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Abstract

The analysis of matrix population models has become a fundamental tool in ecology,
conservation biology, and life history theory. In this paper, I present demogR, a pack-
age for analyzing age-structured population models in R. The package includes tools for
the construction and analysis of matrix population models. In addition to the standard
analyses commonly used in evolutionary demography and conservation biology, demogR
contains a variety of tools from classical demography. This includes the construction of
period life tables, and the generation of model mortality and fertility schedules for human
populations. The tools in demogR are generally applicable to age-structured populations
but are particularly useful for analyzing problems in human ecology. I illustrate some of
the capabilities of the package by doing an evolutionary demographic analysis of several
human populations.

Keywords: demography, human ecology, life history theory, matrix population models, model
life tables, R.

1. Introduction

demogR is a package for doing demographic analyses of age-structured populations in R (R
Development Core Team 2007). By default, it works with the data format typically used
by human demographers. However, all of the routines for the analysis of matrix population
models will work for any age-structured life cycle. In addition to the functions particularly of
interest to ecologists, there are a variety of routines for classical formal demography of human
populations.

In this paper, I will focus primarily on describing the functions associated with matrix popula-
tion models. Matrix population models have proved especially important in two complemen-
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tary areas of ecology: (1) conservation biology and (2) evolutionary demography, including
human evolutionary ecology (Hill and Hurtado 1996; Kaplan, Hill, Lancaster, and Hurtado
2000)

1.1. Conservation biology

The judicious use of matrix population models has become an indispensable tool for conserva-
tion biology (Lande 1988; Doak, Kareiva, and Klepetka 1994; Beissinger and Westphal 1998;
Benton and Grant 1999). The rate of increase of a population is a critical parameter of inter-
est in conservation biology, since a robust growth rate – and low variance in this growth rate
– is the best insurance against extinction. The asymptotic growth rate of an age-structured
population is the dominant eigenvalue of the projection matrix. This dominant eigenvalue,
λ1 is guaranteed to be unique, strictly greater than all other eigenvalues, and real if standard
conditions for irreducibility and aperiodicity are met (Caswell 2001). Sensitivity and elasticity
analyses of λ with respect to perturbations of vital events provide important insights into the
relative importance of different vital rates for population viability and the potential impact of
measurement error on the estimation of a population’s rate of increase (Caswell 2001). The
assumptions of the perturbation analysis that lie behind demographic elasticity analysis limit
the uncritical use of elasticities in conservation biology. For example, real perturbations in a
conservation context can be large and affect multiple vital rates simultaneously (Mills, Doak,
and Wisdom 1999). In fact, a number of the routines in demogR are specifically designed for
just these problems, including those for calculating the second derivatives of λ with respect
to perturbations, and the sensitivities of eigenvalue elasticities.

1.2. Evolutionary demography

The asymptotic growth rate, λ, is also the fitness measure in a structured population with
overlapping generations. Intense interest has focused on understanding how λ responds to
perturbations in the elements of the life cycle (Caswell 1978; Benton and Grant 1996; Pfister
1998; de Kroon, van Groenendael, and Ehrlen 2000). Lande (1982) showed that the expected
change in the mean life history phenotype (or any other phenotype) ∆z is given by

λ∆z = G∇λ, (1)

where ∇λ is the fitness gradient (which is simply a vector of the sensitivities of λ) and G. is
the additive genetic covariance matrix. The G matrix describes how a multivariate phenotype
can respond to selection. Fisher (1958) showed that the rate of evolution is proportional to
the variance in fitness. The G matrix generalizes this idea to multiple fitness components.
These components all may have additive genetic variance, but they are also likely to covary
with each other. In the simplest case where there are not (non-zero) off-diagonal elements
and the diagonal elements of G are greater than zero, the life cycle traits will move in the
direction of the gradient ∇λ which is the vector of sensitivities. When the covariances (i.e.,
off-diagonal elements) are non-zero, the response to selection will be more complex. The
methods encompassed by matrix population models are therefore fundamental for under-
standing evolutionary change in life histories. There is currently some excellent work being
done linking evolutionary quantitative genetics studies with ecology (e.g., Coulson, Benton,

1Wherever no confusion arises by doing so, I will simply write λ rather than λ1 for the dominant eigenvalue.
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Lundberg, Dall, and Kendall 2006; Pelletier, Clutton-Brock, Pemberton, Tuljapurkar, and
Coulson 2007).

In addition, Hamilton’s perturbation analysis of the discrete-time characteristic equation for
the human life history provided the canonical theory of senescence for the past 40 years
(Hamilton 1966; Baudisch 2005; Steinsaltz, Evans, and Wachter 2005). The force of selection
against deleterious mutations with age-specific effects declines with age and this decline is
measured by the sensitivities of λ. The demographic methods used by demogR are therefore of
central importance to the evolution of senescence and life histories in general and such analyses
are increasingly being carried out in an ecological context on wild populations (Charmantier
and Garant 2005; Nussey, Clutton-Brock, Albon, Pemberton, and Kruuk 2005; Charmantier,
Perrins, McCleery, and Sheldon 2006; Nussey, Kruuk, Donald, Fowlie, and Clutton-Brock
2006)

1.3. Human evolutionary ecology

The observation that the asymptotic rate of increase of the population projection matrix is
the proper fitness measure for an age-structured population places demography at the center
of studies of human evolutionary ecology. The human life cycle is highly age-structured and
there is little value to studies of human adaptation that fail to account for the variable force of
selection on traits with respect to their age expression. Work in human evolutionary ecology
has tended to focus on the demography of small-scale populations such as hunter-gatherers
or horticulturalists (e.g., Howell 1979; Early and Peters 1990; Hill and Hurtado 1996). Un-
derstanding the evolution of human life histories, characterized as they are by long lifespan,
modest fertility, extensive biparental care, overlapping periods of juvenile dependency, and
long post-reproductive lifespan, remains a major challenge in human evolutionary ecology.
An important area where human evolutionary ecology and conservation biology intersect is
the analysis of subsistence and resource management in small populations (e.g. Alvard 1998;
Smith and Wishnie 2000; Bird, Bird, and Parker 2005). Humans often play an instrumental
role in regulating (and disturbing) communities and ecosystem processes and understanding
the role that changes in the size and composition of human populations play is essential.

1.4. The need for a package for demographic analysis

The methods of analysis for matrix population models are widely used and a number of
excellent texts are available to describe their use. Caswell (2001) provides Matlab code
fragments and pseudo-code for many of the analyses described in his comprehensive book,
while Morris and Doak (2002) provide extensive Matlab code to support their text. However,
these functions are written for fairly expensive proprietary software, limiting their availability
to all users. This is particularly problematic for scientists in lesser developed countries. Having
a single package that collects many of the most commonly used analyses for age-structured
population models, written for freely available software and distributed under the GPL solves
this problem. demogR also allows population biologists and demographers to enjoy the many
other advantages of the R programming environment including a more natural environment
for handling complex data, advanced tools for statistical inference and superior graphics.
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2. Using demogR

2.1. Life table methods

I will first discuss the construction of life tables from the census counts and death tabula-
tions. Throughout the rest of the paper, I will use the vital event data from three countries:
Venezuela (1965), Madagascar (1966), USA (1967). These are the three populations used
by Goodman, Keyfitz, and Pullum (1974) in their classic paper on the demographic theory
of kinship and they illustrate differing combinations of extremely high and low fertility and
mortality. The dataset goodman is included in the package and consists of raw numbers used
to construct the life tables and age-specific fertility schedules analyzed in the Goodman et al.
(1974) paper. This dataset is a 19×10 data frame with columns representing age followed by
the mid-year population size (nKx), number of deaths (nDx) and births (Bx) for Venezuela,
Madagascar, and the USA for ages x ∈ 0, 1, 5, 10, . . . 80, 85. Following standard demographic
notation, x is the age index and n indicates the width of the age interval. Thus, nKx is the
midyear population for individuals age x to x + n years.

Construct a period life table with the routine life.table, which uses the Greville equation to
convert observed death rates (nMx = nDx/nKx) into interval probabilities nqx. A period life
table is a model for a hypothetical population. Through it, we apply period measures (i.e.,
cross-sectional measures taken at a specific time) and create a hypothetical cohort whose
mortality experience we summarize. In effect, the period life table asks questions like: if
current mortality conditions pertained to a particular population, what would the average
age of death of that population be? If we had an actual cohort, then we would observe
(cohort) age-specific death rates nmx = ndx/nLx, the observed number of deaths divided
by the number of person-years in an age class. For the synthetic cohort of the period life
table, we substitute the period death rates nMx, taking the mid-interval population size in
age class x as our estimate for the number of person-years lived in the interval (nLx). As
Greville showed, the only information needed to move between nMx and nqx is the average
person-years lived by individuals dying in the interval nax (Greville 1943). Given an estimate
of the central death rate nMx, the conversion to nqx is given by:

nqx =
n · nmx

1 + nmx(n − nax)
.

There are a variety of methods available for specifying the nax schedule (Keyfitz 1977; Preston,
Heuveline, and Guillot 2001). Probably the most common approach uses regression on the
observed nMx values. In terms of mortality, the most rapidly changing portion of the human
life cycle are the ages under five, and especially from birth to the first birthday. This general
pattern of high and declining early mortality probably pertains to most mammals (Charnov
1993). For ages above five, we can typically assume that deaths are randomly distributed
across the 5-year age interval, so that the average number of person-years lived by individuals
dying at ages x > 5 is nax = 2.5. Thus, the regression approach typically focuses on the
first two nax values (i.e., for age classes 0-1 and 1-4). The most common regression-based
approach to graduating the nax schedule is attributable to Keyfitz and Flieger (1990) and
this is the default value for life.table.

In using regression-based graduation for the nax schedules, human demographers capitalize
on the remarkably robust nature of the human life cycle. Despite the great diversity of eco-
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nomic, social, and demographic environments that people experience, there are many general
features of the human mortality experience. For many ecological applications, the detailed
demographic information that allows human demographers to specify an nax schedule by re-
gression or borrowing from a similar population may be absent. It is common in ecological
applications to simply construct a cohort life table (Deevey 1947; Caughley 1966). The as-
sumptions underlying a cohort life table are not unreasonable if we assume that a population
has lived in a relatively constant (average) environment. In the presence of non-stationary de-
mographic change (e.g., in the case of demographic transitions in recent human populations),
the cohort and period life tables will give very different pictures of the mortality experience
of the population. Thus, for most applications to human ecology, the options type="cd" or
type="kf" should be used, while for most non-human ecological applications, type="cohort"
is probably the best option.

First, load the data and then calculate a period life tables using the default Keyfitz-Flieger
graduation for the three populations. For the purposes of this paper, I will also limit the
number of significant digits that are printed.

R> library("demogR")

R> options(digits = 3, scipen = 1)

R> data("goodman")

R> names(goodman)

[1] "age" "ven.nKx" "ven.nDx" "ven.bx" "mad.nKx" "mad.nDx" "mad.bx"
[8] "usa.nKx" "usa.nDx" "usa.bx"

R> ven <- with(goodman, life.table(x = age, nKx = ven.nKx, nDx = ven.nDx))

R> mad <- with(goodman, life.table(x = age, nKx = mad.nKx, nDx = mad.nDx))

R> usa <- with(goodman, life.table(x = age, nKx = usa.nKx, nDx = usa.nDx))

R> ven

x nax nMx nqx lx ndx nLx Tx ex
1 0 0.148 0.0461 0.0443 1.000 0.0443 0.962 67.70 67.70
2 1 1.500 0.0057 0.0226 0.956 0.0216 3.769 66.74 69.84
3 5 2.500 0.0012 0.0058 0.934 0.0055 4.657 62.97 67.41
4 10 2.500 0.0007 0.0036 0.929 0.0034 4.635 58.31 62.80
5 15 2.500 0.0011 0.0054 0.925 0.0050 4.614 53.68 58.01
6 20 2.500 0.0013 0.0065 0.920 0.0060 4.586 49.07 53.32
7 25 2.500 0.0017 0.0086 0.914 0.0079 4.552 44.48 48.65
8 30 2.500 0.0022 0.0109 0.906 0.0098 4.507 39.93 44.05
9 35 2.500 0.0033 0.0163 0.897 0.0146 4.446 35.42 39.51
10 40 2.500 0.0042 0.0209 0.882 0.0184 4.364 30.97 35.12
11 45 2.500 0.0055 0.0273 0.864 0.0236 4.259 26.61 30.81
12 50 2.500 0.0083 0.0406 0.840 0.0341 4.115 22.35 26.61
13 55 2.500 0.0111 0.0542 0.806 0.0436 3.920 18.24 22.63
14 60 2.500 0.0231 0.1090 0.762 0.0831 3.603 14.32 18.78
15 65 2.500 0.0214 0.1015 0.679 0.0689 3.224 10.71 15.77
16 70 2.500 0.0338 0.1558 0.610 0.0951 2.814 7.49 12.27
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17 75 2.500 0.0485 0.2164 0.515 0.1115 2.297 4.68 9.08
18 80 2.500 0.1137 0.4426 0.404 0.1787 1.572 2.38 5.89
19 85 3.587 0.2788 1.0000 0.225 0.2250 0.807 0.81 3.59

The life table contains nine columns: age (x), nax, the period central death rate (nMx), the
interval mortality probability (nqx), survivorship (lx), the proportion of deaths in the interval
(ndx), person-years lived in the interval (nLx), person-years of remaining life in the cohort
(Tx) and life expectancy (ex). In most human demography – particularly for national-level
data – the radix of the life table is typically set to l0 = 100, 000, leading the the interpretation
of lx as the number of survivors in the artificial cohort at age x and ndx as the number
of deaths in the interval. Following ecological and evolutionary conventions, the default of
life.table is set for a radix of l0 = 1, making lx the probability of surviving to exact age x
and ndx the proportion of deaths between x and x + n (= nmxlx).

life.table can also use the Coale-Demeny approach to graduating the nax schedule, which
can be more useful in anthropological applications (i.e., those of small populations, frequently
experiencing high mortality) that are more likely to be used in ecological or evolutionary
analyses. The Coale-Demeny approach uses different values in the regression depending on
the severity of early mortality (Coale, Demeny, and Vaughn 1983). In practice, the two
different methods produce very similar life tables for the three national-level populations.

To demonstrate the usage of the cohort life table, I use Caughley’s survival data on Himalayan
thar (Hemitargus jemlahicus). These data are included in the dataframe thar.

R> data("thar")

R> thar.lt <- with(thar, life.table(x = age, nDx = deaths, nKx = count,

+ type = "cohort", iwidth = 1, width12 = c(1, 1)))

R> thar.lt

x nax nMx nqx lx ndx nLx Tx ex
1 0 0.5 0.5317 0.5317 1.0000 0.5317 0.7341 3.49 3.49
2 1 0.5 0.0208 0.0208 0.4683 0.0098 0.4634 2.75 5.87
3 2 0.5 0.0532 0.0532 0.4585 0.0244 0.4463 2.29 4.99
4 3 0.5 0.1124 0.1124 0.4341 0.0488 0.4098 1.84 4.24
5 4 0.5 0.1392 0.1392 0.3854 0.0537 0.3585 1.43 3.72
6 5 0.5 0.1912 0.1912 0.3317 0.0634 0.3000 1.07 3.24
7 6 0.5 0.2182 0.2182 0.2683 0.0585 0.2390 0.77 2.88
8 7 0.5 0.2558 0.2558 0.2098 0.0537 0.1829 0.53 2.55
9 8 0.5 0.3125 0.3125 0.1561 0.0488 0.1317 0.35 2.25
10 9 0.5 0.3182 0.3182 0.1073 0.0341 0.0902 0.22 2.05
11 10 0.5 0.3333 0.3333 0.0732 0.0244 0.0610 0.13 1.77
12 11 0.5 0.4000 0.4000 0.0488 0.0195 0.0390 0.07 1.40
13 12 1.0 1.0000 1.0000 0.0293 0.0293 0.0293 0.03 1.00

2.2. Projection matrix construction

Having constructed the life tables, we are in a position to construct and analyze demographic
projection matrices for the age-structured population. The routine leslie.matrix takes
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as arguments a measure of age-specific survivorship (either lx or nLx) and the age-specific
fertility rates, mx. life.table assumes that you want to construct a life table from data
tabulated in a manner similar to goodman. That is, there are age-specific tabulations of
mid-year populations size (or its equivalent), deaths, and births for ages x = 0, 1, 5, 10, . . .

The inputs for the Leslie matrix are a measure of survivorship (either lx or nLx) and age-
specific fertility mx. The default value is to use nLx, with corresponding argument L=TRUE. For
national-level demographic data frequently employed in human demography, it is conventional
to use person-years (nLx) to construct a projection matrix. This is because projections for
national (or other large) populations are typically done with fairly coarse age intervals (e.g.,
5 or 10 years). Since nLx =

∫ x+n
x l(x)dx, nLx will give better estimates of survival for such

large age-classes. It is assumed that both input vectors will be of the same length and that
they will both contain a value for one year-olds which will need to be removed from the mx

and lx vectors when L=FALSE and will need to be combined with 4L1 when L=TRUE.

Births are assumed to be continuously distributed throughout the year. That is, leslie.matrix
assumes a birth-flow population. Following standard demographic conventions2 (Keyfitz 1977;
Preston et al. 2001), the Leslie matrix entry for the ith element of the first row is given by

Fi = nL0
mi + Pimi+1

2
. (2)

When the option L=FALSE is used, l(0.5) · n is substituted for nLx in equation 2, where
l(0.5) =

√
l(2) (Caswell 2001).

R> ven.mx <- with(goodman, ven.bx/ven.nKx)

R> mad.mx <- with(goodman, mad.bx/mad.nKx)

R> A <- leslie.matrix(lx = ven$nLx, mx = ven.mx)

R> B <- leslie.matrix(lx = mad$nLx, mx = mad.mx)

R> A

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 0.000 0.00218 0.148 0.504 0.730 0.648 0.489 0.290 0.0957 0.0213 0.000937
[2,] 0.984 0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[3,] 0.000 0.99525 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[4,] 0.000 0.00000 0.995 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[5,] 0.000 0.00000 0.000 0.994 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[6,] 0.000 0.00000 0.000 0.000 0.992 0.000 0.000 0.000 0.0000 0.0000 0.000000
[7,] 0.000 0.00000 0.000 0.000 0.000 0.990 0.000 0.000 0.0000 0.0000 0.000000
[8,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.986 0.000 0.0000 0.0000 0.000000
[9,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.000 0.981 0.0000 0.0000 0.000000
[10,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.9759 0.0000 0.000000
[11,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.9661 0.000000
attr(,"class")
[1] "leslie.matrix"

2Actually most human demographers would also divide by n · l0, where l0 is the radix of the life table.
However, since I follow biological conventions by setting l0 = 1, I ignore this.
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If data are not in the format expected by leslie.matrix, the utility function odiag can
facilitate constructing a Leslie matrix. odiag takes two arguments: x and d. For vector
argument x, odiag produces a square matrix with x along the off-diagonal given by the
integer d. For matrix argument x, odiag extracts as a vector the dth off-diagonal. To place
values along the sub-diagonal of a matrix, use d=-1.

R> Px <- c(0.77, 0.95, 0.98, 0.97)

R> Fx <- c(0, 0, 1, 1.2, 1)

R> L <- odiag(Px, -1)

R> L[1, ] <- Fx

R> L

[,1] [,2] [,3] [,4] [,5]
[1,] 0.00 0.00 1.00 1.20 1
[2,] 0.77 0.00 0.00 0.00 0
[3,] 0.00 0.95 0.00 0.00 0
[4,] 0.00 0.00 0.98 0.00 0
[5,] 0.00 0.00 0.00 0.97 0

2.3. Projection

Caswell (2001) notes that projection is the simplest form of analysis. Having constructed the
Leslie matrix, and given a starting population vector, we can now project it forward some
number of years and observe its behavior. Here we construct the Leslie matrix for the USA
in 1967 and project it forward 100 years using the routine project.leslie, which takes as
arguments the Leslie matrix, a starting population vector and a time horizon.

R> usa <- with(goodman, life.table(x = age, nKx = usa.nKx, nDx = usa.nDx))

R> usa.mx <- goodman$usa.bx/goodman$usa.nKx

R> C <- leslie.matrix(lx = usa$nLx, mx = usa.mx)

R> C

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.000 0.00105 0.082 0.288 0.378 0.265 0.141 0.0586 0.0134 0.000333
[2,] 0.997 0.00000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[3,] 0.000 0.99836 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[4,] 0.000 0.00000 0.998 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000
[5,] 0.000 0.00000 0.000 0.997 0.000 0.000 0.000 0.0000 0.0000 0.000000
[6,] 0.000 0.00000 0.000 0.000 0.996 0.000 0.000 0.0000 0.0000 0.000000
[7,] 0.000 0.00000 0.000 0.000 0.000 0.995 0.000 0.0000 0.0000 0.000000
[8,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.992 0.0000 0.0000 0.000000
[9,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.000 0.9886 0.0000 0.000000
[10,] 0.000 0.00000 0.000 0.000 0.000 0.000 0.000 0.0000 0.9829 0.000000
attr(,"class")
[1] "leslie.matrix"
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We now project the Leslie matrix with project.leslie using the census population of 1967
as the starting population size and plot the trajectory of the 10 age classes over the 100 year
projection.

R> no <- goodman$usa.nKx[3:11]

R> no <- c(sum(goodman$usa.nKx[1:2]), no)

R> tmax <- 20

R> N <- project.leslie(A = C, no = no, tmax = tmax)

R> cols <- rgb(0, (10:1)/10, (1:10)/10)

R> plot(5 * (0:20), N[1, ]/100000, type = "l", xlab = "Years",

+ ylab = "Population Size (x100,000)",

+ ylim = c(16, 175), col = cols[1])

R> for (i in 2:10) lines(5 * (0:20), N[i, ]/100000, col = cols[i])

The call to project.leslie take tmax=20 as an argument. However, since the width of the
age classes in the Leslie matrix is five years, the projection actually spans 100 years, as shown
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Figure 1: Convergence of the population to the stable age distribution.
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in figure 1. The plot shows the very interesting transient dynamics which result from the
fact that the baby boom had ended five years prior to the census and the peak of fertility
occurred with the births of the cohort who were 10-14 years of age at the time of the census.
The very low mortality of the United States meant that these unevenly sized cohorts passed
through their life cycles essentially intact. The passage of the first cohort of newborns out of
the range of ages projected by the Leslie matrix can be seen with the abrupt smoothing of the
trajectories at t = 50. The actual population growth of the United States since 1965 looks
quite different, of course. As a simple projection of a closed population, there is no account
taken of immigration or changing vital rates.

When doing a projection, we sometimes do not care about the size of the different age classes
and simply want the total population size. The option pop.sum has the default value of
pop.sum=FALSE. Changing this to pop.sum=TRUE sums the population projection.

R> N.tot <- project.leslie(A = C, no = no, tmax = tmax, pop.sum = TRUE)

R> N.tot

[1] 75717000 78261068 81865093 86923160 92733449 98000255 102053724
[8] 105490420 108682801 111984424 116519384 121796188 126452846 130801781
[15] 135380074 140525030 146059631 151660059 157269825 163052060 169155329

2.4. Eigenvalue analysis

The most common forms of analysis of the projection matrix are contained in the function
eigen.analysis, which takes the projection matrix as its sole argument. The return value of
eigen.analysis is a list containing: (1) lambda1: the dominant eigenvalue λ of the projection
matrix, (2) rho: the damping ratio ρ = λ1/|λ2|, which is a measure of the rate of convergence
to the stable age distribution, (3) sensitivities: a matrix of eigenvalue sensitivities, (4)
elasticities: a matrix of eigenvalue elasticities, (5) stable.age: the stable age distribution
u normalized so that ‖u‖ = 1, and (6) repro.value: reproductive value v normalized such
that v1 = 1.

R> Aea <- eigen.analysis(A)

R> Bea <- eigen.analysis(B)

R> Cea <- eigen.analysis(C)

R> Aea

$lambda1
[1] 1.21

$rho
[1] 3.01

$sensitivities
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.000 0.154 0.127 0.104 0.0861 0.0708 0.0581 0.04749 0.038628 0.0312414
[2,] 0.231 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00000 0.000000 0.0000000
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[3,] 0.000 0.228 0.000 0.000 0.0000 0.0000 0.0000 0.00000 0.000000 0.0000000
[4,] 0.000 0.000 0.209 0.000 0.0000 0.0000 0.0000 0.00000 0.000000 0.0000000
[5,] 0.000 0.000 0.000 0.156 0.0000 0.0000 0.0000 0.00000 0.000000 0.0000000
[6,] 0.000 0.000 0.000 0.000 0.0932 0.0000 0.0000 0.00000 0.000000 0.0000000
[7,] 0.000 0.000 0.000 0.000 0.0000 0.0471 0.0000 0.00000 0.000000 0.0000000
[8,] 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0184 0.00000 0.000000 0.0000000
[9,] 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00447 0.000000 0.0000000
[10,] 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00000 0.000707 0.0000000
[11,] 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.00000 0.000000 0.0000243

[,11]
[1,] 0.025
[2,] 0.000
[3,] 0.000
[4,] 0.000
[5,] 0.000
[6,] 0.000
[7,] 0.000
[8,] 0.000
[9,] 0.000
[10,] 0.000
[11,] 0.000
attr(,"class")
[1] "leslie.matrix"

$elasticities
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.000 0.000277 0.0156 0.0436 0.0521 0.0380 0.0236 0.01143 0.003064
[2,] 0.188 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
[3,] 0.000 0.187927 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
[4,] 0.000 0.000000 0.1724 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
[5,] 0.000 0.000000 0.0000 0.1287 0.0000 0.0000 0.0000 0.00000 0.000000
[6,] 0.000 0.000000 0.0000 0.0000 0.0767 0.0000 0.0000 0.00000 0.000000
[7,] 0.000 0.000000 0.0000 0.0000 0.0000 0.0386 0.0000 0.00000 0.000000
[8,] 0.000 0.000000 0.0000 0.0000 0.0000 0.0000 0.0151 0.00000 0.000000
[9,] 0.000 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00364 0.000000
[10,] 0.000 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000572
[11,] 0.000 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000

[,10] [,11]
[1,] 0.0005524 0.0000194
[2,] 0.0000000 0.0000000
[3,] 0.0000000 0.0000000
[4,] 0.0000000 0.0000000
[5,] 0.0000000 0.0000000
[6,] 0.0000000 0.0000000
[7,] 0.0000000 0.0000000
[8,] 0.0000000 0.0000000
[9,] 0.0000000 0.0000000
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[10,] 0.0000000 0.0000000
[11,] 0.0000194 0.0000000
attr(,"class")
[1] "leslie.matrix"

$stable.age
[1] 0.2023 0.1651 0.1361 0.1123 0.0925 0.0761 0.0625 0.0511 0.0415 0.0336
[11] 0.0269

$repro.value
[1] 1.000000 1.225854 1.484045 1.649851 1.495850 1.082902 0.664755 0.317260
[9] 0.094129 0.018304 0.000776

We see that the population of Venezuela in 1965 was increasing very rapidly: r = log(λ)/n =
0.0382, or nearly 4% annual increase. This is what happens when a population with a life
expectancy at birth of nearly 70 also has a total fertility rate of of 6.4. Using the projection
matrix A, we can calculate both the net reproduction number R0 and the generation time T .
Following Caswell (2001), we can decompose A into two components, A = T + F, where T
is a matrix of transitions (simply the subdiagonal of an age-classified matrix) and F contains
the fertilities. Using this decomposition, Caswell (2001) shows how to convert the projection
matrix into a matrix of Markov transition probabilities for the states of the life cycle. Define
the fundamental matrix of the Markov chain as N = (I−T)−1, where I is an identity matrix
of the same rank as A. The fundamental matrix N contains the expected number of visits
to a transient state i prior to absorption (i.e., death) conditional on starting state j and is
an object of interest in its own right in addition to its utility for calculating other quantities.
Caswell shows that R0 is the dominant eigenvalue of the matrix R = FN. For the age-
classified model, this is simply the r11th entry of R. The generation time is the amount of
time it takes for a population growing at period rate λ to increase by a factor R0: λT = R0,
and can be found easily by solving this equation for T .

R> calc.ro(A)

[1] 2.82

R> gen.time(A)

[1] 27.6

The average woman in Venezuela in 1965 replaced herself with almost three daughters and
took approximately 27.6 years to do so.

The sensitivities of the growth rate, ∂λ/∂aij , provide important demographic and evolu-
tionary information. One possibility for calculating sensitivities is implicit differentiation of
the characteristic equation (Hamilton 1966; Demetrius 1969). Caswell (1978) derived the
sensitivities for a demographic projection matrix using a perturbation analysis of the ma-
trix equation Au = λu. The calculation of sensitivities in this way only requires suitably
scaled dominant left and right eigenvectors of the projection matrix. Caswell shows that
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∂λ/∂aij = viuj , where 〈v,u〉 = 1, v is the dominant left eigenvector and u is the dominant
right eigenvector. Elasticities are simply proportional sensitivities eij = (aij/λ)sij and have
the convenient property that

∑
i,j eij = 1. We can compare the both the sensitivities and

elasticities of the three populations in a convenient graphical manner using the plotting func-
tion plot.leslie.matrix. plot.leslie.matrix takes a projection matrix as its primary
argument. It then plots the subdiagonal and first row of a square matrix on common axes.
The figure uses the generic function plot to plot the fitness sensitivities (a-c) and elasticities
(d-f) from the leslie.matrix objects.

R> par(mfrow = c(2, 3))

R> plot(Aea$sensitivities)

R> title("(a)")

R> plot(Bea$sensitivities)

R> title("(b)")

R> plot(Cea$sensitivities)

R> title("(c)")

R> plot(Aea$elasticities)

R> title("(d)")

R> plot(Bea$elasticities)

R> title("(e)")

R> plot(Cea$elasticities)

R> title("(f)")

The results are plotted in figure 2. Overall, sensitivities to pre-reproductive survival are
highest, but there is a great deal of diversity in these three populations in the magnitude of
the sensitivities to fertility. When the sensitivities are scaled to be proportional, we find that
the general pattern is much more uniform across the three populations despite the tremendous
diversity in vital rates.

As Stearns (1992) noted, sensitivities are “situational.” As partial derivatives of the growth
rate, they are conditional on all other values of the projection matrix remaining constant.
However, there are at least three important contexts where the vital rates are likely to change.
First in an evolutionary context, when the structure of G, the additive genetic covariance ma-
trix for the life cycle, permits it, the life cycle transitions will respond to selection and change.
Second in a conservation context, we may undertake specific policies to improve the survival
and/or fertility of specific age classes (Crouse, Crowder, and Caswell 1987; Doak et al. 1994;
Morris, Tuljapurkar, Haridas, Menges, Horvitz, and Pfister 2006). A successful management
intervention will change vital rates. Third in the case of culture change, vital rates may
change in response to exogenous drivers such as economic development or endogenous drivers
such as ideational change (Borgerhoff Mulder 1998).

Given this interest, we can ask the question how will a small change to some matrix element
akl affect the other sensitivities? Sensitivities are partial derivatives. To investigate the change
in sensitivities, we need to calculate eigenvalue second derivatives. (Caswell 1996) derived a
formula for the second derivative of λ:

∂2λ(1)

∂aij∂akl
= s

(1)
il

∑
m6=1

s
(m)
kj

λ(1) − λ(m)
+ s

(1)
kj

∑
m6=1

s
(m)
il

λ(1) − λ(m)
. (3)
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Figure 2: Sensitivities (a-c) and elasticities (d-f) for Venezuela (a,d), Madagascar (b, e), and
the USA (c, f) in 1966. Sensitivities/elasticities with respect to survival in black and fertility
in grey.

where the superscript (i) indicates which eigenvalue/eigenvector (assuming they have been
sorted in descending order of the real parts of the eigenvalues).

Calculate the second derivatives of λ to a perturbation of the klth element of A using secder,
which takes as arguments the projection matrix A followed by the row index k and column
index l of the perturbation.

R> secder(A, k = 2, l = 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.000 0.1380 0.0896 0.0540 0.028006 0.00950 -0.00331 -0.01179
[2,] -0.173 0.0000 0.0000 0.0000 0.000000 0.00000 0.00000 0.00000
[3,] 0.000 0.0603 0.0000 0.0000 0.000000 0.00000 0.00000 0.00000
[4,] 0.000 0.0000 0.0469 0.0000 0.000000 0.00000 0.00000 0.00000
[5,] 0.000 0.0000 0.0000 0.0196 0.000000 0.00000 0.00000 0.00000
[6,] 0.000 0.0000 0.0000 0.0000 -0.000955 0.00000 0.00000 0.00000
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[7,] 0.000 0.0000 0.0000 0.0000 0.000000 -0.00718 0.00000 0.00000
[8,] 0.000 0.0000 0.0000 0.0000 0.000000 0.00000 -0.00556 0.00000
[9,] 0.000 0.0000 0.0000 0.0000 0.000000 0.00000 0.00000 -0.00210
[10,] 0.000 0.0000 0.0000 0.0000 0.000000 0.00000 0.00000 0.00000
[11,] 0.000 0.0000 0.0000 0.0000 0.000000 0.00000 0.00000 0.00000

[,9] [,10] [,11]
[1,] -0.016973 -0.0197005 -0.0206
[2,] 0.000000 0.0000000 0.0000
[3,] 0.000000 0.0000000 0.0000
[4,] 0.000000 0.0000000 0.0000
[5,] 0.000000 0.0000000 0.0000
[6,] 0.000000 0.0000000 0.0000
[7,] 0.000000 0.0000000 0.0000
[8,] 0.000000 0.0000000 0.0000
[9,] 0.000000 0.0000000 0.0000
[10,] -0.000450 0.0000000 0.0000
[11,] 0.000000 -0.0000199 0.0000

We can see that selection of the survival of 0-4 year-olds is highly concave, which is a mul-
tivariate generalization of stabilizing selection (Caswell 1996). Since the second derivative
of λ with respect to P1 is negative (a standard definition of a concave function), selection
acting on P1 will reduce variance in it (see also Arnold and Wade (1984) for more discussion
of concavity vs. convex selection). In contrast, selection on fertility prior to the mean age
of childbearing T is convex, which is the multivariate generalization of directional selection.
Selection on early fertility will increase variance in fertility. The convexity of selection on
survival of ages after 0-4 is more complex. There is a sign change in age 20-24, which happens
to be the age-class with peak fertility.

We may also want to ask the question for elasticities. We use the eigenvalue second derivatives
to calculate the sensitivities of the elasticities according to the relationship:

∂eij

∂akl
=

aij

λ

∂2

∂aij∂akl
− aij

λ2

∂λ

∂aij

∂λ

∂akl
+

δikδjl

λ

∂λ

∂aij
(4)

To do this, we use the function elassens, which takes the same arguments as secder.

R> elassens(A, 2, 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0.000 0.0002 0.0080 0.0142 0.0070 -0.0022 -0.0058 -0.0050 -0.0019
[2,] 0.014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[3,] 0.000 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[4,] 0.000 0.0000 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
[5,] 0.000 0.0000 0.0000 -0.0085 0.0000 0.0000 0.0000 0.0000 0.0000
[6,] 0.000 0.0000 0.0000 0.0000 -0.0154 0.0000 0.0000 0.0000 0.0000
[7,] 0.000 0.0000 0.0000 0.0000 0.0000 -0.0133 0.0000 0.0000 0.0000
[8,] 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0074 0.0000 0.0000
[9,] 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0024 0.0000
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[10,] 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0005
[11,] 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[,10] [,11]
[1,] -0.0005 0
[2,] 0.0000 0
[3,] 0.0000 0
[4,] 0.0000 0
[5,] 0.0000 0
[6,] 0.0000 0
[7,] 0.0000 0
[8,] 0.0000 0
[9,] 0.0000 0
[10,] 0.0000 0
[11,] 0.0000 0
attr(,"class")
[1] "leslie.matrix"

The function fullsecder computes all the second derivative of the dominant eigenvalue and
returns them in a single matrix showing only the second derivatives with respect to non-zero
matrix elements. The rows of this matrix, which will have a maximum size of 2k− 1× 2k− 1
(where k is the rank of the Leslie matrix) are sorted such that all the fertilities are at the top.
The matrix dimensions are labeled to facilitate easy access of the desired value of ∂2λ/∂aij∂akl.
This application reveals a clear advantage to R over Matlab, as such dimension labeling is not
possible in Matlab. This may seem, at first glance, like a small point but it greatly simplifies
the interpretation of a very complex analysis. We can use this sorting to conveniently extract
second derivatives for plotting. For instance, suppose that we want to know ∂2λ/∂Pi∂Pj for
Madagascar and plot the 10 lines.

R> age <- seq(0, 45, by = 5)

R> SD <- fullsecder(B)

R> SD

12 13 14 15 16 17 18
12 0.055355 0.030603 0.012098 -0.001639 -0.011132 -0.017217 -0.020758
13 0.030603 0.012033 -0.001661 -0.011412 -0.017767 -0.021474 -0.023263
14 0.012098 -0.001661 -0.011625 -0.018314 -0.022280 -0.024195 -0.024681
15 -0.001639 -0.011412 -0.018314 -0.022546 -0.024645 -0.025201 -0.024734
16 -0.011132 -0.017767 -0.022280 -0.024645 -0.025367 -0.024958 -0.023845
17 -0.017217 -0.021474 -0.024195 -0.025201 -0.024958 -0.023903 -0.022389
18 -0.020758 -0.023263 -0.024681 -0.024734 -0.023845 -0.022389 -0.020655
19 -0.022443 -0.023683 -0.024176 -0.023585 -0.022291 -0.020614 -0.018789
110 -0.022776 -0.023125 -0.022980 -0.021978 -0.020458 -0.018693 -0.016873
111 -0.022164 -0.021907 -0.021342 -0.020103 -0.018490 -0.016730 -0.014979
21 0.147615 0.099651 0.063099 0.034432 0.013206 -0.001757 -0.011822
32 -0.016161 0.093492 0.059222 0.032342 0.012437 -0.001595 -0.011037
43 -0.020565 -0.039485 0.059147 0.033843 0.014978 0.001565 -0.007564
54 -0.026497 -0.039459 -0.048193 0.042872 0.025475 0.012690 0.003614



Journal of Statistical Software 17

0 10 20 30 40

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

Age

se
cd

er

Figure 3: Eigenvalue second derivatives with respect to survival Pj .

65 -0.025794 -0.032835 -0.037383 -0.039183 0.041099 0.028508 0.019034
76 -0.019221 -0.022289 -0.024134 -0.024513 -0.023859 0.043813 0.033603
87 -0.010647 -0.011592 -0.012078 -0.011955 -0.011421 -0.010651 0.044894
98 -0.004396 -0.004585 -0.004643 -0.004504 -0.004238 -0.003906 -0.003551
109 -0.001247 -0.001262 -0.001251 -0.001195 -0.001110 -0.001014 -0.000914
1110 -0.000147 -0.000145 -0.000141 -0.000133 -0.000122 -0.000111 -0.000099

19 110 111 21 32 43 54
12 -0.0224429 -0.0227763 -0.02216 0.147615 -0.0161613 -0.020565 -0.0264967
13 -0.0236831 -0.0231249 -0.02191 0.099651 0.0934918 -0.039485 -0.0394591
14 -0.0241758 -0.0229797 -0.02134 0.063099 0.0592219 0.059147 -0.0481935
15 -0.0235847 -0.0219779 -0.02010 0.034432 0.0323419 0.033843 0.0428717
16 -0.0222907 -0.0204585 -0.01849 0.013206 0.0124374 0.014978 0.0254745
17 -0.0206140 -0.0186931 -0.01673 -0.001757 -0.0015953 0.001565 0.0126898
18 -0.0187895 -0.0168729 -0.01498 -0.011822 -0.0110372 -0.007564 0.0036143
19 -0.0169262 -0.0150771 -0.01329 -0.018204 -0.0170255 -0.013458 -0.0026217
110 -0.0150771 -0.0133389 -0.01169 -0.021836 -0.0204351 -0.016931 -0.0067081
111 -0.0132939 -0.0116931 -0.01020 -0.023454 -0.0219573 -0.018624 -0.0091835
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21 -0.0182039 -0.0218355 -0.02345 -0.189792 0.0639678 0.048999 0.0209741
32 -0.0170255 -0.0204351 -0.02196 0.063968 -0.1672992 0.046083 0.0197817
43 -0.0134581 -0.0169314 -0.01862 0.048999 0.0460828 -0.154172 0.0254660
54 -0.0026217 -0.0067081 -0.00918 0.020974 0.0197817 0.025466 -0.1133197
65 0.0120088 0.0068747 0.00320 -0.000181 -0.0000881 0.004731 0.0219633
76 0.0255899 0.0193122 0.01443 -0.008181 -0.0076223 -0.004310 0.0066772
87 0.0359734 0.0287187 0.02284 -0.007321 -0.0068421 -0.005104 0.0003398
98 0.0417230 0.0338747 0.02741 -0.003763 -0.0035204 -0.002829 -0.0007518
109 -0.0008162 0.0361064 0.02937 -0.001210 -0.0011322 -0.000941 -0.0003847
1110 -0.0000879 -0.0000773 0.03004 -0.000155 -0.0001451 -0.000123 -0.0000607

65 76 87 98 109 1110
12 -0.0257937 -0.0192207 -0.010647 -0.004396 -0.0012467 -1.47e-04
13 -0.0328350 -0.0222891 -0.011592 -0.004585 -0.0012618 -1.45e-04
14 -0.0373832 -0.0241336 -0.012078 -0.004643 -0.0012511 -1.41e-04
15 -0.0391834 -0.0245131 -0.011955 -0.004504 -0.0011945 -1.33e-04
16 0.0410993 -0.0238594 -0.011421 -0.004238 -0.0011105 -1.22e-04
17 0.0285079 0.0438130 -0.010651 -0.003906 -0.0010136 -1.11e-04
18 0.0190337 0.0336026 0.044894 -0.003551 -0.0009141 -9.90e-05
19 0.0120088 0.0255899 0.035973 0.041723 -0.0008162 -8.79e-05
110 0.0068747 0.0193122 0.028719 0.033875 0.0361064 -7.73e-05
111 0.0032045 0.0144251 0.022837 0.027409 0.0293686 3.00e-02
21 -0.0001805 -0.0081807 -0.007321 -0.003763 -0.0012097 -1.55e-04
32 -0.0000881 -0.0076223 -0.006842 -0.003520 -0.0011322 -1.45e-04
43 0.0047311 -0.0043102 -0.005104 -0.002829 -0.0009409 -1.23e-04
54 0.0219633 0.0066772 0.000340 -0.000752 -0.0003847 -6.07e-05
65 -0.0586080 0.0219958 0.007776 0.002039 0.0003533 2.12e-05
76 0.0219958 -0.0211701 0.014745 0.004620 0.0010283 9.53e-05
87 0.0077756 0.0147450 -0.004615 0.006587 0.0015383 1.51e-04
98 0.0020392 0.0046199 0.006587 -0.000601 0.0018176 1.81e-04
109 0.0003533 0.0010283 0.001538 0.001818 -0.0000390 1.94e-04
1110 0.0000212 0.0000953 0.000151 0.000181 0.0001941 -4.46e-07

R> cols <- rgb(0, (1:10)/10, (10:1)/10)

R> plot(age, SD[11, 11:20], type = "l", col = cols[1], xlab = "Age",

+ ylab = "secder")

R> for (i in 12:20) lines(age, SD[i, 11:20], col = cols[i - 11])

The plot (figure 3) reveals that the value of ∂2λ/∂P 2
i is negative for all ages, indicating

concave selection, though for ages greater than 25, it is very nearly zero. ∂2λ/∂Pi∂Pj > 0
for j = i− 5, indicating convex selection. This indicates that selection on survival at any age
class will reduce variance in it. A detailed discussion of these results for human life cycles
is beyond the scope of the present paper, but is taken up in a forthcoming paper (Jones, in
prep).
It is a general feature of the human life cycle that the largest fraction of total selection
occurs on pre-reproductive survival (Jones 2005). However, elasticities of any of the life cycle
transitions are conditional upon the other values of the life cycle. Survival is important for
fitness only to the extent that it leads eventually to reproduction. van Groenendael, De
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Kroon, Kalisz, and Tuljapurkar (1994) presented a novel decomposition of the life-cycle using
elasticities. They decompose the life cycle into its constituent loops (illustrated in figure 4).
Using the properties of elasticities, they show that the total elasticity of the life cycle can be
usefully decomposed into its loop elasticities. The algorithm presented by van Groenendael
et al. (1994) is to identify all the loops of the life cycle, find the unique arc of each loop and
multiply its elasticity, known as the loop’s “characteristic elasticity,” by the number of arcs
in the loop. Wardle (1998) noted that identifying all the loops of a complex life cycle is not
always a trivial task and presents a graph theoretic algorithm for enumerating all life cycle
graphs. Fortunately, in the age classified life cycle, the unique arc of any loop will be the
fertility arc of the loop. Thus the characteristic elasticity of any loop in an age-classified life
cycle is simply the elasticity of the fertility arc in each loop.

With the function loop.elas, we can calculate and plot the loop elasticities of an age-classified
projection matrix. loop.elas takes as arguments the projection matrix and the two optional
arguments draw.plot (default=TRUE) and peryear (default=5).
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Figure 4: (a) Human life cycle with eight reproductive classes (ages 10-45). (b-i) eight unique
loops of the life-cycle diagram in (a).
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Figure 5: Loop elasticities for the three populations.

To facilitate comparison between the three populations, we suppress the plot call in loop.elas
and plot the three populations’ loop elasticities side-by-side with common scales.

R> ven.le <- loop.elas(A, draw.plot = FALSE)

R> mad.le <- loop.elas(B, draw.plot = FALSE)

R> usa.le <- loop.elas(C, draw.plot = FALSE)

R> par(mfrow = c(2, 3))

R> barplot(ven.le, names.arg = 5 * 1:11, horiz = TRUE, beside = TRUE,

+ xlim = c(0, 0.3), xlab = "Loop Elasticity", ylab = "Age")

R> barplot(mad.le, names.arg = 5 * 1:11, horiz = TRUE, beside = TRUE,

+ xlim = c(0, 0.3), xlab = "Loop Elasticity", ylab = "Age")

R> barplot(usa.le, names.arg = 5 * 1:10, horiz = TRUE, beside = TRUE,

+ xlim = c(0, 0.3), xlab = "Loop Elasticity", ylab = "Age")

Figure 5 presents the results. All three populations have a peak loop elasticity coinciding with
the mean age of childbearing. The extent of this peak seems to be related to how spread out
reproduction is around this mean. A full analysis of this pattern is again beyond the scope
of this paper but is taken up in another forthcoming paper (Jones, in prep b).

3. Model life tables

Many parts of the world still lack vital event registration. This is particularly true for pop-
ulations in the developing world that are of special interest to anthropologists and human
behavioral ecologists. In addition to the lack of vital event registration, many populations
of anthropological interest are quite small and modeling age-patterns of vital events (gath-
ered, for example through genealogical surveys or archival reconstructions) can be challenging
because the small number of events means that sampling variance can swamp out the demo-
graphic signal. Model life tables have been used to address both of these problems. The
functions cdmltw, cdmlts, cdmltn, and cdmlte provide the Coale-Demeny families of model
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life tables (West, South, North, and East respectively). These four functions take one optional
argument, sex, which defaults to sex=F. The output of the functions is a list containing the
ages, age-class widths, and a series of 25×21 arrays of the various life table functions (25 lev-
els of e10 by 21 age classes): survivorship lx, interval mortality probability nqx, person-years
lived by those dying in the interval nax, deaths in the interval ndx, person-years lived in the
interval nLx, central death rate nmx, person-years of remaining life Tx, and life expectancy
ex.

The code underlying these functions uses the coefficients provided in Coale et al. (1983) to
calculate the 25 model life tables per family. Each of these model tables is indexed by e10,
life expectancy at age 10. The Coale-Demeny regional model life tables are derived from a
series of 192 life tables all based on registration data and picked by stringent data-quality
standards. The North, East, and South regions are all characterized by the particular pattern
of mortality that relates to the causes of death that pertained in the countries from which
the model was constructed. For the most part, the regions in the Coale-Demeny system
correspond to regions of Europe: North is based largely on life tables from Scandinavian
countries; East comes form eastern European countries; South comes from Mediterranean
countries. The last “regional” model life table is based on the remaining countries, including
the only non-western life tables in the collection. The West regional life tables therefore do not
display the systematic deviations from the overall mean of the 192 life tables that the three
other regions do. Murray, Ferguson, Lopez, Guillot, Salomon, and Ahmad (2003) provide a
recent excellent overview of model life table systems.

Coale and Demeny’s method for constructing the regional model life tables involved regression
the observed age-specific probabilities of mortality in an interval x to x + n (nqx) on the
observed life expectancy at age 10 (e10) for the 192 input tables. These regressions were
done by ordinary least-squares on both log10 transformed and untransformed values of nqx.
Plots of the predicted values of both these regressions against age will intersect twice, and
in constructing the model life tables, Coale and Demeny used predicted nqx values from the
simple regression for to the left of the first intersection and from the logarithmic regression
to the right of the second intersection. Between the two, they used the arithmetic mean of
the two predicted values. The nqx values are extended to ages 105 by assuming Gompertz
mortality above age 80:

lx = l80 exp{−(µ(80)/k)(ek(x−80) − 1)}, x = 85, 90, . . . , 105

where k = log(µ(105) − µ(77.5))/27.5, µ(105) = 0.551 + 1.75(5q75) for males, µ(105) =
0.613+1.75(5q75) for females, µ(77.5) = l75(5q75/5L75), and µ(80) = µ(77.5) exp(2.5k). In all
these equations µ(·) is the mortality hazard for the specified age

The values of e10 were chosen by an iterative procedure in such as way as to yield even 2.5-
year intervals of e0 from 20 to 80 years. Male values of e10 for a given model lifetable are
a linear function of the female e10. Unfortunately, Coale and Demeny do not provide the
coefficients for this relationship, but they can be recovered by copying the published e0 values
and regressing the values of e10 for males onto the values of e10 for females.

We can demonstrate the use of the Coale-Demeny model life tables with an example from
the demography of hunter-gatherers. Howell (1979) pioneered the application of formal de-
mographic methods to anthropological populations with her analysis of the Dobe !Kung of
Botswana. Faced with a very small number of events and a population that did not keep track
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of their ages, Howell dealt with some serious challenges in constructing age-specific schedules
of mortality and reproduction. She determined relative ages of the extant population and
then assigned ages to as many people as possible using commonly known unusual events in
the recent history of the people to triangulate individuals births and deaths with calendar
years. She then used the Coale-Demeny West family model life table to smooth her estimated
age distribution, which allowed her to estimate the age-specific mortality rate of the total
population.

In their demographic study of the Ache of eastern Paraguay, Hill and Hurtado (1996) devel-
oped field techniques to allow them to avoid relying on model life tables for smoothing the
age distribution. We can compare the !Kung and Ache lx curves to model model lx curves
generated from the West family of life tables.

R> cdw <- cdmltw()

R> names(cdw)

[1] "age" "width" "lx" "nqx" "nax" "ndx" "nLx" "nmx" "Tx"
[10] "ex"

R> plot(cdw$age, cdw$lx[5, ], type = "l", lty = 3, col = "red",

+ xlab = "Age", ylab = "Survivorship")

R> for (i in 6:14) lines(cdw$age, cdw$lx[i, ], lty = 3, col = "red")

R> ache.nKx <- c(292, 1045, 827, 966, 817, 664, 502, 376, 327, 277,

+ 199, 180, 125, 83, 43, 13, 2)

R> ache.nDx <- c(34, 46, 17, 10, 6, 8, 1, 6, 1, 4, 5, 3, 3, 3, 2,

+ 1, 1)

R> ache.age <- c(0, 1, seq(5, 75, by = 5))

R> ache.lt <- life.table(x = ache.age, nKx = ache.nKx, nDx = ache.nDx,

+ type = "cd")

R> kung.lx <- c(1, 0.79, 0.6715, 0.6045, 0.5925, 0.5925, 0.551,

+ 0.54, 0.508, 0.4475, 0.4045, 0.3765, 0.335, 0.325, 0.2275,

+ 0.1595, 0.099, 0.039, 0.02)

R> kung.age <- c(0, 1, seq(5, 85, by = 5))

R> lines(ache.lt$x, ache.lt$lx, lwd = 2)

R> lines(kung.age, kung.lx, lwd = 2, col = "grey")

R> legend(72, 1, c("Ache", "!Kung"), lwd = 2, lty = 1, col = c("black",

+ "grey"))

Both populations show the same general shape (figure 6). The Ache survivorship function,
however, crosses several model lx schedules in the early part of life. This could reflect under-
reporting of early deaths among the Ache. However, it could also easily be a real pattern
since all of the 192 life tables that went into the Coale-Demeny life tables were for state-level
populations. Hunter-gatherers could conceivably show quite distinct patterns of mortality as
they live at low densities and may avoid some forms of infectious disease mortality which might
otherwise cause childhood deaths in a population with comparable life expectancy at birth.
Hill and Hurtado (1996) present a compelling argument for why the Ache should deviate from
the Coale-Demeny model tables. Their critique suggests possible future development of model
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Figure 6: Survival curves for the !Kung (grey) and Ache (black) superimposed on Coale-
Demeny West model life table survivorship schedules.

life tables that do not exclude the kind of catastrophic mortality frequently experienced by
small-scale populations.

While this section is more specifically applicable to human demography, model life tables
have been applied in nonhuman ecological contexts. For example, Dyke and colleagues have
constructed a series of model life tables for nonhuman primates (Gage and Dyke 1988; Dyke,
Gage, Ballou, Petto, Tardiff, and Williams 1993; Dyke, Gage, Alford, Swenson, and Williams-
Blangero 1995). Caswell, Brault, Read, and Smith (1998) developed a novel application of
the model life table concept to study incidental mortality in harbor porpoises.

4. Future work

Future development of demogR will focus on two primary areas: (1) incorporation of stochas-
tic matrix models, and (2) curve-fitting to model age-schedules. For stochastic population
models, I plan to write functions to estimate stochastic growth rate under independent and
identically distributed (iid) and Markovian environments and calculate the sensitivities of
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these stochastic growth rates to perturbations of both the vital rates and, in the case of
Markovian environments, the environmental transition probabilities (Tuljapurkar and Haridas
2006). The curve-fitting for model schedules is more specifically related to human demogra-
phy. Smoothing of empirical age distributions (particularly for small populations) using model
life tables and observed growth rates is on particularly important application. A second will
be to fit observed marriage transitions to a Coale-McNeil model nuptiality schedule (Coale
and McNeil 1972). Another extension planned for the near future is a series of functions that
provide other model life tables (e.g., UN, INDPETH) (United Nations 1981; Network 2002).
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