the conditional likelihood function for a multilevel model is,

L(β|u) =
N

i=1

f(yi|X,Z,β,u) (4)

where f is the density function of yi. The marginal likelihood function of the

parameters is,

L(β,Ω) =
u

L(β|u)g(u)du (5)
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where g is the density function of the vector u. If we assume that u is normally

distributed (Breslow and Clayton, 1993) then,

L(β,Ω) =

RQ

L(β|u)Φ(u)du (6)

where Φ is the multivariate normal density. For the multilevel logit model (3)

the conditional likelihood function is,

L(β|u) =
N

i=1

µyii (1− µi)1−yi (7)

The marginal likelihood function can be obtained by replacing from (7) in

(5) or in (6). Note that for other multilevel nonlinear models such as multilevel

probit model we replace µi in (7) by Φ(ηi), where ηi is the linear predictor for

individual i.

The numerical integration in (5) is intractable unless the distribution of u

is conjugate to the distribution of y. Expression (6) is also intractable if the

distribution of y is not normal. However, simple two level exponential family

models other than the normal with a normal random effect may be fitted with

difficulty and slow by maximum likelihood. Therefore, in order to maximize the

likelihood function (6) many algorithms have been used. Goldstein (1986) have

proposed a generalized least squares algorithm that has been implemented in the

package ML3. Longford (1987) has proposed a Fisher scoring algorithm that has

been implemented in program VARCL. Raudenbush and Bryk (1986) have used

an EM algorithm in the package HLM. Mason et al. (1983) have also used an

EM algorithm in the program GENMOD. Rodrigues and Goldman (1995) have

compared least squares algorithm and Fisher scoring algorithm through package

ML3 and program VARCL. Tsutakawa (1985) has used full Bayes and empirical
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Bayes approaches to analyze two-level models with a random effect at upper

level and no explanatory variable at the lower level. Aitkin (1999) has compared

the results of Tsutakawa (1985) with his results of applying GQ and NPML

approaches using GL1M4 software. Hedeker and Gibbons (1994) have used Gauss

Hermite Quadrature approach to analyze two level data set. Gibbons and Hedeker

(1997) have used numerical quadrature approach to find the maximum marginal

likelihood estimation in random effects probit and Logistic regression models for

the three level data. They have also compared parameter estimates for a normal

versus rectangular prior to determine the degree to which their estimates are

robust to deviation from the assumed normality of the prior distribution of the

random effects. Wong and Mason (1985) have proposed empirical Bayes approach

and have applied it to estimate the parameters of a two-level model. Qaqish and

Liang (1992) have used the Generalized Estimation Equations (GEE) approach

of Liang and Zeger (1986). They have estimated the parameters of marginal

models for correlated binary responses with multiple classes and multiple levels

of nesting. A regression coefficient in this marginal model is interpreted as the

change in the ”population average” responses rather than the changes in any one

cluster’s expected response with covariate X.

Except the work of Aitkin (1999) and Rodriguez and Goldman (1995) that

have compared some of these approaches, no research has been done to compare

the above approaches. For example, Rodriguez and Goldman (1995) have used

simulation but have only compared Longford’s approximate likelihood (1988 and

1994) and Goldstein’s Generalized least squares approach (1991). In this paper

we use simulation and will show that other approaches perform better than ap-

proaches used in VARCL and ML3. Following we briefly explain the approaches

that are tractable to deal with the integrals in (5) and (6).
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3.1 Gaussian Quadrature Approach

To explain approaches we consider a three level logit model with one random

effect at each of the levels two and three. If we consider one explanatory variable

at each level then model (5) reduces to

L(β,Ω) =
L

i=1

+∞

−∞

 ni

j=1

+∞

−∞

nij

k=1

µijk g1(uij)duij

× g2(ui)dui (8)

µijk =
exp [(β1xijk + β2xij + β3xi + ui + uij) yijk]

1 + exp [β1xijk + β2xij + β3xi + ui + uij ]

where xijk, xij , and xi are the explanatory variables in levels one, two, and

three respectively. uij and ui are the random effects with means zero and standard

errors σ1, σ2 and density g1, g2 related to second and third levels respectively. yijk

is the response for the kth individual in the jth unit of level two and ith unit of

level one. β1, β2,β3 are the fixed effects of xijk, xij, and xi. Here we need to

calculate one dimensional integral.

If we assume that the random effects uij and ui are distributed normally with

means zero and standard errors σ1, σ2 then we can approximate the integrals in

(8) by a number of GQ points. The likelihood function (8) becomes,

L(β,Ω) =
L

i=1

s2

l=1

 ni

j=1

s1

m=1

nij

k=1

ηijk pm

 ql (9)

ηijk =
exp [(β1xijk + β2xij + β3xi + σ1αm + σ2τ l) yijk]

1 + exp [β1xijk + β2xij + β3xi + u1 + uij ]

where α1,α2, ...,αs1are s1 Gaussian mass points with probability masses p1, p2,

... , ps1 at level two and τ 1, τ 2, ..., τs2 are s2 Gaussian mass points with probability

masses q1, q2, ..., qs2 at level one. We may use equal number of masses for different

levels.
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3.2 Nonparametric Approach

A disadvantage of any approach using a specified parametric form for the dis-

tribution of the unobserved random effects is the sensitivity of the parameter

estimation to the choice of the distribution of the random effects (Heckman and

Singer ,1984 and Davies, 1987). This important problem can be solved by consid-

ering the mass points and probability masses as parameters and estimate them

together with the structural parameters. So the nonparametric approach is not a

simplification of parametric approach. The identification of the number, location

and masses of these points of support present formidable computational problems.

This approach has been used by some researches. Hind (1982) and Anderson and

Hind (1988) used EM algorithm for fitting the finite mixture distribution used in

(9). Aitkin (1999) has used EM algorithm in GLIM4 software to estimate a two

level model using GQ and NPML approaches. A general method for estimating

a multilevel model using either GQ or NPML is to consider (9) as a multivariate

function of parameters. Then maximize this function by using an appropriate

programing software as NAG, Fortran library or Fortran power station.

3.3 Longford’s Approximation Approach

Longford (1988 (b)) has proposed an approximation to the likelihood function (6).

The approximation relies on a second order Taylor expansion of the logarithm

of the conditional likelihood (4) about u = 0 . Longford (1988 (b)) has imple-

mented this estimation strategy in the software package VARCL. This method

provides the basis for a Fisher scoring procedure which can be applied alternately

to β and Ω. Although, Longford’s approximation has solved the problem of high

dimensionality of the integrals in (6) for some models but care should be taken

in applying this approximation. Since the true likelihood function is not maxi-

mized and the remainder of the Taylor expansion is not controlled the parameter

estimate may by biased. Even if all the necessary conditions needed to write
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the Taylor series of the likelihood function are attained we need to control the

remainder of the estimation of the likelihood function by its finite Taylor series.

For more details about the expansion of the likelihood function in equation (6)

one may see Rodriguez and Goldman (1995).

3.4 Goldstein’s Generalized Least Square Approach

Goldstein (1991) has proposed an alternative approach to the estimation of non-

linear multilevel models, including the logistic model with random coefficients.

His method needs a single integration instead of iterating to convergence. In a

special case if there are no random effects the proposed procedure is equivalent

to the standard algorithm, iteratively reweighted least square used by McCul-

lagh and Nelder (1989) to fit generalized linear models. This approach has used

first-order Taylor series expansion and the same problems that mentioned in 3.3

may arise here. However, this approximation has been implemented in the soft-

ware package ML3 and currently in MLwiN. For more details see Rodriguez and

Goldman (1995).

3.5 Markov Chain Monte Carlo Approach

As explained in sections 3.1 to 3.4 the computationally burden has limited the

analysis of multilevel data in several ways. First , investigators have largely

restricted their attention to random intercept models to avoid higher dimensional

numerical integration . Second , specialized software is required and is typically

optimized for a particular random effects distribution. For example the Gaussian

is used in VARCL explained in 3.3.

MCMC techniques is being increasingly used as an approach for dealing with

the problems for which there is no exact analytic solution, and for which standard

approximation technique, have difficulties. The basic philosophy behind MCMC

is to take a Bayesian approach and carry out the necessary numerical integrations

using simulation, Gelfand and Smith (1990); Smith and Roberts(1993). Instead
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of calculating exact or approximate estimates, this computer-intensive technique

generates a stream of simulated values for each quantity of interest. The condi-

tional independence assumptions , common in data analysis , mean that the full

distribution of all quantities has a simple factorization in terms of conditional

distribution of each node given its parents. Thus we only need to provide the

parent-child distributions in order to fully specify the model. Bayesian inference

Using Gibbs sampling (BUGS) program (Spiegelhalter, Thomas, Best, and Gilks,

1996) carries out Bayesian inference on statistical problems using a simulation

technique known as Gibbs sampling. We can use BUGS to analyze multilevel

data which uses MCMC techniques.

In multilevel models we assume specific parametric priors for the random ef-

fects and non-informative priors with extremely small precision for the structural

parameters and the precisions of the random effects. For a three level binary data

the logit of µijk, the mean response for the ijk
th individual, is

logit µijk = β1xijk + β2xij + β3xi + ui + uij (10)

where ui and uij have informative priors with non-informative priors for their

precisions as their parents. β1, β2, β3 have no parents and so have non-informative

priors. In order to use Gibbs sampling we need to successively sample from the

distribution of each node given all the others in equation 10. These are known as

full conditional distributions. Geman and Geman (1984) have shown that under

mild conditions this process eventually provides samples from the joint posterior

distribution of the unknown quantities. For model 10 we start with initial values

β(0)1 , β
(0)
2 , β

(0)
3 , σ

(0)
1 , σ

(0)
2 , draw β(1)1 from the distribution of β1|β(0)2 , β(0)3 ,σ(0)1 , σ(0)2 ,

then draw β
(1)
2 from the distribution of β2|β(1)1 , β(0)3 , σ(0)1 ,σ(0)2 and finally com-

plete the first iteration by drawing σ2 from the distribution of σ2|β(1)1 , β(1)2 , β(1)3 , σ(1)1 .

After a large number of iterations we consider the last sample as the initial val-
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ues for the parameters and continue the sampling for another large number of

sampling. The average of the observations, for each parameter, then will be the

estimate of the parameter. It should be mentioned that BUGS software only pro-

vides a simple method to solve the high dimensionality problem of the integrals.

So the sensitivity of the parameter estimation to the choice of random effects

distribution mentioned in section 3.2 is still a serious problem. But since our

comparison of methods of estimation is based on using the true distributions of

the random effects that generate the data, this problem does not arise. So we

can focus on the differences of the approaches from other points of view.

4 Simulation Study

In empirical study, since the true value of the parameters are not known we can

never be certain if the results of empirical work are accurate and so we may have

misleading comparisons of underlying approaches. In simulation studies we know

the true value of the parameter and so we can compare the approaches to see

which one is more accurate in estimating the parameters of the model. On the

other hand in simulation studies we are not certain if the simulation results are

relevant in practice. But if the simulation’s structure is built related to the real

data structure then we can rely on the simulation’s results. For comparisons of

estimation procedures we followed the simulation’s structure proposed by Ro-

driguez and Goldman (1995). They have simulated data sets using the same

hierarchial structure as one of the Guatemalan data sets analyzed by Pebley and

Goldman (1992). We have used their rectangular structure design in order to

compare the estimation procedures mentioned in section 3 with their results.

4.1 Simulation of Data

Consider 20 units in each level of the three level model (8). Suppose that xijk, xij ,

and xi are dummy variables in fully balanced design, so the covariates are inde-
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pendent and each of the eight combinations of values occur equally often. the

fixed effects β1,β2, β3 are set to be one. The random effects uij and ui are gener-

ated from independent normal distributions with means zero and large variances

(1.0) and small variances (0.16). The Fortran program that generates the data

are reported in Appendix B.

4.2 Results of simulation study and comparisons of ap-

proaches

To compare the approaches two criteria, bias and efficiency are used. Tables 1

and 2 report values of the estimated fixed effects and the estimated standard

errors of the random effects averaged over the 100 simulations when the variance

of random effects are 1 and 0.16 respectively. The standard deviation of the

estimates are reported in the parenthesis and the MSE of estimates are reported

in Bold. First we discuss the case that the variances of random effects are large,

i.e. σ21 = σ22 = 1.

The results from Rodriguez and Goldman (1995), reported in table 1, show

large significant biases for all the parameters. When they used VARCL software,

except the fixed effect at third level, all the other estimates are significantly bi-

ased. The estimates of the parameters β1, β2, β3, σ1, σ2 are 24.4, 22.5, 9.4, 19.9, 25.1

percent downward bias respectively. Their performance in ML3 results in sub-

stantial significant biases especially for the standard error of the random effect

at second level. The biases are 89.7 and 72.2 percent using linear and quadratic

approximations respectively. They have not reported the standard deviations of

the estimates to check if the biases are statistically significant.

To implement the GQ approach we have used the subroutine BCONF from

Fortran Power Station 4.0 software to maximize the likelihood function in equa-

tion 9. The subroutine BCONF minimize a function of N variables subject to

bounds on the variables using a quasi-Newton method and a finite-difference gra-
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dient (See Appendix C for codes). The GQ approach, even for 6 mass points,

results in less biases than the results from VARCL and ML3, except for the stan-

dard error of the random effect at level three. The estimates of the parameters

β1, β2, β3,σ2 are 14.9, 1.7, 3.5, 99.4 percent upward bias respectively and σ1 is 4.3

percent downward bias. None of these biases are statistically significant. We

received the same pattern of biases by using 14 mass points in limited simula-

tions and also in simulations with larger sample size at the third level (50 and

100 instead of 20). The average time for each run was 6 and 28 minutes, using

a 500 pentium, for 6 and 14 mass points respectively. During the minimization

48% of runs have fixed the value of the standard error of the random effect of

the third level at lower or upper bound. We found that this approach behave

poorly in estimating the standard error of the third level and is computationally

prolematic.

To apply the NPML approach we have used the subroutine LCONF from

Fortran Power Station 4.0 software to maximize the likelihood function in equa-

tion 9. The subroutine LCONF minimize a general objective function subject

to linear equality/inequality constraints (See Appendix D for codes). Table 1

shows that the results from the performance of the NPML approach are better

than the results from the GQ approach in estimating the standard errors of the

random effects. With 3 mass points β1, β2 are 0.3 and 2.8 percent downward bias

and β3, σ1, σ2 are 24.4, 35.0, 24.3 percent upward bias respectively. With 2 mass

points β1, β2, β3, σ2 are 2.5, 11.6, 24.9, 20.7 percent downward bias and σ1 is 2.9

percent upward bias respectively. The increment of about 88 in deviance (from

7286.49 to 7375.01) with the reduction of 4 in degree of freedom confirm to report

the results for 3 mass points in table 1. Non of these biases are significant. The

average time for each run was 1 and 4 minutes, using a 500 pentium, for 2 and 3

mass points respectively.

To apply the MCMC approach using Gibbs sampling we have used BUGS
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software (See Appendix E for codes). It is assumed that the prior distributions of

ui and uij to be normal with means 0 and standard errors σ1 and σ2 respectively.

β1, β2, β3 have non-informative normal prior with mean 0 and standard error

1000, σ1 and σ2 have non-informative gamma prior with mean 1 and variance

1000. In order to get over the influence of the initial values we have performed

500 iterations of the Gibbs sampler and then have updated another 1000 iterations

to estimate the parameters. Table 1 shows that this approach performs excellent

with at most 2.8% bias for the fixed effect at the second level. The standard

deviation of estimates are small and none of the biases are statistically significant.

Table 1 shows that the MCMC approach results in very small MSE. The average

time for each run was 5 minutes by using a 500 pentium.

From the point of bias the least biases are obtained by using BUGS program

that uses MCMC method using Gibbs sampling. The NPML approach performs

better than VARCL and ML3. The GQ results better estimation for β2, β3 than

VARCL, ML3, and NPML. The results from BUGS, NPML, and GQ are not

significantly biased while only the estimation of β3 produced by VARCL is not

significantly biased. The values of MSE reported in Table 1 show that the effi-

ciency of the NPML is more than VARCL in estimating β1,β2 but this is vice

versus in estimating β3, σ1, σ2. Both NPML and VARCL are more efficient than

GQ. The MSE obtained from using BUGS is much less than those obtained from

using other approaches and consequently this approach estimates the parameters

more efficient than other approaches. Since the standard deviations of estimates

from ML3 have not been reported by Rodriguez and Goldman (1995) we can not

compare the efficiency of their estimates with the other approaches. All runs in

applying NPML and BUGS perform without any problem but, as mentioned, in

performing GQ many runs results poor estimates for the standard error of the

random effect in the third level. The GQ approach is used in GLIM4 (Aitkin,

1999) and SABR (Barry, Francis, and Davies, 1989) software to evaluate a one
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dimensional integral. Our simulations show that although the GQ approach may

performs well in the problems containing one dimensional integral but care should

be done in using this approach in fitting multilevel data.

Table 2 shows that when the variances of the random effects are small, i.e.

σ21 = σ22 = 0.16, non of the estimates are significantly biased. Using GQ or NPML

results in large absolute biases for the standard errors of the random effects. But

since the standard deviations of the estimates are also large these biases are not

statistically significant. VARCL and BUGS perform almost the same but with

less biases using BUGS.

Fig. 1 reports the Q-Q plots of the estimates produced by three approaches

NPML, GQ, and MCMC (See Appendix A). The plots for NPML show that, ex-

cept for a few outliers, the asymptotic normality is attained for all the estimates.

For the GQ approach, except the plot for the second level fixed effect, the plots

show some lack of symmetry. For the MCMC approach we have a bit deviation

from asymptotic normality for the fixed effect of the first level. Our conclusion

is that, non of the NPML and MCMC approaches result in significant deviation

from asymptotic normality.

To complete the comparisons of approaches two points should be mentioned.

Firstly, our main aim is to estimate the explanatory variables effects. The es-

timation of the variances of the random effects is for identifying the levels of

correlations explained in section 1. So comparisons of approaches with respect

to the explanatory variables effects is more important than comparisons with re-

spect to the variances of the random effects. The above comparisons show that if

the analyst know the distributions of the random effects the MCMC approach is

the best method. While, if there is no prior information about the distribution of

the random effects the NPML approach is recommended. This approach is also

recommended if the analyst believes in the results of Heckman and Singer (1984)

and Davies (1987).
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Secondly, Our simulations are based on a three level model, while there are

many examples in application with four or more levels. For example in an inves-

tigation the data may consists of students within classes, classes within schools,

and schools within school districts. The performance of the various methods

may be affected by the number of levels. Our simulations show that the MCMC

approach performs uniformly across the levels. There is no evidence that this

approach performs differently across levels. The NPML performs better in lower

levels while VARCL performs better in higher levels. The performance of the GQ

approach depends on the variances of the error terms. With a low and high error

variance this procedure performs better in lower and upper levels respectively.

The sample size is an important factor which affect the performance of some

methods. For small sample size or where there are few lower level units within

each higher level unit and for binary response, the Taylor series approximation,

used in VARCL, may produce downwardly biased parameter estimates. While

MCMC method using Gibbs and Metropolis-Hastings sampling produces unbi-

ased estimates (see Gilks et al. 1996). Although this investigation recommend

the use of MCMC approach but still it is recommended that more than one ap-

proach is tried; if similar results are obtained then more confidence can be placed

in the estimates. If the results from approaches are different then a simulation

study based on the data is recommended before choosing any software. Further

research is needed to clearly indicate that how the performance of the various

methods is affected by the number of levels considered and which factors play

a significant role. Another simulation study may be proposed to investigate the

effect of sample size, variance of random effects, type of explanatory variable,

number of levels, and other factors on the performance of the various methods.
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5 Conclusions

In this paper we reviewed multilevel models and introduced some estimation pro-

cedures that may be applied to fit these models. Some of them have been used

by other researchers but no comparisons have been made. We have compared

these approaches through simulation study for binary responses. The structure

of simulations are the same as rectangular structure proposes by Rodriguez and

Goldman (1995). We showed that the substantial significant biases coming from

VARCL and ML3, reported by Rodriguez and Goldman (1995), can be van-

ished by applying the MCMC method using Gibbs sampling. The efficiency of

the MCMC approach is considerably high and recommended if we have prior

information about the distributions of the random effects. If there is no prior in-

formation, then parameters estimates may be sensible to the choice of the mixing

distributions (Heckman and Singer, 1984). In this case the NPML approach is

recommended and our simulation study shows that the nonparametric approach

performs better than VARCL and ML3. Although our simulation study was for

binary data but both the NPML and MCMC approaches are easily applicable to

other types of multilevel data.
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Table 1. Simulation results for large error variance. The figures in

the parentheses are the standard deviations of estimates. Bold figures

are MSE of the estimates. *Significantly biased estimates.

Approach β1 = 1 β2 = 1 β3 = 1 σ1 = 1 σ2 = 1

0.756∗ 0.775∗ 0.906 0.801∗ 0.749∗

VARCL (0.062) (0.089) (0.378) (0.044) (0.115)

0.063 0.059 0.152 0.042 0.076

1.149 1.017 1.035 0.957 1.994

GQ (0.408) (0.378) (0.674) (0.425) (1.073)

0.189 0.143 0.456 0.182 2.139

1.003 0.972 0.756 1.350 1.243

NPML (0.063) (0.155) (0.467) (0.244) (0.315)

0.004 0.025 0.278 0.182 0.158

0.992 0.972 1.010 1.000 0.997

MCMC (0.115) (0.118) (0.350) (0.062) (0.199)

0.013 0.015 0.123 0.009 0.040

ML3-Linear 0.738 0.74 0.771 0.103 0.732

ML3-Quadratic 0.854 0.860 0.910 0.278 0.764
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Table 2. Simulation results for low error variance. The figures in

the parentheses are the standard deviations of estimates. Bold figures

are MSE of the estimates.

Approach β1 = 1 β2 = 1 β3 = 1 σ1 = 0.4 σ2 = 0.4

0.944 0.950 1.020 0.356 0.356

VARCL (0.060) (0.070) (0.180) (0.056) (0.063)

0.007 0.007 0.033 0.005 0.006

1.051 1.041 1.340 0.293 0.676

GQ (0.307) (0.343) (0.488) (0.249) (0.749)

0.097 0.119 0.354 0.073 0.637

1.001 1.008 0.967 0.801 0.630

NPML (0.054) (0.079) (0.293) (0.251) (0.229)

0.003 0.006 0.087 0.224 0.105

1.006 0.975 1.001 0.396 0.386

MCMC (0.068) (0.060) (0.177) (0.052) (0.091)

0.005 0.004 0.031 0.003 0.008
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Appendix A

Fig 1: Q-Q Plots of Estimates.
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Appendix B
!
!     This program generates the data sets according to the simulation plan explained in the 

 !     paper.   
!     The program is written in Microsoft Developer Studio (Fortran Power Station 4.0).
!
!     Defining of variables. The variables COMMUNITY and GAMMA with one dimenSion is for third
!     level, variables FAMILY and ETA with two dimensions are for second level, and variables
!     CHILD, RESPONSE, W, and E are for the first level.

 !   
      INTEGER    i,j,k, NOUT, NR,COMMUNITY(20),FAMILY(20,20),CHILD(20,20,20)
      INTEGER    IR, RESPONSE(20,20,20) 
      REAL       RNNOF,E(20,20,20),ETA(20,20),GAMMA(20),UNIFORM,UNI,W(20,20,20)
      EXTERNAL   RNNOF, UMACH,RNBIN
!
!     Three files COMMUNITY, FAMILY, AND CHILD are used to save the sumulated data at 
!     levels 3, 2, and

 !     1 respectively. The file RESPONSE is for saving the response at the third level.
!     The structure of printing in the following files are set so that they are readable 
!     in WinBugs31.
! 
      OPEN(1,FILE='COMMUNITY.TXT')
      OPEN(2,FILE='FAMILY.TXT')
      OPEN(3,FILE='CHILD.TXT')
      OPEN(4,FILE='RESPONSE.TXT')
      WRITE(1,9991)
      WRITE(2,9992)
      WRITE(3,9993)
      WRITE(4,9994)
!
!     NR=20 is the sample size in each level.
!
      NR=20
!
!     The following three nested loops are used to generate a random effect and a fixed 
!     effect at level 3, a random effect and a fixed effect at level 2, and a fixed
!     effect and a binomial response at level 1.
!
      CALL UMACH (2, NOUT)
      DO 30  I=1, NR
!
!     Generating Normal random number for third level as random effect.
!
      GAMMA(I)= RNNOF()
!
!     Generating Binomial random number in third level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      COMMUNITY(I)=IR
      DO 20  j=1, NR
!
!     Generating Normal random number for second level as random effect.
!
      ETA(I,J)= RNNOF()
!
!     Generating Binomial random number in second level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      FAMILY(I,J)=IR
      DO 10  K=1, NR
!
!     Generating Logistic random number for first level to establish logit model.
!
      CALL RNUN (1, UNIFORM)
      UNI=(UNIFORM)/(1-UNIFORM)
      E(I,J,K)=LOG(UNI)
!
!     Generating Binomial random number in first level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      CHILD(I,J,K)=IR
!
!     Generating Binomial random number in first level for using as response.
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Appendix B
!     W(I,J,K) is used as a latent variable to generate the binomial response.
!
      W(I,J,K)=COMMUNITY(I)+GAMMA(I)+FAMILY(I,J)+ETA(I,J)+CHILD(I,J,K)+E(I,J,K)
      IF(W(I,J,K).GE.0.0)THEN 
      RESPONSE(I,J,K)=1 
      ELSE 
      RESPONSE(I,J,K)=0
      END IF
   10 CONTINUE
!
!     The following commands are provided to produce Splus format output readable 
!     in WinBugs31.
!     For information about the splus format one may see the splus manual or WinBugs31 manual.
! 
      IF(I.EQ.NR.AND.J.EQ.NR)THEN
      WRITE(4,9986)(RESPONSE(I,J,K),K=1,NR)
      WRITE(3,9986)(CHILD(I,J,K),K=1,NR)
      ELSE
      WRITE (4,9995)(RESPONSE(I,J,K),K=1,NR)
      WRITE (3,9996)(CHILD(I,J,K),K=1,NR)
      END IF
   20 CONTINUE
      IF(I.EQ.NR)THEN
      WRITE(2,9986)(FAMILY(I,J),J=1,NR)
      ELSE
      WRITE (2,9998)(FAMILY(I,J),J=1,NR)
      END IF
   30 CONTINUE
      WRITE (1,9997)(COMMUNITY(I),I=1,NR)
      WRITE(1,9990)
      WRITE(2,9989)
      WRITE(3,9988)
      WRITE(4,9987)
 9998 FORMAT(55X,I1,19(","I1),",")
 9997 FORMAT(55X,I1,19(","I1))
 9996 FORMAT(55X,I1,19(","I1),",")
 9995 FORMAT(55X,I1,19(","I1),",")
 9994 FORMAT("list(response=structure( .Data=c(")
 9993 FORMAT("list(child=structure( .Data=c(")
 9992 FORMAT("list(family=structure( .Data=c(")
 9991 FORMAT("list(N=20,NUM=1,community=c(")
 9990 FORMAT("))")
 9989 FORMAT(".Dim=c(20,20)))")
 9988 FORMAT(".Dim=c(20,20,20)))")
 9987 FORMAT(".Dim=c(20,20,20)))")
 9986 FORMAT(55X,I1,19(","I1),"),")   
      END
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Appendix C
!
!     This program generates the data sets according to the simulation plan explained in 

 !     paper.   
!     Six Guassian Quadrature points are used to estimate the parameters in equation 9 in 
!     paper.
!     The program is written in Microsoft Developer Studio (Fortran Power Station 4.0).
!
!     Defining of variables. The variables COMMUNITY and GAMMA with one dimenSion is for third
!     level, variables FAMILY and ETA with two dimensions are for second level, and variables
!     CHILD, RESPONSE, W, and E are for the first level.

 !     
      INTEGER    I,J,K, NOUT,COMMUNITY(20),FAMILY(20,20),CHILD(20,20,20),RESPONSE(20,20,20)
      REAL       RNNOF,E(20,20,20),ETA(20,20),GAMMA(20),UNIFORM,UNI,W(20,20,20)
!
!     Introducing the subroutines that should be called and is external to 
!     this program.
!
      EXTERNAL   RNNOF, UMACH,RNBIN
!
!     Declaration of variables FOR MAXIMIZATION. NSAMPLE is the sample size.
!     For the definition of the other parameters one should see subroutines
!     BCONF and U4INF in the manual of Fortran Power Station 4.0.
!     FCN is the subroutine for this program.
!
      INTEGER    N,NSAMPLE 
      PARAMETER  (N=5, NSAMPLE=100)
      INTEGER    IPARAM(7), IBTYPE
      REAL       FVALUE, FSCALE, RPARAM(7), X(N), XGUESS(N),XLB(N), XSCALE(N), XUB(N)
!
!     Introducing the subroutines that should be called and is external to 
!     this program.
!
      EXTERNAL   BCONF, FCN, U4INF
!
      DO 40 SAMPLE=1,NSAMPLE
!
!     Defining the output files for simulated data and parameter estimation.
!     Three files COMMUNITY, FAMILY, AND CHILD are used to save the sumulated data at 
!     levels 3, 2, and 1 respectively. 
!     The file RESPONSE is for saving the response at the third level. 
!     The file NONPAOUT is for saving the parameters estimate.
!
      OPEN(1,FILE='COMMUNITY.TXT')
      OPEN(2,FILE='FAMILY.TXT')
      OPEN(3,FILE='CHILD.TXT')
      OPEN(4,FILE='RESPONSE.TXT')
      OPEN(9,FILE='NONPAOUT.TXT')
!
!     Generating the data. NR=20 is the sample size in each level.
!
      NR=20
!
!     The following three nested loops are used to generate a random effect and a fixed 
!     effect at level 3, a random effect and a fixed effect at level 2, and a fixed
!     effect and a binomial response at level 1.
!
      CALL UMACH (2, NOUT)
      DO 30  I=1, NR
!
!     Generating Normal random number for third level as random effect.
!
      GAMMA(I)= RNNOF()
!
!     Generating Binomial random number in third level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      COMMUNITY(I)=IR
      DO 20  j=1, NR
!
!     Generating Normal random number for second level as random effect.
!
      ETA(I,J)= RNNOF()
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!
!     Generating Binomial random number in second level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      FAMILY(I,J)=IR
      DO 10  K=1, NR
!
!     Generating Logistic random number for first level to establish logit model.
!
      CALL RNUN (1, UNIFORM)
   UNI=(UNIFORM)/(1-UNIFORM)
      E(I,J,K)=LOG(UNI)
!
!     Generating Binomial random number in first level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      CHILD(I,J,K)=IR
!
!     Generating Binomial random number in first level for using as binary response.
!     W(I,J,K) is used as a latent variable to generate the binomial response.
!
      W(I,J,K)=COMMUNITY(I)+GAMMA(I)+FAMILY(I,J)+ETA(I,J)+CHILD(I,J,K)+E(I,J,K)
      IF(W(I,J,K).GE.0.0)THEN 
      RESPONSE(I,J,K)=1 
      ELSE 
      RESPONSE(I,J,K)=0
      END IF
   10 CONTINUE
      WRITE(4,9986)(RESPONSE(I,J,K),K=1,20)
      WRITE(3,9986)(CHILD(I,J,K),K=1,20)
   20 CONTINUE
      WRITE(2,9986)(FAMILY(I,J),J=1,20)
   30 CONTINUE
      WRITE (1,9986)(COMMUNITY(I),I=1,20)
 9986 FORMAT(20(1X,I1))
      CLOSE (1)
      CLOSE (2)
      CLOSE (3)
      CLOSE (4)
!
!     Introducing the parameters for calling subroutine BCONF.
!     XGUESS introduces the intial values, XLB introduces the lower bounds,
!     XUB introduces the upper bounds for the parameters, for XSCALE and 
!     FSCALE see the manual.
!
      DATA XGUESS/0.9E0, 0.7E0, 0.7E0, 0.5E0, 0.5E0/, XSCALE/1.0E0,1.0E0,1.0E0,1.0E0,1.0E0/, 
           FSCALE/1.0E0/
      DATA XLB/-10.0E0, -10.0E0, -10.0E0, 0.01E0,0.01E0/, XUB/10.0E0, 10.0E0, 10.0E0, 
               3.0E0,3.0E0/
! 
!     Fitting model.
!     All bounds are provided
!
      IBTYPE = 0
!
!     Default parameters are used
!
      IPARAM(1) = 0
!
!     Minimization by calling subroutine BCONF using initial guesses.
!     FCN will be called from subroutine FCN, X is th vector of estimated 
!     parameters, N is the number of the parameters and for other parameters 
!     see the manual.
!
      CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)
!           
!     Printing the results
!
      WRITE (9,99999) X, FVALUE
99999 FORMAT (5(1X,F10.6),5X,F16.6)

       WRITE (NOUT,*)'SOLUTION # ',SAMPLE               
   40 CONTINUE     
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      END
!
!
!
!     The following subroutine calculates the minus two log liklehood function 
!     that should be minimized by the main program. This gets N and X 
!     from main program and returns F as minus two log liklehood function.
!
      SUBROUTINE FCN (N, X, F)
!
!     The following variables have the same definition as in the main program.
!
      INTEGER    COMMUNITY(20),FAMILY(20,20),CHILD(20,20,20),RESPONSE(20,20,20)
!
!     NMASS1 and NMASS2 are the number of the mass points.
!
      INTEGER    N,NMASS1,NMASS2,NR
!
!     XX is the vector of the mass points and their probabilities.
!
      REAL       X(N), F, XX(24)

       REAL LINEAR,EXPLINEAR,LOGISTIC,LOGISTIC1,LOGISTIC2,LOGISTIC3,LOGLIK
      PARAMETER  (NMASS1=6,NMASS2=6,NR=20)
!
!     Reding data simulaled in main program.
!
      OPEN(5,FILE='COMMUNITY0.TXT')
      READ (5,9999)(COMMUNITY(I),I=1,20)
      OPEN(6,FILE='FAMILY0.TXT')
      READ (6,9999)((FAMILY(I,J),J=1,20),I=1,20)
      OPEN(7,FILE='CHILD0.TXT')
      READ (7,9999)(((CHILD(I,J,K),K=1,20),J=1,20),I=1,20)
      OPEN(8,FILE='RESPONSE0.TXT')
      READ (8,9999)(((RESPONSE(I,J,K),K=1,20),J=1,20),I=1,20)
9999  FORMAT(20(1X,I1))
      CLOSE (5)
      CLOSE (6)
      CLOSE (7)
      CLOSE (8)
!
!     Defining quadraturs and their probabilities. For each random effects
!     we need 6 quadratures and their probabilities.
! 
   XX(1)=3.3243
   XX(2)=1.8892
   XX(3)=0.6167
   XX(4)=-0.6167
   XX(5)=-1.8892
   XX(6)=-3.3243
   XX(7)=3.3243
   XX(8)=1.8892
   XX(9)=0.6167
   XX(10)=-0.6167
   XX(11)=-1.8892
   XX(12)=-3.3243
   XX(13)=0.0025
   XX(14)=0.0886
   XX(15)=0.4089
   XX(16)=0.4089
   XX(17)=0.0886
   XX(18)=0.0025
   XX(19)=0.0025
   XX(20)=0.0886
   XX(21)=0.4089
   XX(22)=0.4089
   XX(23)=0.0886
   XX(24)=0.0025
!
!     Deviance evaluation using model 9 in paper.
!

       LOGLIK=0.0E0   
      DO 50 I=1,NR
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      LOGISTIC3=0.0E0
      DO 60 L=1,NMASS2
      LOGISTIC2=1.0E0
      DO 70 J=1,NR
      LOGISTIC1=0.0E0
      DO 80 M=1,NMASS1
!
!     We define LOGISTIC=1.0E2 insted of one to avoid mathematical error then reduce 
!     1842.068.74 from LOGLIK according to the model (equation 9) explained in paper.
!
      LOGISTIC=1.0E2
      DO 90 K=1,NR
      LINEAR=X(1)*COMMUNITY(I)+X(2)*FAMILY(I,J)+X(3)*CHILD(I,J,K)+X(4)*XX(M)
             +X(5)*XX(NMASS1+L)
      EXPLINEAR=EXP(LINEAR)
      LOGISTIC=LOGISTIC*(EXP(LINEAR*RESPONSE(I,J,K))/(1+EXPLINEAR))
   90 CONTINUE  
      LOGISTIC1=LOGISTIC1+LOGISTIC*XX(NMASS1+NMASS2+M)
   80 CONTINUE 
      LOGISTIC2=LOGISTIC2*LOGISTIC1
   70 CONTINUE
      LOGISTIC3=LOGISTIC3+LOGISTIC2*XX(6+NMASS1+NMASS2+L)
   60 CONTINUE
!
!     Small positive number is added to LOGISTIC3 to avoid mathematical error when this 
!     parameter is close to zero.
!
      LOGLIK=LOGLIK+LOG(LOGISTIC3+0.000000000000001)
   50 CONTINUE
      F=(-2)*(LOGLIK-1842.068074)
      RETURN
      END
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!     This program generates the data sets according to the simulation plan explained in 

 !     paper.   
!     Three mass points are used for Non-parametric approach to estimate the parameters in 
!     equation 9 introduced in paper.
!     The program is written in Microsoft Developer Studio (Fortran Power Station 4.0).
!
!     Defining of variables. The variables COMMUNITY and GAMMA with one dimenSion is for third
!     level, variables FAMILY and ETA with two dimensions are for second level, and variables
!     CHILD, RESPONSE, W, and E are for the first level.

 !    
      INTEGER    i,j,k,NR,NOUT,COMMUNITY(20),FAMILY(20,20),CHILD(20,20,20),RESPONSE(20,20,20)
      REAL       RNNOF,E(20,20,20),ETA(20,20),GAMMA(20),UNIFORM,UNI,W(20,20,20)
!
!     Introducing the subroutines that should be called and is external to 
!     this program.
!
      EXTERNAL   RNNOF, UMACH,RNBIN
!
!     Declaration of variables FOR MAXIMIZATION. NSAMPLE is the sample size.
!     For the definition of the other parameters one should see subroutines
!     LCONF and UMACH in the manual of Fortran Power Station 4.0.
!     FCN is the subroutine for this program.
!
      INTEGER    LDA, NCON, NEQ, NVAR, SAMPLE, NSAMPLE
      PARAMETER  (NCON=2, NEQ=2, NVAR=17, LDA=NCON, NSAMPLE=100,NR=20)
      INTEGER    IACT(100), MAXFCN, NACT
      REAL       A(NCON,NVAR), ACC, ALAMDA(NVAR), B(NCON), OBJ, SOL(NVAR), XGUESS(NVAR),
      REAL       XLB(NVAR), XUB(NVAR) 
!
!     Introducing the subroutines that should be called and is external to 
!     this program.
!

       EXTERNAL   FCN, LCONF   
 !   

      DO 40 SAMPLE=1,NSAMPLE
!
!     Defining the output files for simulated data and parameter estimation.
!     Three files COMMUNITY, FAMILY, AND CHILD are used to save the sumulated data at 
!     levels 3, 2, and 1 respectively. 
!     The file RESPONSE is for saving the response at the third level. 
!     The file NONPAOUT is for saving the parameters estimate.
!
      OPEN(1,FILE='COMMUNITY.TXT')
      OPEN(2,FILE='FAMILY.TXT')
      OPEN(3,FILE='CHILD.TXT')
      OPEN(4,FILE='RESPONSE.TXT')
      OPEN(9,FILE='NONPAOUT.TXT')
!
!     Generating the data. NR=20 is the sample size in each level.
!
!
!     The following three nested loops are used to generate a random effect and a fixed 
!     effect at level 3, a random effect and a fixed effect at level 2, and a fixed
!     effect and a binomial response at level 1.
!
      CALL UMACH (2, NOUT)
      DO 30  I=1, NR
!
!     Generating Normal random number for third level as random effect.
!
      GAMMA(I)= RNNOF()
!
!     Generating Binomial random number in third level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      COMMUNITY(I)=IR
      DO 20  j=1, NR
!
!     Generating Normal random number for second level as random effect.
!
      ETA(I,J)= RNNOF()
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!
!     Generating Binomial random number in second level for using as two level factor.
!
      CALL RNBIN (1, 1, 0.5, IR)
      FAMILY(I,J)=IR
      DO 10  K=1, NR
!
!     Generating Logistic random number for first level to establish logit model.
!
      CALL RNUN (1, UNIFORM)
      UNI=(UNIFORM)/(1-UNIFORM)
      E(I,J,K)=LOG(UNI)
!
!     Generating Binomial random number in first level for using as two level factor.

 !    
      CALL RNBIN (1, 1, 0.5, IR)
      CHILD(I,J,K)=IR
!
!     Generating Binomial random number in first level for using as binary response.
!     W(I,J,K) is used as a latent variable to generate the binomial response.
!
      W(I,J,K)=COMMUNITY(I)+GAMMA(I)+FAMILY(I,J)+ETA(I,J)+CHILD(I,J,K)+E(I,J,K)
      IF(W(I,J,K).GE.0.0)THEN 
      RESPONSE(I,J,K)=1 
      ELSE 
      RESPONSE(I,J,K)=0
      END IF
   10 CONTINUE
      WRITE(4,9986)(RESPONSE(I,J,K),K=1,NR)
   
      WRITE(3,9986)(CHILD(I,J,K),K=1,NR)
   20 CONTINUE
      WRITE(2,9986)(FAMILY(I,J),J=1,NR)
   30 CONTINUE
      WRITE (1,9986)(COMMUNITY(I),I=1,NR)
 9986 FORMAT(20(1X,I1))
      CLOSE (1)
      CLOSE (2)
      CLOSE (3)
      CLOSE (4)
!
!     Fitting model.
!     Minimization  of -2LOGLIKELIHOOD.
!
!     Sum of the probabilities for three masses should be one i.e:
!     X(12)+X(13) + X(14)  .EQ.  1 and X(15)+X(16) + X(17)  .EQ.  1
!
!     Defining bounds for the standard errors of random effects: 
!     0  .LT.  X(4)  .LE.  5 and 0  .LT.  X(5)  .LE.  5
!
      DATA A/0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
             0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0/,B/1.0,1.0/
      DATA XLB/-10,-10,-10,0.01,0.01,-100,-100,-100,-100,-100,-100,0.01,0.01,0.01,
                0.01,0.01,0.01/,XUB/10,10,10,5,5,100,100,100,100,100,100,0.99,0.99,
                0.99,0.99,0.99,0.99/,XGUESS/0.7,0.7,0.7,0.9,0.9,-1.0,0.0,1.0,-1.0,
                0.0,1.0,0.5,0.3,0.2,0.5,0.3,0.2/
      DATA ACC/0.0/,MAXFCN/800/                       
      CALL UMACH (2, NOUT)
!
!     Minimization by calling subroutine LCONF using initial guesses.
!     FCN will be called from subroutine FCN. For definition of the  
!     parameters see the manual.
!
      CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, 
                  NACT, IACT, ALAMDA) 
!
!     Printing the parameters estimates.
!
      WRITE (NOUT,99998) 'Solution:',SAMPLE
      WRITE (9,99999) SOL,OBJ
99998 FORMAT (//, ' ', A, I4, I4)
99999 FORMAT (17(1X,F10.6),5X,F16.6)
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!
!     Setting the maximum function evaluation to 800.
!
      MAXFCN=800
   40 CONTINUE     
      END

!
!
!
!     The following subroutine calculates the minus two log liklehood function 
!     that should be minimized by the main program. This gets N and X 
!     from main program and returns F as minus two log liklehood function.
!
      SUBROUTINE FCN (N, X, F)
!
!     The following variables have the same definition as in the main program.
!
      INTEGER    COMMUNITY(20),FAMILY(20,20),CHILD(20,20,20),RESPONSE(20,20,20)
!
!     NMASS1 and NMASS2 are the number of the mass points.
!
      INTEGER    N,NMASS1,NMASS2,NR
      REAL       X(N), F
      DOUBLE PRECISION LINEAR,EXPLINEAR,LOGISTIC,LOGISTIC1,LOGISTIC2,LOGISTIC3,LOGLIK
      PARAMETER  (NMASS1=3,NMASS2=3,NR=20)
!
!     Reding simulated data from main program.
!
      OPEN(5,FILE='COMMUNITY.TXT')
      READ (5,9999)(COMMUNITY(I),I=1,NR)
      OPEN(6,FILE='FAMILY.TXT')
      READ (6,9999)((FAMILY(I,J),J=1,NR),I=1,NR)
      OPEN(7,FILE='CHILD.TXT')
      READ (7,9999)(((CHILD(I,J,K),K=1,NR),J=1,NR),I=1,NR)
      OPEN(8,FILE='RESPONSE.TXT')
      READ (8,9999)(((RESPONSE(I,J,K),K=1,NR),J=1,NR),I=1,NR)
9999  FORMAT(20(1X,I1))
      CLOSE (5)
      CLOSE (6)
      CLOSE (7)
      CLOSE (8)
!
!     Deviance evaluation using model 9 in paper.
!

       LOGLIK=0.0D0   
      DO 50 I=1,NR
      LOGISTIC3=0.0D0
      DO 60 L=1,NMASS2
      LOGISTIC2=1.0D0
      DO 70 J=1,NR
      LOGISTIC1=0.0D0
      DO 80 M=1,NMASS1
!
!     We define LOGISTIC=1.0D+7 insted of one to avoid mathematical error then reduce 
!     6447.23826 from LOGLIK according to the model (equation 9) explained in paper.
!
      LOGISTIC=1.0D+7
      DO 90 K=1,NR
      LINEAR=X(1)*COMMUNITY(I)+X(2)*FAMILY(I,J)+X(3)*CHILD(I,J,K)+X(4)*X(5+M)
             +X(5)*X(5+NMASS1+L) 
      EXPLINEAR=EXP(LINEAR)
      LOGISTIC=LOGISTIC*(EXP(LINEAR*RESPONSE(I,J,K))/(1+EXPLINEAR))
   90 CONTINUE 
      LOGISTIC1=LOGISTIC1+LOGISTIC*X(5+NMASS1+NMASS2+M)
   80 CONTINUE 
      LOGISTIC2=LOGISTIC2*LOGISTIC1
   70 CONTINUE
      LOGISTIC3=LOGISTIC3+LOGISTIC2*X(8+NMASS1+NMASS2+L)
   60 CONTINUE
!
!     Small positive number is added to LOGISTIC3 to avoid mathematical error when this 

Page 3



Appendix D
!     parameter is close to zero.
!
      LOGLIK=LOGLIK+DLOG(LOGISTIC3+0.000000000000001)
   50 CONTINUE 
      F=(-2)*(LOGLIK-6447.23826)
      RETURN
      END
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# Bugs Codes (Software WinBUGS31) for MCMC approach. Data are simulated using 
codes in appendix A. 
model simulation 
{ 
     for (i in 1:N){ 
      gamma[i]~dnorm(0.0,vargamma) 
      for (j in 1:N){ 
      eta[i,j]~dnorm(0.0,vareta) 
      for (k in 1:N){    
      logit(mu[i,j,k])<-
betacom*community[i]+betafam*family[i,j]+betachi*child[i,j,k]+gamma[i]+eta[i,j] 
      response[i,j,k]~dbin(mu[i,j,k],NUM) 
      llike[i,j,k]<-response[i,j,k]*log(mu[i,j,k])+(1-response[i,j,k])*log(1-
mu[i,j,k]) 
                      }            
                  } 
       } 
     betacom~dnorm(0.0,1.0E-6) 
     betafam~dnorm(0.0,1.0E-6) 
     betachi~dnorm(0.0,1.0E-6)   
     vargamma~dgamma(1.0E-3,1.0E-3) 
     vareta~dgamma(1.0E-3,1.0E-3) 
     sigmaeta<-1.0/sqrt(vareta) 
     sigmagamma<-1.0/sqrt(vargamma) 
     llikelihood<-(-2)*sum(llike[,,]) 
} 
 
 
 
 
 




