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Abstract

MIXNO provides maximum marginal likelihood estimates for mixed-e®ects nominal logistic re-

gression analysis. These models can be used for analysis of correlated nominal response data, for

example, data arising from a clustered or longitudinal design. For such data, the mixed-e®ects model

assumes that data within clusters or subjects are dependent. The degree of dependency is jointly

estimated with the usual model parameters, thus adjusting for dependence resulting from nesting

of the data. MIXNO uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solu-

tion. For the scoring solution, the Cholesky factor of the random-e®ects variance-covariance matrix

is estimated along with the (¯xed) e®ects of explanatory variables. Examples illustrating usage and

features of MIXNO are provided.

Keywords: nominal responses; polytomous responses; multinomial regression; heterogeneity; clus-

tering; multilevel data; random e®ects; correlated responses; categorical data
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1 Introduction

Nominal or polytomous response data are common in many ¯elds of research. For example, the

variable \type of service use" is a nominal response variable which is often used in services re-

search. Types of health services utilization can include medical provider visit, hospital outpatient

visit, emergency room visit, hospital inpatient stay, and home health care visit. When observa-

tions are independent (i.e., not longitudinal or clustered), a statistical model which is appropriate

for assessing the in°uence of explanatory variables on a nominal response variable is the nominal

logistic regression model ([1], [2], [3], [4], [5]). This model is sometimes also called either a poly-

chotomous or multinomial logistic regression model. It is often the case, however, that subjects are

observed nested within clusters (i.e., schools, ¯rms, clinics), or are repeatedly measured. In this

case, use of the ordinary nominal logistic regression model assuming independence of observations

is problematic since observations from the same cluster or subject are usually correlated.

For data that are clustered and/or longitudinal, mixed-e®ects regression models are becoming

increasingly popular, and several books have recently been written on this topic [6, 7, 8, 9]. Com-

mon to both clustered and longitudinal data is the idea of nesting. In clustered data, subjects

are clustered or nested within a larger context, for example, a hospital, school, clinic, or ¯rm.

In longitudinal data where individuals are repeatedly assessed, measures are clustered or nested

within individuals. In order to take the nesting of data into account, models with random e®ects

are typically employed. For clustered data the random e®ects represent cluster e®ects, while for

longitudinal data the random e®ects represent subject e®ects.

Though much of the work on mixed-e®ects models has been for continuous responses, an in-

creasing amount of work has emerged on mixed-e®ects models for non-continuous response data.

In this regard, mixed-e®ect models for both dichotomous [10, 11, 12, 13, 14, 15] and ordinal

[16, 17, 18, 19, 20]. responses have been described. This paper describes the FORTRAN pro-

gram MIXNO (mixed-e®ects nominal logistic regression) for the analysis of repeated or clustered

nominal responses. MIXNO can accommodate multiple random e®ects, and allows for a general

form for explanatory variables. Assuming a logistic response function, a maximum marginal likeli-

hood solution is implemented using multi-dimensional quadrature to numerically integrate over the

distribution of random-e®ects. A Fisher scoring solution provides relatively quick convergence and

standard errors for the model parameters. Examples of analysis of both clustered and longitudinal
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data will illustrate features of MIXNO for nominal response data.

Very little commercially-based software exists to perform mixed-e®ects regression analysis for

nominal responses. The MLn [21] software program, which uses an approximate Taylor-series ex-

pansion to linearize the non-linear model, can be used to estimate models for multilevel nominal

response data. However, biased results have been reported using the approximate Taylor-series

methods in certain situations for binary data [22, 23]. Instead, MIXNO, by using numerical in-

tegration, implements a full-information maximum likelihood approach that does not su®er from

these reported biases.

The organization of this manual is as follows. Section 2 describes the computational and

statistical features of the model that is implemented in MIXNO. Section 3 presents an overview

of MIXNO use. For WINDOWS use, a general description of the interface, menus, and options is

provided. For batch processing, Section 3 describes the procedure for running MIXNO in DOS.

In the subsequent sections of the manual, illustration of both interface and batch processing is

provided. Section 4 presents an overview of the three examples in this manual. The ¯rst example

is described in Section 5. This example focuses on an analysis of a clustered dataset where students

are observed nested within classrooms. Section 6 describes MIXNO analysis of a longitudinal

dataset where psychiatric homeless individuals were followed across time and assessed regarding

their housing status. The last example, in Section 7, shows how MIXNO can be used to ¯t various

psychometric latent trait models. This example uses survey data where multiple items are nested

within subjects. For all examples, listings of program syntax and abbreviated output are provided.

Additionally, listings of SAS IML code is given for the last two examples to illustrate how MIXNO

estimates can be used to examine model ¯t. Finally, Sections 8, 9, and 10 brie°y list hardware and

software speci¯cations, availability, and acknowledgements.



MIXNO 4

2 Computational Methods

The statistical development of the model is described in [24]. Here, an overview of the computational

features will be provided. Using the terminology of multilevel analysis [6] let i denote the level-

2 units (clusters) and let j denote the level-1 units (nested observations). Assume that there are

i = 1; : : :N level-2 units and j = 1; : : : ; ni level-1 units nested within each level-2 unit. Let yij be the

value of the nominal variable associated with level-2 unit i and level-1 unit j. In the nominal case,

we need to consider the values corresponding to the unordered multiple categories of the response

variable. For this, let us assume that the K + 1 response categories are coded as 0; 1; 2; : : : ;K.

Adding random e®ects to the nominal logistic regression model ([2], [3]) the probability that

yij = k (a response occurs in category k) for a given level-2 unit i, conditional on ¯ and ®, is:

Pijk = P (yij = k j ¯;®) =
exp(zijk)

1 +
PK
h=1 exp(zijh)

for k = 1; 2; : : :K (1)

Pij0 = P (yij = 0 j ¯;®) =
1

1 +
PK
h=1 exp(zijh)

(2)

where zijk = x0ij¯ik + w0ij®k. Here, wij is the P £ 1 explanatory variable vector and xij is the

design vector for the R random e®ects, both vectors being for the jth level-1 unit nested within

level-2 unit i. Correspondingly, ®k is a P £ 1 vector of unknown ¯xed regression parameters, and

¯ik is a R £ 1 vector of unknown random e®ects for the level-2 unit i. The distribution of the

random e®ects is assumed to be multivariate normal with mean vector ¹k and covariance matrix

§k. Notice, that the regression coe±cient vectors ¯ and ® carry the k subscript. Thus, for each

of the P explanatory variables and R random e®ects, there will be K parameters to be estimated.

Additionally, the random e®ect variance-covariance matrix §k is allowed to vary with k.

It is convenient to standardize the random e®ects by letting ¯ik = T kµi+¹k, where T kT
0
k = §k

is the Cholesky decomposition of §k. The model is now given as

zijk = x0ij(T kµi +¹k) +w0ij®k : (3)

In this form, it is clear to see that this generalizes Bock's model for educational test data [25] by

including explanatory variables wij, and by allowing a general random-e®ects design vector xij

including the possibility of multiple random e®ects µi.
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2.1 Parameter Estimation

Let yi denote the vector of nominal responses from level-2 unit i (for the ni level-1 units nested

within). Then the probability of any yi, conditional on the random e®ects µ and given ®k;¹k; and

T k, is equal to the product of the probabilities of the level-1 responses:

`(yi j µ;®k;¹k;T k) =
niY

j=1

KY

k=0

[P (yij = k j µ;®k;¹k;T k)]
dijk (4)

where dijk = 1 if yij = k, and 0 otherwise. Thus, associated with the response from a particular

level-1 unit, dijk = 1 for only one of the K + 1 categories and zero for all others. The marginal

density of the response vector yi in the population is expressed as the following integral of the

likelihood, `(¢), weighted by the prior density g(¢):

h(yi) =

Z

µ
`(yi j µ;®k;¹k;T k) g(µ) dµ (5)

where g(µ) represents the population distribution of the random e®ects.

For parameter estimation, the marginal log-likelihood from the N level-2 units can be written

as: logL =
PN
i log h(yi). Then, using ´k to represent an arbitrary parameter vector,

@ logL

@´k
=

NX

i=1

h¡1(yi)

Z

µ

2
4
niX

j=1

(dijk ¡ Pijk)
@zijk
@´k

3
5 `(yi j µ;®k;¹k;T k) g(µ) dµ (6)

where

@zijk
@®k

= wij ;
@zijk
@¹k

= xij ;
@zijk
@v(T k)

= Jr(µ ­ xij) ; (7)

Jr is a transformation matrix eliminating elements above the main diagonal (see [26]), and v(T k)

is the vector containing the unique elements of the Cholesky factor T k. If T k is a R £ 1 vector of

independent random e®ect variance terms, then @zijk=@T k = xijµ in the equation above.

Fisher's method of scoring can be used to provide the solution to these likelihood equations.

For this, provisional estimates for the vector of parameters £, on iteration ¶ are improved by

£¶+1 = £¶ ¡ E
"
@2 logL

@£¶ @£0¶

#¡1
@ logL

@£¶
(8)

where the empirical information matrix is given by:
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E
"
@2 logL

@£¶ @£0¶

#
= ¡

NX

i=1

h¡2(yi)
@h(yi)

@£¶

µ
@h(yi)

@£¶

¶0
: (9)

In general, the total number of parameters equals the K £ P ¯xed regression coe±cients

(®k; k = 1; : : : ; K), plus the K £ R means of the random e®ects (¹k; k = 1; : : : ;K), and

the K £R£ (R¡ 1)=2 random e®ect variance-covariance terms (v[T k]; k = 1; : : : ;K). In certain

cases, illustrated later, selecting various program options can reduce the total number of estimated

parameters. Notice that the parameter vector v(T k), which indicates the degree of level-2 popula-

tion variance, is what distinguishes the mixed-e®ects model from the ordinary ¯xed-e®ects nominal

logistic regression model.

At convergence, the MML estimates and their accompanying standard errors can be used to

construct asymptotic z-statistics by dividing the parameter estimate by its standard error [27].

The computed z-statistic can then be compared with the standard normal table to test whether

the parameter is signi¯cantly di®erent from zero. While this use of the standard errors to perform

hypothesis tests (and construct con¯dence intervals) for the ¯xed e®ects ¹k and ®k is generally

reasonable, for the variance and covariance components v(T k) this practice is problematic (see

Bryk and Raudenbush [7], page 55).

2.2 Numerical Quadrature

Numerical integration on the transformed µ space can be used to solve the above likelihood equa-

tions. If the assumed distribution is normal, Gauss-Hermite quadrature can be used to approximate

the above integrals to any practical degree of accuracy. In Gauss-Hermite quadrature, the inte-

gration is approximated by a summation on a speci¯ed number of quadrature points Q for each

dimension of the integration; thus, for the transformed µ space, the summation goes over QR points.

For the standard normal univariate density, optimal points and weights (denoted Bq and A(Bq),

respectively) are given in Stroud and Sechrest [28]. For the multivariate density, the R-dimensional

vector of quadrature points is denoted by Bq
0 = (Bq1; Bq2; : : : ; BqR), with its associated (scalar)

weight given by the product of the corresponding univariate weights,

A(Bq) =
RY

r=1

A(Bqr) : (10)
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If another distribution is assumed, other points may be chosen and density weights substituted

for A(Bq) or A(Bqr) above (note, the weights must be normalized to sum to unity). For example,

if a rectangular or uniform distribution is assumed, then Q points may be set at equal intervals

over an appropriate range (for each dimension) and the quadrature weights are then set equal to

1=Q. Other distributions are possible; Bock and Aitkin [29] discuss the possibility of empirically

estimating the random-e®ect distribution. In MIXNO, users can select either a normal or uniform

distribution for the random e®ects. Since the latter distribution represents vague information about

the shape of the random-e®ects distribution, it can be used to get some idea about the sensitivity

of the results to the assumed normal distribution.

For models with few random e®ects the quadrature solution is relatively fast and computa-

tionally tractable. In particular, if there is only one random e®ect in the model, there is only

one additional summation over Q points relative to the ¯xed e®ects solution. As the number of

random e®ects R is increased, the terms in the summation (QR) increases exponentially in the

quadrature solution. Fortunately, as is noted by Bock, Gibbons and Muraki [30] in the context of a

dichotomous factor analysis model, the number of points in each dimension can be reduced as the

dimensionality is increased without impairing the accuracy of the approximations; they indicated

that for a ¯ve-dimensional solution as few as three points per dimension were su±cient to obtain

adequate accuracy. In general, specifying between 10 to 20 quadrature points for a unidimensional

solution and 7 to 10 points for a two-dimensional solution is usually reasonable.

2.3 Solution incorporating Level-2 Weights

The solution can be modi¯ed to accommodate weighted data, which occurs when the same response

pattern yi and explanatory variable vector wi is observed for a number of level-2 units. As an

example of weighted data, consider the frequencies listed in Table 2.1 that are published in Ezzet

and Whitehead [18]. This table lists the frequencies corresponding to categorical responses at two

timepoints for two groups of subjects: group 1 and (group 2). Each cell of this table represents the

frequency of individuals (level-2 units) with the same response pattern yi (the categorical responses

at two timepoints) and explanatory variable vector wi (e.g., group).
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Table 2.1 - Frequency table from Ezzet and Whitehead

Rating at Post-Test
Pre-Test Rating 1 2 3 4

1 59 (63) 35 (13) 3 (0) 2 (0)
2 11 (40) 27 (15) 2 (0) 1 (0)
3 0 (7) 0 (2) 0 (1) 0 (0)
4 1 (2) 1 (0) 0 (1) 0 (0)

As such, these frequencies represent weights which can be incorporated into a modeling of the

categorical response across the two timepoints. An example of a frequency weighted solution in

MIXNO will be illustrated in section 7.

2.4 Varying Random-e®ect Variance Terms

MIXNO can also accommodate separate random-e®ect variance terms for groups of either i or

j units. For example, suppose that there is interest in allowing varying random-e®ect variance

terms by gender. For this, xij is speci¯ed as a 2 £ 1 vector of dummy codes indicating male and

female membership, respectively. T k is then a 2£ 1 vector of independent random-e®ect standard

deviations for males and females, and the subject e®ect µi is a scalar that is pre-multiplied by the

vector T k. Section 6.3 illustrates how to accomplish this in MIXNO.

This option can also be used to estimate psychometric latent trait models [25] where ni item

responses (j = 1; 2; : : : ni) are nested within N subjects (i = 1; 2; : : : N). Here, a separate random-

e®ect standard deviation (i.e., an element of the ni £ 1 vector T k) can be estimated for each test

item (i.e., each j unit). Again, this is accomplished by specifying xij as a ni £ 1 vector of dummy

codes indicating the repeated items. An example of this is presented in Section 7. Notice that in

terms of the statistical model, for both cases, T k is a R £ 1 vector that is pre-multiplied by the

transpose of a R £ 1 vector of indicator variables xij, and so T k pre-multiplies a scalar random

e®ect µi (instead of a R£ 1 vector of random e®ects µi).
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3 Program description and usage

MIXNO is currently available in executable form for WINDOWS, DOS, Solaris, and Macintosh

computers. For WINDOWS, an interface has been developed1 that greatly aids in model speci-

¯cation and selection of program options. To use the interface, the MIXNO.EXE ¯le is invoked

(double-clicking on the MIXNO icon in WINDOWS, or issuing the command MIXNO in DOS). The

MIXNO instructions are then created interactively using the interface and are saved (by the inter-

face) in a ¯le named MIXNO.DEF that is read by the FORTRAN executable (MIXNOB.EXE) at

program run-time. To run the program without the interface, the user must create the MIXNO.DEF

¯le using a text editor and then invoke MIXNOB.EXE. Here, details on running the program both

with and without the interface will be provided. The main di®erence between the two approaches

is that the format of the MIXNO.DEF ¯le described in section 3.3 is not important in using the

interface, because the interface creates the MIXNO.DEF ¯le for the user. Thus, for interface users,

it is only the content and not the syntax of the MIXNO.DEF ¯le that needs to be considered. For

either approach, MIXNO makes use of the following ¯les:

² input data ¯le (named by the user).

² MIXNO.DEF - main de¯nition ¯le for analysis options and settings.

² main output ¯le (named by the user).

In addition to the main output ¯le, MIXNO produces the following additional output ¯les:

² MIXNO.EST - a ¯le containing the estimated parameters (with labels).

² MIXNO.VAR - a ¯le containing the large-sample variance covariance matrix of the parameter

estimates (the inverse of the information matrix). The full rectangular matrix is printed out,

row by row, with the order of the parameters identical to that of MIXNO.EST (i.e., no labels

are given in MIXNO.VAR).

² MIXNO.RES - a ¯le containing empirical Bayes estimates of the random e®ect for each level-2

unit. This ¯le lists for each level-2 unit: level-2 ID, the number of level-1 units ni, the empirical

1The interface and some of the material describing the interface in Section 3.2 was written by Dave Patterson of

Discerning Systems, Inc.
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Bayes estimate (posterior mean or mean vector), and the posterior variance (or posterior

variance covariance matrix for models with more than one random e®ect). Additionally, if

the level-2 units have a frequency weight (as described in Section 2.3), then this weight is also

output to this ¯le immediately following the level-2 ID (and before ni).

3.1 Structure of the input data ¯le

This ¯le contains all data (i.e., level-2 identi¯er, nominal response variable, and explanatory vari-

ables) to be read in by the program. It is read in free format and must be a standard text (ASCII)

¯le with no hidden characters or word processing format codes. Variable ¯elds must be separated

by one or more blanks. The data are assumed to consist of multiple level 1 observations within

a higher-order (2nd level) unit. There must be a level-2 ID variable for each record and

the data must be sorted by this level-2 ID variable. The nested measurements (level 1) of

a cluster (level 2) take up as many records in this ¯le as there are level 1 units within that cluster.

Thus, some clusters can have, for example, 40 records while others may have 20 to 50 records.

The ¯elds of variables that are read in, separated by one or more blanks, on a line (or lines) are

as follows (the order of the variables does not matter):

ID NomV ar Xvector Wvector

where, ID refers to the level-2 ID number which does not change across level-1 units, NomV ar is

the value of nominal response for the observation, Xvector is the part of the design matrix for the

random e®ects, and Wvector is the explanatory variable vector for the observation. All variables

are read as double precision (i.e., REAL*8) with the exception of the level-2 IDs which are read as

integer. All missing data must have a numeric missing value code. In particular, missing

values cannot be left as blank ¯elds or designated by periods.

3.2 Analysis options and settings: interface usage

For WINDOWS use, the user chooses analysis options and settings on ¯ve interface screens that are

depicted as index cards. Section 5.1 provides a reproduction of the ¯ve screens/cards for the ¯rst

example. These ¯ve screens are named: Con¯guration, Variables, Starting Values, Missing Values and

Advanced. The name of each screen gives a sense of the information that needs to be entered for

that screen. Con¯guration contains a number of program options, including titles, ¯le designations,



MIXNO 11

convergence criterion, level-2 identi¯cation, and details concerning the numerical quadrature. Also,

the option of reading in level-2 weights, as described in Section 2.3, is included on this screen.

Information about the nominal response variable, random e®ect variables, explanatory variables is

entered on the Variables card. Additionally, a marginal crosstabulation table of the response variable

by another variable can be requested on this screen. The Starting Values and Missing Values are

reasonably self-explanatory: by default, the program assumes that it will generate starting values

for the parameter estimates and that there are no missing data in the dataset (modi¯cation of

the latter screen is illustrated in Section 6). Finally, the Advanced screen includes several program

options including the ability to estimate linear transformations of the estimated parameters, and

the ability to have varying random-e®ect variance terms as described in Section 2.4.

When MIXNO is started up, program settings are determined by the de¯nitions in the current

MIXNO.DEF ¯le. If the MIXNO.DEF ¯le is not present on the computer, the program settings

are de¯ned by a set of default values. To use MIXNO:

1. Click on the Con¯guration tab and enter the appropriate values. Note that any table can be

maximized by double-clicking anywhere in the table. To minimize the table, simply double-

click again.

2. Repeat (1) for each of the Variables, Starting Values, Missing Values and Advanced cards.

3. When all information has been entered to your satisfaction, click on Run.

4. The output will be automatically displayed. It can viewed at any time by clicking on View

Output.

5. To print the output, click on Print from the output viewer.

All user-actions can be carried out by mouse or by using the keyboard. Keyboard actions are

performed by using the Alt key and the appropriate underlined letter. Help is available by clicking

on the Help button in the lower right hand corner of the screen. Help is available for several topics

related to the program usage. To see a list of all topics simply click on the Contents button from

the \Help" screen (i.e., after clicking on the Help button). Another helpful feature is that each

of the ¯ve interface screens contains an area at the bottom of the screen providing 1 or 2 lines of

information about the program ¯elds. The cursor location determines the ¯eld information that is

displayed on these bottom lines. Note that the MIXNO window is a non-sizable window.
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In general, it's a good idea to designate new names for the De¯nition File Name and Output File

Name (on screen 1) for each new run. This ensures that results obtained from previous runs are not

accidentally over-writtern. Concerning these two ¯elds, a handy feature of the interface is that a

list of ¯les can be viewed by double-clicking in the ¯eld of either. Also, by entering the name of an

existing de¯nition ¯le in the De¯nition File Name ¯eld, all program settings and options associated

with that de¯nition ¯le are automatically brought up.

3.3 Analysis options and settings: batch processing

The MIXNO.DEF ¯le contains the information that determines the statistical model that is ¯t to

the data in the input data ¯le. Although a word processor can be used to create this ¯le, it must be

saved as a standard text (ASCII) ¯le with no hidden characters or word processing format codes.

The analysis options and settings that comprise this ¯le are described in Tables 3.1, 3.2, 3.3, and

3.4 below.

Except where noted, this ¯le is read in free format. This ¯le is created by the user before

typing the command MIXNOB (i.e., before running the FORTRAN executable). Again, for WIN-

DOWS, the interface can be used (by running the MIXNO.EXE ¯le) to aid in creation of the

MIXNO.DEF ¯le and to automatically invoke the FORTRAN executable. This ¯lename and

extension (MIXNO.DEF) must be used and should be in the same directory as the program

(MIXNO.EXE and MIXNOB.EXE) or accessible via appropriate PATH statements.
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Table 3.1 - Analysis options and settings speci¯ed in MIXNO.DEF: lines 1-5

Line 1 A title of 60 characters.

Line 2 A subtitle of 60 characters.

Line 3 Name of input data ¯le. Any legal ¯lename of 80 characters or less can be speci¯ed.

Line 4 Name of main output ¯le. Any legal ¯lename of 80 characters or less can be speci¯ed.

Line 5 Name of de¯nition ¯le to be saved or retrieved. Any legal ¯lename of 80 characters or

less can be speci¯ed. Note that a name for this ¯le must be speci¯ed even in batch

processing, although in batch processing nothing is done to this ¯le.

Table 3.2 - Analysis options and settings speci¯ed in MIXNO.DEF: line 6

Line 6 NPR NF R P CONV MAXK1 MISS START WT CATYX PRIOR UNIF NQUAD LINFN DIAG

NOMU VGRP VCAT

NPR Number of level-2 units whose data will be listed on the screen (usually set to 1).

NF Number of ¯elds of data to read from the input data ¯le.

R Number of random e®ects.

P Number of ¯xed e®ects (not including the mean of the random e®ects).

CONV Convergence criterion (usually set to .001 or .0001).

MAXK1 Number of nominal response categories (= K + 1).

MISS Set to 0 if no missing values are present in the data, or 1 if missing values are present

(codes will be de¯ned later).

START Set to 0 if automatic starting values are to be used, or 1 if user-de¯ned starting values

are to be used.

WT Set to 0 if each 2nd level unit is weighted equally, or 1 for di®erential weighting.

CATYX Set to 1 if a crosstabulation of the nominal response variable by another variable (de¯ned

later) should be produced, and 0 otherwise.

PRIOR Set to 0 or 1, respectively, for a speci¯ed form (see UNIF) or empirically-determined

distributional form for the random-e®ects distribution. (This is an option that is under

development; at present IPRIOR=0 is the only possible choice).

UNIF Set to 0 or 1 for a normal or uniform distribution, respectively, for the assumed random-

e®ects distribution (ordinarily set to 0).
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Table 3.2 (continued)

NQUAD Number of quadrature points (per random-e®ect dimension) to use in the numerical in-

tegration (usually set between 10 and 20 for models with one random e®ect, and between

5 and 10 for models with multiple random e®ects).

LINFN Number of linear transforms of the estimated parameters to estimate (ordinarily set to

0).

DIAG Set to 0 for correlated random e®ects or 1 for independent random e®ects (ordinarily

set to 0).

NOMU Set to 0 to estimate the mean of the random e®ects or 1 to ¯x it to zero (ordinarily set

to 0).

VGRP Set to 0 (no) or 1 (yes) for random-e®ects grouping variables. Specify yes only if R> 1

and the R random-e®ect variables are dummy-coded level-1 or level-2 grouping variables;

otherwise specify no (ordinarily set to 0). If yes is speci¯ed, then R random-e®ect

variance terms are estimated: one for each of the (level-1 or level-2) groups determined

by the dummy-codes.

VCAT Set to 0 if the random-e®ects variance terms are homogeneous across the K contrasts

of the nominal response, or 1 if K separate random-e®ects variance terms are to be

estimated (i.e., the random-e®ects variance terms vary across the K contrasts).

Table 3.3 - Analysis options and settings speci¯ed in MIXNO.DEF: lines 7-9

Line 7 Two parameters are to be read on this line: the ¯eld of the input data ¯le which contains

the (level-2) IDs, followed by the ¯eld of the input data ¯le which contains the nominal

response variable.

Line 8 R parameters are to be read on this line: the ¯eld(s) of the input data ¯le which

contain(s) the R random e®ects.

Line 9 P parameters are to be read on this line: the ¯eld(s) of the input data ¯le which

contain(s) the P ¯xed e®ects.
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Table 3.4 - Analysis options and settings speci¯ed in MIXNO.DEF: lines after line 9

next line If WT=1: the ¯eld of the input data ¯le which contains the weight to be assigned to each

level-2 unit.

next line The MAXK1 values of the nominal response variable.

next line If CATYX=1: two parameters and a list of values: the ¯eld of the input data ¯le which

contains the variable that is to be crosstabulated with the nominal response variable,

followed by (a) the number of categories for this variable, and (b) a list of all category

values of this variable.

next line If MISS=1: missing value code for the nominal response variable.

next line If MISS=1: R missing value codes for the random-e®ect variables.

next line If MISS = 1: P missing value codes for the ¯xed e®ects.

next line An 8 character label for the nominal response variable.

next line R labels for the random e®ects in 8 character width ¯elds.

next line If START=1 and NOMU=0: R £ K starting values for the means of the random e®ects.

next line P labels for the explanatory variables in 8 character width ¯elds (a maximum of 10

labels per line).

next line If START=1: P £ K starting values for the explanatory variable e®ects.

next line If START=1: (R £ (R+1)) / 2 starting values for the variance and covariance terms

of the random e®ects given in \packed" form, e.g., for a 2 x 2 covariance matrix, the

order of the starting values should be: variance(1), covariance(1,2) and variance(2). If

VCAT=1 then K £ R £ (R+1)) / 2 starting values are speci¯ed. Note: if either DIAG=1

or VGRP=1 then only R starting values are needed (or R £ K if VCAT=1 is also speci¯ed).
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Table 3.4 (continued)

¯nal lines If LINFN> 0: LINFN by NPAR coe±cients for the linear re-expressions of the estimated

parameters. The NPAR terms in order are

1) R £ K random-e®ect mean vector (unless NOMU=1).

2) P £ K e®ects of explanatory variables.

3) Random-e®ect variance covariance matrix:

² if VCAT=0 and (DIAG=0 and VGRP=0): R £ (R+1)/2 unique elements of the

random-e®ect variance-covariance matrix (in packed form).

² if VCAT=1 and (DIAG=0 and VGRP=0): K £ (R £ (R+1)/2) unique elements of the

random-e®ect variance-covariance matrix (in packed form).

² if VCAT=0 and (DIAG=1 or VGRP=1): R variance-covariance terms.

² if VCAT=1 and (DIAG=1 or VGRP=1): R £ K variance-covariance terms.

Each of these LINFN sets of coe±cients are multiplied by the \original" parameter es-

timates according to the order given. Standard errors for these LINFN transforms are

also printed out. For an example of LINFN usage, see Section 6.4.

3.4 Main output ¯le

This ¯le contains descriptive information about the variables read in to MIXNO, as well as the

analysis results. The examples of the output ¯le provided later illustrate the contents of this ¯le.

After listing out the titles, the selected form of the random-e®ects distribution is listed. The

numbers of observations are then summarized by a listing of the number of level-2 units, the total

number of level-1 units, and the number of level-1 units for each level-2 unit. For each variable read

in to the program (except the ID variable) descriptive statistics (minimum, maximum, mean, and

standard deviation) are then provided. These descriptive statistics are based on the total number

of level-1 observations. For the nominal response variable NomV ar, a frequency count is provided

which lists for each category the number (and proportion) of level-1 observations. An optional

listing of the frequencies and proportions of NomV ar by the levels of another variable may be

obtained (by selection of this option on interface screen 2, or if CATYX = 1). Starting values, either
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user-de¯ned or program-generated, are listed for all model parameters. Finally, MIXNO indicates

the number (and percentage) of level-2 units with non varying level-1 responses on NomV ar.

In terms of program results, the number of iterations required to achieve convergence is listed,

followed by the number of quadrature points requested, and the value of the log-likelihood at

convergence. Since the log-likelihood value multiplied by -2 (i.e., the deviance) can be used to

perform likelihood-ratio tests [31], the deviance value is also listed. Following the deviance value is

a listing of the ridge value. The ridge is an incremental adjustment which is made to the diagonal

elements of the information matrix if the program encounters a non-increasing likelihood or some

other indication of numerical di±culty during the iterations. This adjustment often improves the

chances of convergence. At present, the ridge starts at zero and is increased by 10% (of the current

value of the diagonal of the information matrix) each time that di±culties are encountered. At

convergence, the ridge is set back to zero in order to obtain the correct standard errors for the

model parameters, however the listing of the ridge value (expressed as a proportion) indicates its

value prior to being reset to zero. As such, the listed ridge value is indicative of the degree of

computational di±culty that the program encountered.

For each parameter of the model, maximum marginal likelihood estimates, standard errors,

z-values, and p-values are then provided. These p-values are two-tailed, except for the variance pa-

rameters where one-tailed p-values are given. This use of the standard errors to perform hypothesis

tests for the variance parameters is controversial (see Bryk and Raudenbush [7], page 55). Also,

it is important to realize that it is the Cholesky factor of the random-e®ects variance-covariance

matrix that is estimated, and not the variance-covariance matrix itself. If only one random e®ect

is requested in the model, the Cholesky factor is simply the square root of the variance, that is,

the standard deviation. Analogously, with multiple random e®ects, the Cholesky factor represents

the matrix square root.

Following the parameter estimates (and associated statistics), MIXNO lists a correlation matrix

associated with the estimates of all model parameters. This correlation matrix does not contain

correlations of the variables themselves, but correlations of the estimated model parameters. This

matrix may be helpful in determining the degree to which collinearity is present in terms of the

model parameters. Finally, if tranforms of the estimated parameters are requested on interface

screen 5 (or for non-interface use, if LINFN > 0 is speci¯ed), linear transforms or re-expressions of

the estimated parameters are listed along with their standard errors.
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4 Examples of MIXNO usage

MIXNO can estimate a variety of models for correlated nominal response data. Here, we will use

three di®erent datasets to illustrate some of the di®erent models MIXNO can ¯t. For each example,

listings of MIXNO.DEF ¯les and selected output ¯les will be provided. For space, the listings of the

output ¯les in this manual do not contain the correlation matrix of the parameter estimates that

the program provides; otherwise the output listings are complete. The datasets and accompanying

MIXNO.DEF ¯les used in this manual can be downloaded at the author's website2.

An analysis of a clustered dataset where students are clustered within classrooms is presented

¯rst to illustrate features of mixed-e®ects regression analysis of clustered data. A comparison to

an analysis using a ¯xed-e®ects nominal logistic regression model, which ignores the clustering of

the data, will illustrate the importance of taking the clustering of the data into account. In the

mixed regression model for clustered data, one random term is included in order to account for the

clustering of students within classrooms. This random classroom term describes the way in which

students from the same classroom respond similarly, relative to the sample as a whole. Additionally,

this example will include explanatory varibles at both the level of the classroom (level 2) and the

level of the student (level 1).

To illustrate usefulness of mixed-e®ects regression analysis for longitudinal nominal data, an

analysis of a psychiatric dataset where homeless subjects are measured in terms of their housing

status across multiple timepoints will be presented. An analysis utilizing a model with one random

subject e®ect to account for the repeated measurements made on each subject will be given ¯rst.

For this model, we will specify the random e®ects distribution ¯rst as a normal and then as a

uniform distribution. In this way, some idea will be obtained about the sensitivity of the results

to the distribution speci¯cation of the random e®ects. Also, allowing the random-e®ects variance

terms to vary by group will be shown. Finally, a trend analysis allowing both a random intercept

and a linear trend across time will be presented to illustrate how MIXNO can be used to estimate

models with multiple random e®ects.

The last example will illustrate how MIXNO can be used to estimate an item-response theory

(IRT) or latent trait model for nominal responses [25]. The data for this example are taken from

Clogg [32] and concern three questions about degree of satisfaction with family, hobbies, and

2http://www.uic.edu/ehedeker/mix.html
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residence. 1472 subjects from the 1975 US General Household Survey indicated their satisfaction

to each of these three questions on a three-point scale denoting low, medium, or high satisfaction.

Although these data could be analyzed using methods for ordinal responses, here we will apply the

nominal model to these data. To estimate the item parameters, we will make use of the option that

allows the random e®ect variance to vary across levels of a grouping variable (i.e., the items).

These three examples will highlight some of the results that are obtained from mixed-e®ects

analysis, and will be accompanied by listings of speci¯c ¯le setups that are used to run MIXNO.

All of the examples presented here are termed two-level models in the multilevel literature [6]. For

the ¯rst example, students (level-1) are treated as being nested within classrooms (level-2), while

for the second and third examples, repeated observations (level-1) are nested within subjects (level-

2). At present, MIXNO does not allow a three-level analysis which would consider, concurrently,

students nested within classrooms and classrooms nested within schools (or repeated observations

nested within subjects who are nested within clusters).
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5 Analysis of a Clustered Dataset

Hedeker, Gibbons, and Flay [33] illustrated use of mixed-e®ects regression for clustered data applied

to a dataset where students are clustered within classrooms and schools. In that article, the

dependent variable was treated continuously and the mixed-e®ects approach was compared with

both individual-level analysis which ignores the clustering of data, and classroom-level analysis

which aggregates individual data. In describing the MIXOR software [34] the same dataset was

analyzed treating the response as an ordinal response. Here, we will use the same data considering

the outcome variable as a nominal response.

The data for this example is from the Television School and Family Smoking Prevention and

Cessation Project (TVSFP) [35] which examined a school-based social-resistance curriculum and

a television-based program on tobacco use prevention and cessation. For this illustration, a subset

of the TVSFP data was used: students from 28 Los Angeles schools, where the schools were

randomized to one of four study conditions: (a) a social-resistance classroom curriculum, (b) a

media (television) intervention, (c) a social-resistance classroom curriculum combined with a mass-

media intervention, and (d) a no-treatment control group. These conditions form a 2 x 2 design of

social-resistance classroom curriculum (CC = yes or no) by mass-media intervention (TV = yes or

no). The 1600 students in this subset are from 135 classrooms and 28 schools; there is a range of

1 to 13 classrooms per school, and 2 to 28 students per classroom.

A tobacco and health knowledge scale (THKS) score was one of the primary study response

variables and the one used here. The scale consisted of seven items used to assess student tobacco

and health knowledge. The frequency distribution of post-intervention THKS total scores indicated

four ordinal classi¯cations corresponding to 0-1, 2, 3, and 4-7 correct responses.

A partial list of these data is given in Table 5.1. The variables are, in order, school ID, class

ID, post-intervention THKS (with 1=0-1, 2=2, 3=3, and 4=4-7), dichotomous post-intervention

THKS (with 0=0-2, and 1=3-7), a column of ones for the intercept, pre-intervention THKS (from

0 to 7), CC (with yes=1 and no=0), TV (with yes=1 and no=0), and the product of CC and TV.
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Table 5.1 - Data from Section 5 example:
23 students from 2 classrooms and 1 school
403 403101 3 1 1 2 1 0 0
403 403101 4 1 1 4 1 0 0
403 403101 3 1 1 4 1 0 0
403 403101 4 1 1 3 1 0 0
403 403101 4 1 1 3 1 0 0
403 403101 3 1 1 4 1 0 0
403 403101 2 0 1 2 1 0 0
403 403101 4 1 1 4 1 0 0
403 403101 4 1 1 5 1 0 0
403 403101 4 1 1 3 1 0 0
403 403101 3 1 1 3 1 0 0
403 403101 4 1 1 3 1 0 0
403 403101 3 1 1 1 1 0 0
403 403101 4 1 1 2 1 0 0
403 403101 2 0 1 2 1 0 0
403 403101 4 1 1 1 1 0 0
403 403101 4 1 1 4 1 0 0
403 403101 3 1 1 3 1 0 0
403 403101 3 1 1 0 1 0 0
403 403101 4 1 1 3 1 0 0
403 403102 2 0 1 0 1 0 0
403 403102 4 1 1 1 1 0 0
403 403102 3 1 1 5 1 0 0

5.1 Fixed-e®ects Regression Ignoring Data Clustering

Before proceeding with the mixed-e®ects analysis of these data, we will present a ¯xed-e®ects anal-

ysis which ignores clustering of students. Using MIXNO for this type of analysis is equivalent to

performing a nominal logistic regression analysis treating all observations as independent obser-

vations. As noted by Hedeker, Gibbons, and Flay [33] and others, ignoring data clustering often

results in statistical tests which are too liberal for level-2 explanatory variables, resulting in falsely

rejecting the null hypothesis too often. For this ¯rst analysis, the post-intervention THKS score

is modeled in terms of baseline THKS score and e®ects of CC, TV, and CC by TV interaction.

The ¯ve WINDOWS interface screens for this model are shown in sequence below, while Table

5.2 lists the corresponding MIXNO.DEF ¯le that is required (to be created by the user) for non-

WINDOWS usage. Note that zero random e®ects are speci¯ed on the second screen (and on line

6 of the DEF ¯le). Also, for the DEF ¯le, blank lines are present for the records that de¯ne ¯elds

and labels of random e®ects. In terms of options, the second screen indicates that a crosstabulation

of post-intervention THKS by baseline levels is being requested. The results from this analysis are

listed in Table 5.3 (in Section 5.3).
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Interface screens 1 and 2
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Interface screens 3, 4, and 5

Table 5.2 - MIXNO.DEF ¯le for student-level analysis ignoring clustering

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested within classrooms - Independence model

TVSFPORS.DAT

TVSFPNO1.OUT

TVSFPNO1.DEF

1 9 0 5 0.00010 4 0 0 0 1 0 0 10 0 0 0 0 0

2 3

5 6 7 8 9

1 2 3 4

6 7 0 1 2 3 4 5 6

THKScore

Intrcpt PreTHKS CC TV CC*TV
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As seen in the output in Table 5.3, when zero random e®ects are requested, MIXNO indicates

the number of observations as number of level-1 observations. For these data, this number is simply

the number of students. Descriptive statistics are listed for all variables. Response frequencies and

a crosstabulation table are then listed. Since this outcome variable has 4 categories, 3 sets of

regression coe±cients are estimated. These coe±cients are obtained contrasting responses in the

¯rst listed category value with each remaining category (i.e., 2 vs 1, 3 vs 1, and 4 vs 1). Note

that MIXNO uses the ¯rst category value listed (i.e., the value corresponding to Category 1 on the

upper right-hand side of the second screen) as the reference category. In the DEF ¯le (Table 5.2),

this list of category values is given on the 10th line. To have a di®erent category as the reference

category, the list of category values on interface screen 2 (or line 10 in the DEF ¯le) can simply be

reordered.

This analysis, which ignores the data clustering, indicates increasingly signi¯cant results across

the response code comparisons. For example, contrasting responses in the two extreme categories, 4

vs. 1, yields signi¯cant or marginally signi¯cant results for of all explanatory variables: PreTHKS,

CC, TV, and CC by TV.

5.2 Mixed-e®ects Regression Including Data Clustering

Two mixed-e®ects regression models can be considered for these data: students within schools,

and students within classrooms. As mentioned, MIXNO does not allow a three-level analysis

which would consider students nested within both classrooms and schools concurrently. To perform

the students-within-classrooms analysis the class ID (the second variable ¯eld in the data¯le) is

indicated as the cluster ID (the Field for Level-2 Units parameter on screen 1 of the interface, or

the ¯rst parameter on line 7 of the DEF ¯le), while to perform the students-within-schools analysis

the school ID (the ¯rst variable ¯eld in this particular example) would be indicated as the cluster

ID. The portions of interface screens 1, 2, and 5 that have been modi¯ed for this example, relative

to example 5.1, are shown sequentially below, while Table 5.4 lists the MIXNO.DEF ¯le for the

students-within-classrooms analysis. Again, the THKS score is modeled in terms of baseline THKS

score and e®ects of CC, TV, and CC by TV interaction. However, in contrast to the analysis of

the previous section, a random classroom e®ect is included to account for the data clustering.
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Modi¯ed portions of interface screens 1, 2, and 5
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Table 5.4 - MIXNO.DEF ¯le for ¯rst students-within-classrooms analysis

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested w/in CLASSROOMS - Random Intercept

TVSFPORS.DAT

TVSFPNO2.OUT

TVSFPNO2.DEF

1 9 1 4 0.00010 4 0 0 0 0 0 0 10 0 0 0 0 0

2 3

5

6 7 8 9

1 2 3 4

THKScore

Intrcpt

PreTHKS CC TV CC*TV

Comparing the above screens to those in section 5.1 (or comparing Tables 5.4 and 5.2) illustrates the

necessary speci¯cations for a random-intercepts model. Speci¯cally, a random intercept is indicated

on the second screen (and on lines 6, 8, and 12 of the DEF ¯le). Notice, in conjunction with its

speci¯cation as a random e®ect, the intercept variable is no longer included as an explanatory

variable. As indicated above on screen 5, by default MIXNO estimates the mean of the random

e®ect(s). In the present case, this mean is the estimated model intercept. Because the cluster ID

is the classroom ID, the intercept varies by classrooms (i.e., each classroom has its own intercept).

Since these classroom intercepts are considered random e®ects, they are representative of a larger

population of classroom e®ects. MIXNO estimates the variance of this population distribution,

and additionally provides empirical Bayes estimates of the classroom e®ects. The empirical Bayes

estimates are provided in the ¯le MIXNO.RES (not shown).

Table 5.5 lists the MIXNO results from the students-within classroom analysis. The output

indicates that there are 135 classrooms with 1600 students nested within. The classroom size

varies between 1 to 27 students per classroom. Following the listing of the starting values, MIXNO

indicates that 6 of the 135 classrooms had response vectors that were non-varying. Thus, students

within each of six schools gave identical responses.

The random-e®ect standard deviation is estimated as .511 and a Wald test rejects the hypothesis

that this parameter equals 0. As mentioned earlier, use of the Wald test for testing whether vari-

ance parameters equal zero has been questioned [7]. Expressing the estimate of the random-e®ect

standard deviation in terms of an estimated intracluster correlation (in this case, the intraclassroom

correlation) yields .074. Regarding the regression coe±cients, in contrast to the analysis ignoring
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the clustering of the students (in Table 5.3), mixed-e®ects regression analysis indicates that neither

the TV e®ect nor the interaction of CC by TV are statistically signi¯cant at the p < :10 level for

the comparison of responses 4 vs 1. Thus, conclusions regarding model terms can change if the

clustering of the data is not appropriately accounted for. Regarding the correlation matrix of the

MML estimates (not shown), the order of parameter estimates is: K intercept terms, P explanatory

variable terms for the ¯rst of K response category comparisons, P explanatory variable terms for the

second of K response category comparisons, : : : P explanatory variable terms for the Kth response

category comparison.

An additional feature of MIXNO allows the random-e®ect variance term(s) to vary across the K

response category comparisons. This feature uses the Variance Terms option on the lower left-hand

side of the ¯rst interface screen (or the VCAT option on line 6 of the MIXNO.DEF ¯le). Below is

the modi¯ed ¯rst interface screen and the corresponding MIXNO.DEF ¯le in Table 5.6.
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Table 5.6 - MIXNO.DEF ¯le for second students-within-classrooms analysis

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested w/in CLASSROOMS - Varying Random Intercept

TVSFPORS.DAT

TVSFPNO3.OUT

TVSFPNO3.DEF

1 9 1 4 0.00010 4 0 0 0 0 0 0 10 0 0 0 0 1

2 3

5

6 7 8 9

1 2 3 4

THKScore

Intrcpt

PreTHKS CC TV CC*TV

Enabling this option is achieved simply by choosing \varying" for the Variance Terms ¯eld (or by

specifying VCAT=1 on line 6 of the MIXNO.DEF ¯le). Results from this analysis are given in Table

5.7. These results are similar to the results from the model assuming homogeneous random-e®ect

variance across response code comparisons (i.e., the results in Table 5.5), though the standard

errors do change, especially for the school-varying condition e®ects. Many fewer iterations were

required for this model that relaxes the homogeneity of variance assumption across the response

code comparisons. Also of interest, the estimated random-e®ect standard deviation increases across

the response code comparisons. Expressed as intraclass correlations, they are given as .026, .099,

and .125 for the three comparisons. This suggests that the school e®ect is more pronounced when

contrasting the more extreme response categories (i.e., category 4 vs. 1). A likelihood-ratio test

of ¾
(2 vs 1)
¯ = ¾

(3 vs 1)
¯ = ¾

(4 vs 1)
¯ yields Â2

2 = 4234:684 ¡ 4223:020 = 11:664, p < :01, supporting

rejection of the homogeneous variance assumption.
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5.3 Section 5 MIXNO Output

Table 5.3 - output ¯le for student-level analysis ignoring clustering

MIXNO - The program for mixed-effects nominal logistic regression analysis

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested within classrooms - Independence model

Numbers of observations

-----------------------

Level 1 observations = 1600

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

THKScore 1.00000 4.00000 2.58688 1.11612

Intrcpt 1.00000 1.00000 1.00000 0.00000

PreTHKS 0.00000 6.00000 2.06937 1.26018

CC 0.00000 1.00000 0.47687 0.49962

TV 0.00000 1.00000 0.49938 0.50016

CC*TV 0.00000 1.00000 0.23938 0.42684

Categories of the response variable THKScore

--------------------------------------------

Category Frequency Proportion

1.00 355.00 0.22187

2.00 398.00 0.24875

3.00 400.00 0.25000

4.00 447.00 0.27937
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Crosstabulation of variable PreTHKS by the response variable THKScore

----------------------------------------------------------------------

THKScore

--------

PreTHKS 1.00 2.00 3.00 4.00

----------------------------------------- Total

0.00 55.0 41.0 35.0 19.0 150.0

(0.37) (0.27) (0.23) (0.13)

1.00 117.0 126.0 89.0 87.0 419.0

(0.28) (0.30) (0.21) (0.21)

2.00 106.0 119.0 135.0 121.0 481.0

(0.22) (0.25) (0.28) (0.25)

3.00 54.0 73.0 96.0 109.0 332.0

(0.16) (0.22) (0.29) (0.33)

4.00 15.0 34.0 38.0 76.0 163.0

(0.09) (0.21) (0.23) (0.47)

5.00 8.0 4.0 7.0 29.0 48.0

(0.17) (0.08) (0.15) (0.60)

6.00 0.0 1.0 0.0 6.0 7.0

(0.00) (0.14) (0.00) (0.86)

Total 355.0 398.0 400.0 447.0 1600.0

Starting values

---------------

covariates -1.255 0.948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

covariates 0.000 0.000 0.000 0.000 0.000
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---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 8

Log Likelihood = -2122.808

Deviance (-2logL) = 4245.617

Ridge = 0.000

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 2. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.21907 0.17564 -1.24721 0.21232 (2)

PreTHKS 0.16427 0.06321 2.59888 0.00935 (2)

CC 0.17864 0.21440 0.83321 0.40473 (2)

TV -0.11896 0.18820 -0.63206 0.52735 (2)

CC*TV 0.15998 0.30306 0.52788 0.59758 (2)

RESPONSE CODE 3. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.96134 0.19483 -4.93435 0.00000 (2)

PreTHKS 0.33728 0.06388 5.28012 0.00000 (2)

CC 0.90177 0.21699 4.15584 0.00003 (2)

TV 0.13087 0.20322 0.64399 0.51958 (2)

CC*TV -0.10633 0.30367 -0.35015 0.72622 (2)

RESPONSE CODE 4. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -1.72156 0.20095 -8.56727 0.00000 (2)

PreTHKS 0.63227 0.06176 10.23803 0.00000 (2)

CC 1.23329 0.21982 5.61054 0.00000 (2)

TV 0.37443 0.20446 1.83129 0.06706 (2)

CC*TV -0.54476 0.30424 -1.79055 0.07337 (2)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value
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Table 5.5 - output ¯le for ¯rst students-within-classrooms analysis

MIXNO - The program for mixed-effects nominal logistic regression analysis

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested w/in CLASSROOMS - Random Intercept

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 1600

Level 2 observations = 135

The number of level 1 observations per level 2 unit are:

26 11 10 15 12 12 10 21 10 17 19 2 4 21 16 15 13 2 14

13 1 12 18 21 17 16 20 3 11 9 5 15 16 21 21 27 17 3

2 15 7 24 22 15 19 7 12 8 6 11 7 7 8 3 5 8 3

8 9 8 2 11 9 21 13 12 12 14 9 6 11 10 12 11 6 6

14 10 14 2 3 2 4 3 6 10 14 11 6 22 4 7 22 18 23

19 14 5 14 28 15 15 11 12 11 11 15 17 24 20 15 6 8 14

5 11 9 17 14 11 17 15 6 7 14 10 14 18 4 9 7 12 15

11 10

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

THKScore 1.00000 4.00000 2.58688 1.11612

Intrcpt 1.00000 1.00000 1.00000 0.00000

PreTHKS 0.00000 6.00000 2.06937 1.26018

CC 0.00000 1.00000 0.47687 0.49962

TV 0.00000 1.00000 0.49938 0.50016

CC*TV 0.00000 1.00000 0.23938 0.42684

Categories of the response variable THKScore

--------------------------------------------

Category Frequency Proportion

1.00 355.00 0.22187

2.00 398.00 0.24875

3.00 400.00 0.25000

4.00 447.00 0.27937
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Starting values

---------------

mean -3.481 -2.344 -1.278

covariates -0.212 -0.451 -0.140 0.201 -0.233 -0.496 -0.154 0.221 -0.254 -0.541

covariates -0.168 0.241

var. terms 0.574

==> The number of level 2 observations with non-varying responses

= 6 ( 4.44 percent )

---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 152

Quad Pts per Dim = 10

Log Likelihood = -2117.342

Deviance (-2logL) = 4234.684

Ridge = 0.100

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 2. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.17170 0.22197 -0.77353 0.43921 (2)

PreTHKS 0.16410 0.07428 2.20934 0.02715 (2)

CC 0.19437 0.27060 0.71830 0.47257 (2)

TV -0.18887 0.27547 -0.68563 0.49295 (2)

CC*TV 0.23236 0.41112 0.56520 0.57194 (2)

RESPONSE CODE 3. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.91385 0.23343 -3.91493 0.00009 (2)

PreTHKS 0.33714 0.07675 4.39277 0.00001 (2)

CC 0.91732 0.24924 3.68045 0.00023 (2)

TV 0.06047 0.26974 0.22419 0.82261 (2)

CC*TV -0.03328 0.36414 -0.09140 0.92717 (2)
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-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 4. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -1.67408 0.22201 -7.54058 0.00000 (2)

PreTHKS 0.63221 0.06959 9.08454 0.00000 (2)

CC 1.24830 0.26206 4.76348 0.00000 (2)

TV 0.30358 0.23061 1.31640 0.18804 (2)

CC*TV -0.47039 0.35820 -1.31320 0.18911 (2)

random effect variance term: expressed as a standard deviation

Intrcpt 0.51098 0.13859 3.68693 0.00011 (1)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value

Calculation of the intracluster correlation

-------------------------------------------

residual variance = pi*pi / 3 (assumed)

1 cluster variance = (0.511 * 0.511) = 0.261

intracluster correlation = 0.261 / ( 0.261 + (pi*pi/3)) = 0.074
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Table 5.7 - output ¯le for second students-within-classrooms analysis

MIXNO - The program for mixed-effects nominal logistic regression analysis

TVSFP study - Post-Test Tobacco and Health Knowledge Scale

Students nested w/in CLASSROOMS - Varying Random Intercept

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 1600

Level 2 observations = 135

The number of level 1 observations per level 2 unit are:

26 11 10 15 12 12 10 21 10 17 19 2 4 21 16 15 13 2 14

13 1 12 18 21 17 16 20 3 11 9 5 15 16 21 21 27 17 3

2 15 7 24 22 15 19 7 12 8 6 11 7 7 8 3 5 8 3

8 9 8 2 11 9 21 13 12 12 14 9 6 11 10 12 11 6 6

14 10 14 2 3 2 4 3 6 10 14 11 6 22 4 7 22 18 23

19 14 5 14 28 15 15 11 12 11 11 15 17 24 20 15 6 8 14

5 11 9 17 14 11 17 15 6 7 14 10 14 18 4 9 7 12 15

11 10

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

THKScore 1.00000 4.00000 2.58688 1.11612

Intrcpt 1.00000 1.00000 1.00000 0.00000

PreTHKS 0.00000 6.00000 2.06937 1.26018

CC 0.00000 1.00000 0.47687 0.49962

TV 0.00000 1.00000 0.49938 0.50016

CC*TV 0.00000 1.00000 0.23938 0.42684

Categories of the response variable THKScore

--------------------------------------------

Category Frequency Proportion

1.00 355.00 0.22187

2.00 398.00 0.24875

3.00 400.00 0.25000

4.00 447.00 0.27937
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Starting values

---------------

mean -3.481 -2.344 -1.278

covariates -0.212 -0.451 -0.140 0.201 -0.233 -0.496 -0.154 0.221 -0.254 -0.541

covariates -0.168 0.241

var. terms 0.574 0.631 0.688

==> The number of level 2 observations with non-varying responses

= 6 ( 4.44 percent )

---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 38

Quad Pts per Dim = 10

Log Likelihood = -2111.510

Deviance (-2logL) = 4223.020

Ridge = 0.100

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 2. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.17829 0.19585 -0.91037 0.36263 (2)

PreTHKS 0.16539 0.07384 2.23971 0.02511 (2)

CC 0.20052 0.22003 0.91136 0.36211 (2)

TV -0.14241 0.22035 -0.64631 0.51808 (2)

CC*TV 0.18532 0.33990 0.54522 0.58561 (2)

random effect variance term: expressed as a standard deviation

Intrcpt 0.29519 0.14212 2.07706 0.01890 (1)

RESPONSE CODE 3. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -0.95871 0.25323 -3.78592 0.00015 (2)

PreTHKS 0.34054 0.07615 4.47201 0.00001 (2)

CC 0.93555 0.27710 3.37627 0.00073 (2)

TV 0.06972 0.28570 0.24404 0.80720 (2)

CC*TV -0.03491 0.39831 -0.08763 0.93017 (2)

random effect variance term: expressed as a standard deviation

Intrcpt 0.60260 0.15590 3.86536 0.00006 (1)
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-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 4. vs CODE 1.

-----------------------------

fixed effects

Intrcpt -1.74341 0.26148 -6.66753 0.00000 (2)

PreTHKS 0.63614 0.07113 8.94370 0.00000 (2)

CC 1.26668 0.30773 4.11621 0.00004 (2)

TV 0.30216 0.27787 1.08743 0.27685 (2)

CC*TV -0.45566 0.42021 -1.08436 0.27821 (2)

random effect variance term: expressed as a standard deviation

Intrcpt 0.68647 0.13900 4.93872 0.00000 (1)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value

Calculation of the intracluster correlation

-------------------------------------------

residual variance = pi*pi / 3 (assumed)

1 cluster variance = (0.295 * 0.295) = 0.087

intracluster correlation = 0.087 / ( 0.087 + (pi*pi/3)) = 0.026

2 cluster variance = (0.603 * 0.603) = 0.363

intracluster correlation = 0.363 / ( 0.363 + (pi*pi/3)) = 0.099

3 cluster variance = (0.686 * 0.686) = 0.471

intracluster correlation = 0.471 / ( 0.471 + (pi*pi/3)) = 0.125
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6 Analysis of a Longitudinal Dataset

The McKinney Homeless Research Project study ([37], [38]) was designed to evaluate the e®ec-

tiveness of using Section 8 certi¯cates to provide independent housing to the severely mentally

ill homeless. These housing certi¯cates, which require clients to pay 30% of their income toward

rent, are meant to enable low income subjects to choose and obtain independent housing in the

community. Three hundred sixty-two clients took part in this longitudinal study employing a ran-

domized factorial design. Clients were randomly assigned to one of two types of case management

(comprehensive vs. traditional) and to one of two levels of access to independent housing (using

Section 8 certi¯cates). The project was restricted to clients diagnosed with a severe and persistent

mental illness who were either homeless or at high risk of becoming homeless at the start of the

study. Individuals' housing status was classi¯ed at baseline and at 6, 12, and 24 month follow-ups.

Here, we focus on examining the e®ect of access to Section 8 certi¯cates on housing outcomes

across time. At each timepoint subjects' housing status was classi¯ed as either streets/shelters,

community housing, or independent housing; a partial list of these data is given in Table 6.1.

Table 6.1 - Data from ¯ve subjects

9 1 1 1 0 0 0 0 0 0 0 0 0
9 1 1 1 1 0 0 1 0 0 0 1 1
9 2 1 1 0 1 0 0 1 0 0 2 2
9 2 1 1 0 0 1 0 0 1 0 3 3

10 2 1 1 0 0 0 0 0 0 0 0 0
10 999 1 1 1 0 0 1 0 0 0 1 1
10 999 1 1 0 1 0 0 1 0 0 2 2
10 999 1 1 0 0 1 0 0 1 0 3 3
11 1 1 1 0 0 0 0 0 0 0 0 0
11 2 1 1 1 0 0 1 0 0 0 1 1
11 999 1 1 0 1 0 0 1 0 0 2 2
11 1 1 1 0 0 1 0 0 1 0 3 3

361 0 1 0 0 0 0 0 0 0 1 0 0
361 0 1 0 1 0 0 0 0 0 1 1 0
361 999 1 0 0 1 0 0 0 0 1 2 0
361 999 1 0 0 0 1 0 0 0 1 3 0
362 1 1 0 0 0 0 0 0 0 1 0 0
362 1 1 0 1 0 0 0 0 0 1 1 0
362 1 1 0 0 1 0 0 0 0 1 2 0
362 1 1 0 0 0 1 0 0 0 1 3 0

The 13 variables are: (in order) subject ID, housing status (1=street, 2=community, 3=inde-

pendent), a column of ones for the intercept, Section 8 group (0=no, 1=yes), three dummy-codes

for time e®ects (Time1 = 1 for the 6 month follow-up and 0 otherwise, Time2 = 1 for the 12 month

follow-up and 0 otherwise, and Time3 = 1 for the 24 month follow-up and 0 otherwise), three Sec-
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tion 8 by time interaction terms (i.e., the products of Section 8 by Time1, Section 8 by Time2, and

Section 8 by Time3), Non Section 8 group (0=no, 1=yes), linear time contrast (0 = baseline, 1 =

6-month, 2 = 12-month, and 3 = 24-month followup), and the product of Section 8 by linear time.

Values of 999 represent missing value codes for the housing status variable. Thus, some subjects

are measured at all four timepoints and others (e.g., subjects 10 and 11) at fewer timepoints. Data

from these timepoints with missing values are not used in the analysis, however data are used from

other timepoints where there are no missing data. Thus, for inclusion into the analysis, a subject's

data (both the dependent variable and all explanatory variables used in a particular analysis) at a

speci¯c timepoint must be complete. The number of repeated observations per subject depends on

the number of timepoints for which there are non-missing data for that subject.

Based on these data, we can obtain the observed sample sizes and response proportions by

group that are presented below in Table 6.2.

Table 6.2 - Response proportions across time by group

timepoint
group status baseline 6-months 12-months 24-months

control street .555 .186 .089 .124
community .339 .578 .582 .455
independent .106 .236 .329 .421

n 180 161 146 145

section 8 street .442 .093 .121 .120
community .414 .280 .146 .228
independent .144 .627 .732 .652

n 181 161 157 158

These observed proportions indicate a general decrease in street living and an increase in indepen-

dent living across time for both groups. The increase in independent housing, however, appears to

occur sooner for the section 8 group relative to the control group. Regarding community living,

across time there is an increase for the control group and a decrease for the section 8 group.

Regarding missing data, further inspection of Table 6.2 indicates that there is some attrition

across time; attrition rates of 19.4% and 12.7% are observed at the ¯nal timepoint for the control

and section 8 groups, respectively. Also, one subject provided no housing data at any of the

four measurement timepoints. Since estimation of model parameters is based on a full-likelihood
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approach, missing data are assumed to be \ignorable" conditional on both the explanatory variables

and observed nominal responses [39]. In longitudinal studies, ignorable nonresponse falls under

Rubin's [40] \missing at random" (MAR) assumption, in which the missingness depends only on

observed data. In what follows, since the focus is on describing use of MIXNO, we will make the

MAR assumption. A further approach, however, that does not rely on the MAR assumption (e.g.,

a mixed-e®ects pattern-mixture model as described in [41]) could be used.

In preparation for the subsequent analyses, the marginal response proportions can be converted

to the two logits of the nominal regression model (i.e., log[p(C)=p(S)] and log[p(I)=p(S)], where

S=street, C=community, and I=independent housing).3 These logits are given in Table 6.3.

Table 6.3 - Logits across time by group

timepoint
group status baseline 6-months 12-months 24-months

control community vs street -.49 1.13 1.88 1.30
independent vs street -1.66 .24 1.31 1.22

section 8 community vs street -.07 1.10 .19 .64
independent vs street -1.12 1.91 1.80 1.69

di®erence community vs street .42 -.03 -1.69 -.66
independent vs street .54 1.67 .49 .47

These logits clearly show the increase in community and independent housing, relative to street

housing, at all follow-up timepoints (6, 12, and 24 months). In terms of group-related di®erences,

these appear most pronounced at 6-months for independent housing and 12-months for community

housing. While examination of these logits is instructive, the subsequent MIXNO analyses will

more rigorously assess the degree to which these logits vary by time and group.

A series of mixed-e®ects nominal logistic regression models were ¯t to these data using MIXNO.

The ¯rst analysis assumes one random subject e®ect (i.e., a random subject intercept) and models

the repeated housing status classi¯cations in terms of the dummy-coded time e®ects (6, 12, and

24 month follow-ups compared to baseline), a group e®ect (section 8 versus control), and group by

time interaction terms. By varying MIXNO options, this random intercepts is modi¯ed to allow

¯rst for a uniform distribution for the random e®ects (instead of the default normal distribution),

3Again, street housing is treated as the reference category because its code (0) is listed as the ¯rst response

category. A di®erent reference category can be selected by altering the listing of the response categories in MIXNO.
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and then varying random-e®ect variance terms by treatment groups. Finally, a trend analysis is

also performed using the linear time contrast instead of the dummy-coded time e®ects. For the

trend analysis two random subject e®ects, an intercept and linear trend, are included.

6.1 Random intercept model with dummy-coded time e®ects

Interface screens 1, 2 and 4 are given below; screens 3 and 5 are skipped since they simply re°ect

the default choices: program-generated starting values, and estimation of the mean of the random

e®ects, respectively. Screen 1 indicates, among other things, that the random-e®ects variance terms

will vary across the K logits (the Variance Terms ¯eld), and that the numerical integration will use

20 quadrature points (the Number of Quadrature Points ¯eld). Increasing the number of points in-

creases the accuracy of the integration, though minimal change is usually observed beyond 10 points

or so. For models with only one random e®ect, increasing the number of points does not slow the

solution down excessively. Thus, using 20 points, while maybe not necessary, provides a safe choice.

Interface screen 1
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Interface screens 2 and 4
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Screen 2 speci¯es a random intercept (that varies by subjects since subject ID is indicated as

the level-2 unit ID on screen 1) and seven ¯xed e®ects: group (Section 8), three dummy-coded

time e®ects, and three group by time interaction terms (these latter three follow the time dummy

codes and can be seen by clicking on the down arrow button). Two other options are of note on

screens 2 and 4. First, the bottom portion of screen 2 indicates that a marginal crosstabulation

table of the nominal outcome variable (i.e., housing status) by Section 8 is requested. This table

provides purely descriptive information, it has no e®ect on the estimation of the model parameters.

Second, screen 4 indicates that missing values are present and that missing value codes equal 999

for housing status and 9 for all other variables. Thus, MIXNO allows di®erent missing value codes

for the di®erent variables, although there can be only one numeric missing value code per variable.

Table 6.4 lists the corresponding MIXNO.DEF ¯le (for non-WINDOWS use). Some of the

options indicated on line 6 include: missing values are present in the data (MISS=1), a table of

housing status by Section 8 is being requested (CATYX=1), and separate variance terms will be

estimated for the K contrasts of the nominal outcome (VCAT=1). Again, the missing value codes

are indicated as 999 for housing status and 9 for all other variables.

Table 6.4 - MIXNO.DEF ¯le for random intercept model

San Diego Homeless Project - Housing Outcome across time

random intercepts model - Section8 & Time effects

sdhouse.dat

sdhouse.out

sdhouse.def

1 13 1 7 0.00010 3 1 0 0 1 0 0 20 0 0 0 0 1

1 2

3

4 5 6 7 8 9 10

0 1 2

4 2 0 1

999

9

9 9 9 9 9 9 9

Housing

Intercpt

Section8Time1 Time2 Time3 Sect8T1 Sect8T2 Sect8T3

The results from this analysis are listed in Table 6.5. Comparing the log-likelihood value from

this analysis to one where there are no random e®ects (not shown) clearly supports inclusion



MIXNO 44

of the random subject e®ect (likelihood ratio Â2
1 = 134:3). Expressed as intraclass correlations,

MIXNO indicates r1 = :19 and r2 = :62 for community versus street and independent versus street,

respectively. Thus, the subject in°uence is much more pronounced in terms of distinguishing

independent versus street living, relative to community versus street living. This is borne out by

contrasting models with separate versus a common random-e®ect variance across the two category

contrasts (i.e., Variance Terms set to equal, or VCAT=0, not shown) which yields a highly signi¯cant

likelihood ratio Â2
1 = 49:2 favoring the model with separate variance terms.

In terms of signi¯cance of the ¯xed-e®ects, the Time e®ects are observed to be highly signi¯cant.

With the inclusion of the Time by Section 8 interaction terms, the Time e®ects re°ect comparisons

between timepoints for the control group (i.e., Section 8 coded as 0). Thus, subjects in the control

group increase both independent and community housing relative to street housing at all three

follow-ups, as compared to baseline. Similarly, due to the inclusion of the interaction terms, the

Section 8 e®ect is the group di®erence at baseline (i.e., when all Time e®ects are 0). Using a .05

cuto®, there is no statistical evidence of group di®erences at baseline. Turning to the interaction

terms, these indicate how the two groups di®er in terms of comparisons between timepoints. Com-

pared to controls, the increase in community versus street housing is less pronounced for section 8

subjects at 12 months (the estimate equals -1.92 in terms of the logit), but not statistically di®erent

at 6 months and only marginally di®erent at 24 months. Conversely, as compared to controls, the

increase in independent versus street housing is more pronounced for section 8 subjects at 6 months

(the estimate equals 2.00 in terms of the logit), but not statistically di®erent at 12 or 24 months.

In terms of community versus street housing (i.e., response code 1 versus 0), there is an increase

across time for the control group relative to the Section 8 group. As the statistical test indicated,

these groups di®er most at 12 months. For the independent versus street housing comparison (i.e.,

response code 2 versus 0) there is a bene¯cial e®ect of Section 8 certi¯cates at 6 months. Thereafter,

the nonsigni¯cant interaction terms indicates that the control group catches up to some degree.

Considering these results of the mixed-e®ects analysis, it is seen that both groups reduce the degree

of street housing, but do so in somewhat di®erent ways. The control group subjects are shifted

more towards community housing, whereas Section 8 subjects are more quickly shifted towards

independent housing.

This di®erential e®ect of Section 8 certi¯cates over time is completely missed if one simply ana-

lyzes the outcome variable as a binary indicator of street versus non-street housing (i.e., collapsing
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community and independent housing categories). In this case (not shown), none of the section 8

by time interaction terms are observed to be statistically signi¯cant. Thus, analysis of the three

category nominal outcome is important in uncovering the bene¯cial e®ect of Section 8 certi¯cates.

6.2 Uniform-distributed random e®ects

By default, MIXNO assumes that the random e®ects are normally distributed. The program does

allow, however, users to select a uniform distribution as an alternative to the normal. Since the

uniform distribution can be thought to represent vague information about the form of the random-

e®ects distribution, contrasting the results from the normal to those from the uniform provides

some idea about the sensitivity of the results to the random-e®ects distribution form. Screen 1,

shown below, illustrates selection of the uniform distribution as the Prior for Numerical Quadrature.

Interface screen 1

Notice that the output and de¯nition ¯les on screen 1 have been given di®erent names, relative
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to the last analysis. This ensures that the previous results are not overwritten. Besides these

di®erences, all other options are kept the same. Table 6.6 lists the corresponding MIXNO.DEF ¯le

for the analysis selecting the uniform distribution on line 6 (i.e., UNIF=1).

Table 6.6 - MIXNO.DEF ¯le for uniform distributed random subject e®ects

San Diego Homeless Project - Housing Outcome across time

random intercepts model - Section8 & Time effects

sdhouse.dat

sdhouseu.out

sdhouseu.def

1 13 1 7 0.00010 3 1 0 0 1 0 1 20 0 0 0 0 1

1 2

3

4 5 6 7 8 9 10

0 1 2

4 2 0 1

999

9

9 9 9 9 9 9 9

Housing

Intercpt

Section8Time1 Time2 Time3 Sect8T1 Sect8T2 Sect8T3

Comparing the results of this analysis (not shown) to the previous one yields very similar

estimates and the same conclusions. Thus, the random-e®ects distributional form does not appear

to play an important role for these data.

6.3 Varying random-e®ects variance terms by groups

In some cases it may be reasonable to allow the random-e®ects variance terms to vary across groups

of subjects. For example, there may be interest in estimating separate intraclass correlations by

gender or racial groups. To accomplish this in MIXNO, the DAT ¯le must contain M dummy-codes

(with codings of 0 or 1) for the M groups, which are then speci¯ed as random e®ects representing

dummy-coded grouping variables. For example, to allow the random-e®ects variance terms to vary

by gender, two dummy-codes, one for males and another for females, must be included in the DAT

¯le. For the San Diego Homeless data, two such dummy-codes are included in the DAT ¯le (in ¯elds

4 and 11) to indicate the two treatment groups: Section 8 and Non-Section 8. Interface screens 2,

4, and 5, shown below, illustrate the changes that need to be made to allow the random-e®ects vari-
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ance terms to vary by treatment group. First, the two treatment group dummy-codes are indicated

as random e®ecs on screen 2. Also, in order to obtain the overall model intercept, the intercept

variable is now considered as a ¯xed e®ect. Because of these changes in the lists for random and

¯xed e®ects variables on screen 2, the information on the missing value codes on screen 4 must be

modi¯ed as well.

Portions of interface screens 2 and 4
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Finally, two options are selected on screen 5: ¯xing the mean of the random e®ects to zero (since

the intercept is now indicated as a ¯xed e®ect), and indicating that the random e®ects variables

are grouping variables.

Portion of interface screen 5

Table 6.7 lists the MIXNO.DEF ¯le that can be used to allow the random-e®ects variance terms

to vary across these two groups by specifying VGRP = 1.

Table 6.7 - MIXNO.DEF ¯le for group-varying random-e®ects variance terms

San Diego Homeless Project - Housing Outcome across time

Varying random intercepts by groups

sdhouse.dat

sdhouseg.out

sdhouseg.def

1 13 2 8 0.00010 3 1 0 0 1 0 0 20 0 0 1 1 1

1 2

4 11

3 4 5 6 7 8 9 10

0 1 2

4 2 0 1

999

9 9

9 9 9 9 9 9 9 9

Housing

IntSect8IntCont

IntercptSection8Time1 Time2 Time3 Sect8T1 Sect8T2 Sect8T3

Notice that, relative to Table 6.4, there are a few di®erences in the MIXNO.DEF ¯le. First, both

group indicator variables (¯elds 4 and 11) are speci¯ed as random e®ects (R=2), while the intercept

(¯eld 3) is included as a ¯xed e®ect (P=8). Also, both NOMU=1 and VGRP=1 are indicated on

line 6. This instructs MIXNO that the two random e®ects are grouping variables and that the
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mean vector of the random e®ects (i.e., the separate intercepts for the two groups) are not to be

estimated. Without the latter speci¯cation, the model would be over-identi¯ed since the intercept

and group e®ect (Section8) are included as ¯xed e®ects.

Allowing the random-e®ects variance terms to vary by groups produces near-identical results

(not shown). A likelihood-ratio test comparing this model to that of Table 6.5 yields Â2 =

2218:725¡ 2218:431 = :294 (on 2 df) which is clearly not signi¯cant. In terms of the estimates of

the random-e®ects variance terms, Table 6.8 lists the results that are obtained for these two models.

Table 6.8 - Random-e®ects standard deviation estimates

logit logit
1 vs. 0 2 vs. 0

common variance .871 2.34

separate variance
Section 8 .961 2.43
Non Section 8 .771 2.23

As can be seen, the separate-variance estimates are relatively similar to the pooled estimates.

6.4 Trend analysis

For longitudinal data, a common approach is to posit a model where changes across time are

represented by low-order polynomial trends, for example, linear or quadratic trends. Further, these

trends are often allowed to vary across subjects, leading to models with multiple random subject

e®ects. For continuous data, this approach was introduced by Laird and Ware [42], Bock [43],

Strenio et al. [44], Jennrich and Schluchter [45] and others. Similarly, this approach has been

developed and described for dichotomous [13] and ordinal outcomes [19].

For nominal data, trend analysis of this type can be done using MIXNO by embedding the

polynomial contrasts in the DAT ¯le read by the program. For a linear contrast, a simple approach

is to include a variable that starts at 0 for the ¯rst timepoint and is incremented by 1 for each

subsequent timepoint. This assumes that the change in the logits is linear across the time intervals.

More sophisticated approaches can be used to center and/or orthogonalize the polynomials, or to

take into account unequal time intervals (see [46] for a complete treatment on this subject; for an

example see [47]). Orthogonalization of the polynomials is particularly useful when ¯tting models
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with multiple polynomials (i.e., linear and quadratic; or linear, quadratic, and cubic). For the

current example, only a linear time e®ect will be considered. For this, a linear time variable and

a group by linear time interaction are included as the 12th and 13th ¯elds, respectively (see Table

6.1). The ¯rst interface screen for the trend analysis is given below.

Interface screen 1

Notice that 10 points are selected in the Number of Quadrature Points ¯eld. For models with R

random e®ects, the total number of quadrature points equals the number indicated in this ¯eld

raised to the Rth power. Thus, with 10 points and 2 random e®ects (speci¯ed below on screen 2),

the two-dimensional quadrature will involve a total of 100 points.

Shown below are the screen 2 speci¯cations for the random trend model. Both intercept and

the time variables are indicated as random e®ects. The section 8 and section 8 by time variables

are speci¯ed as ¯xed e®ects. Also, a crosstabulation of housing status by time is requested on the

bottom half of the screen.
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Interface screen 2

Again, the missing value designations on screen 4 have to be modi¯ed due to the changes in the

variable lists on screen 2.

Interface screen 4
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Finally, screen 5 indicates that the two random e®ects are correlated, and that six linear trans-

forms of the parameter estimates are to be calculated.

Interface screen 5

The coe±cients for these six transforms are entered in the appropriate ¯elds for the model param-

eters. The scroll bars allow the user to scroll between the six transforms as well as the K logits.

By scrolling through the transforms the user can verify that transforms 1, 3, and 5 represent the

e®ect of Section8 at Time=1, 2, and 3, respectively, for the response code 1 vs. 0 comparison (i.e.,

\Cat 2 vs 1"). Similarly, re-expressions 2, 4, and 6 are the Section8 e®ects at Time=1, 2, and 3,

respectively, for response code 2 vs. 0 (i.e., \Cat 3 vs 1").

Table 6.9 lists the corresponding MIXNO.DEF for non-interface usage. Indicated on line 6 are

the CATYX option, requesting a crosstabulation table of housing status by time (the variable in the

12th ¯eld with 4 values: 0, 1, 2, and 3), and six transforms of the estimated parameters (LINFN=6).
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Table 6.9 - MIXNO.DEF ¯le for trend analysis

San Diego Homeless Project - Housing Outcome across time

Random intercepts and slopes model - SECT8 & TIME EFFECTS

sdhouse.dat

sdhouset.out

sdhouset.def

1 13 2 2 0.00010 3 1 0 0 1 0 0 10 6 0 0 0 1

1 2

3 12

4 13

0 1 2

12 4 0 1 2 3

999

9 9

9 9

Housing

IntercptTime

Section8Sec8Time

0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 2 0 0 0 0 0 0

0 0 0 0 1 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 3 0 0 0 0 0 0

The coe±cients for the six transforms are given as the last six lines of the MIXNO.DEF ¯le.

Each of these lines indicate coe±cients for the 14 parameters of the model, which are (in order):

² Intercept and Time (response code 1 vs. 0): 2 terms;

² Intercept and Time (response code 2 vs. 0): 2 terms;

² Section8 and Sec8Time (response code 1 vs. 0): 2 terms;

² Section8 and Sec8Time (response code 2 vs. 0): 2 terms;

² Elements of the Cholesky matrix corresponding to the Intercept variance, Intercept-Time

covariance, Time covariance (response code 1 vs. 0): 3 terms;

² Elements of the Cholesky matrix corresponding to the Intercept variance, Intercept-Time

covariance, Time covariance (response code 2 vs. 0): 3 terms.

Thus, as noted above, transforms 1, 3, and 5 represent the Section8 e®ects at Time=1, 2, and
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3, respectively, for the response code 1 vs. 0 comparison; transforms 2, 4, and 6 are the Section8

e®ects at Time=1, 2, and 3, respectively, for response code 2 vs. 0.

Table 6.10 lists the output for this trend analysis. Notice ¯rst the marginal crosstabulation

table of Housing by Time that is produced. This clearly shows the overall decline in street housing

(response category 0) after the ¯rst timepoint. What is of more interest, though, is whether the

trend across time in housing status di®ers between the two groups. Turning to the results of the

analysis, it is apparent that, while there is a highly signi¯cant e®ect of time, no group-related

statistical di®erences emerge when comparing community to street housing (response code 1 vs

0). However, turning to the comparison of independent to street housing (response code 2 vs 0)

reveals highly signi¯cant e®ects of Time and Section 8, and a marginally signi¯cant Section 8 by

Time interaction. This suggests that there are more independent versus street housing responses

for the Section 8 group at baseline, relative to the control group, and that this Section 8 increase

in independent responses tends to become more pronounced over time. However, as indicated in

Table 6.3, the group di®erences in the logits do not appear to be linear across time.

Inspection of the transforms of the estimated parameters indicates what the linear model esti-

mates for the group di®erences across time. As mentioned above, transforms 1, 3, and 5 represent

the group di®erence at each follow-up timepoint for the 1 vs 0 response code comparison (i.e.,

community vs street), and transforms 2, 4, and 6 provide similar estimates for the 2 vs 0 response

code comparison (independent vs street). These transforms, which are estimated based on this

linear model, indicate no group di®erence in terms of the community vs street comparison at any

follow-up timepoint, and large increasing di®erences for the independent vs street comparison. This

does not agree well with the previous analyses, mainly because the observed group di®erences, as

given in Table 6.3, do not follow a linear pattern across time. Thus, the linear representation of the

time e®ect which uses only 1 degree of freedom for comparing outcomes across time (as opposed to

the 3 degrees of freedom used by the time dummy-codes used previously) is an over-simpli¯cation

for these data.

6.5 Model ¯t of marginal proportions

To examine the degree of model ¯t to the marginal proportions in Table 6.2 requires a bit of work

that is greatly facilitated using a software program with matrix algebra routines. Here SAS-IML

will be used, however other programs can also be used for this purpose (e.g., GAUSS, S-PLUS, or



MIXNO 55

the matrix routines in SPSS). We will demonstrate this using the results provided in Tables 6.5

and 6.10 to illustrate the procedure for models with one or multiple random e®ects.

6.5.1 Fit of Table 6.5 results

This model included a single random e®ect, and so using Equations (1) and (2) yields

Pij2 =
exp(¾2µi + ¹2 +w0ij®2)

1 + exp(¾1µi + ¹1 +w0ij®1) + exp(¾2µi + ¹2 +w0ij®2)
(11)

Pij1 =
exp(¾1µi + ¹1 +w0ij®1)

1 + exp(¾1µi + ¹1 +w0ij®1) + exp(¾2µi + ¹2 +w0ij®2)
(12)

Pij0 =
1

1 + exp(¾1µi + ¹1 +w0ij®1) + exp(¾2µi + ¹2 +w0ij®2)
(13)

for the subject-speci¯c response probabilities of the three categories at a particular timepoint j.

These are referred to as \subject-speci¯c" probabilities because they indicate response probabilities

for particular values of the random subject e®ect µi ([50], [51]). Replacing the parameters with their

estimates and denoting the resulting subject-speci¯c probabilities as P̂ss, marginal probabilities P̂m

are then obtained by integrating over the random-e®ect distribution, namely P̂m =
R
µ P̂ss g(µ) dµ.

Numerical quadrature can be used for this. Table 6.11 (at the end of this section) provides a listing

of SAS-IML code that implements a 10 point quadrature solution for this. The estimated response

probabilities that are listed in Table 6.12 were obtained using this SAS-IML code.

Table 6.12 - Estimated response probabilities based on Table 6.5 results

timepoint
group status baseline 6-months 12-months 24-months

control street .556 .189 .091 .130
community .336 .579 .587 .465
independent .108 .233 .322 .405

section 8 street .444 .090 .127 .121
community .411 .284 .155 .235
independent .145 .626 .719 .644

These agree well with the observed marginal proportions in Table 6.2. This is not too surprising

since the model included one degree of freedom for the group di®erence, and three each for both

the time and group by time interaction terms.
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6.5.2 Fit of Table 6.10 results

Because this model included two random e®ects, the formulas for the probabilities are a little more

complicated. Speci¯cally, we get

Pij2 =
exp[x0ij(T 2µi + ¹2) +w0ij®2]

1 + exp[x0ij(T 1µi +¹1) +w0ij®1] + exp[x0ij(T 2µi + ¹2) +w0ij®2]
(14)

Pij1 =
exp[x0ij(T 1µi + ¹1) +w0ij®1]

1 + exp[x0ij(T 1µi +¹1) +w0ij®1] + exp[x0ij(T 2µi + ¹2) +w0ij®2]
(15)

Pij0 =
1

1 + exp[x0ij(T 1µi +¹1) +w0ij®1] + exp[x0ij(T 2µi + ¹2) +w0ij®2]
(16)

for the subject-speci¯c response probabilities. Because there are two random e®ects the quadrature

must go over two dimensions to obtain the marginal probabilities. Table 6.13 (at the end of this

section) lists SAS-IML code utilizing 10 quadrature points for each of the two dimensions. Using

this SAS-IML code yields the estimated response probabilities given in Table 6.14.

Table 6.14 - Estimated response probabilities based on Table 6.10 results

timepoint
group status baseline 6-months 12-months 24-months

control street .534 .207 .132 .107
community .373 .555 .543 .522
independent .094 .238 .325 .371

section 8 street .403 .152 .115 .103
community .393 .314 .238 .204
independent .204 .535 .647 .692

The agreement of these with the observed marginal proportions in Table 6.2 is not very good. In

particular, because the model speci¯es the trend to be linear across time (in terms of the logits), it

is only response patterns that are approximately linear across time that are ¯t well by the model

(e.g., Control independent housing). Since many of the other patterns do not follow a linear trend

across time, these are not ¯t well by the model (e.g., Section 8 independent housing).
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6.6 Section 6 MIXNO Output

Table 6.5 - output ¯le for normally distributed random subject e®ects

MIXNO - The program for mixed-effects nominal logistic regression analysis

San Diego Homeless Project - Housing Outcome across time

random intercepts model - SECTION8 & TIME EFFECTS

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 1289

Level 2 observations = 361

The number of level 1 observations per level 2 unit are:

4 4 4 4 4 4 4 4 4 1 3 4 3 4 4 1 4 4 4

4 4 4 4 4 4 4 3 4 4 1 4 2 1 4 4 4 3 3

4 4 4 4 4 4 4 4 4 4 4 1 4 1 3 4 4 3 4

4 4 4 4 4 1 4 3 3 4 3 4 4 4 4 3 4 4 3

4 4 4 4 4 4 4 4 4 4 3 4 4 4 1 1 4 4 4

4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4

4 1 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 3

3 3 4 4 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4

4 2 2 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4

3 4 4 3 4 4 3 3 4 4 4 3 4 4 4 4 4 3 4

4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 1 3 2

4 4 4 4 4 4 4 4 4 4 1 4 3 2 3 2 4 4 3

4 3 4 4 4 4 4 3 3 3 3 3 4 4 4 4 4 4 4

4 1 4 4 4 3 4 4 4 4 4 1 4 4 4 4 4 4 4

4 3 4 4 4 4 4 4 3 4 4 3 4 4 4 4 3 4 1

4 1 2 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4

4 4 4 4 4 4 3 3 4 4 4 4 4 2 4 4 4 4 1

3 4 4 4 2 2 4 1 4 2 3 1 4 4 4 4 1 2 4

1 4 4 4 3 4 4 4 2 3 4 4 3 2 4 4 4 2 4

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

Housing 0.00000 2.00000 1.16835 0.77242

Intercpt 1.00000 1.00000 1.00000 0.00000

Section8 0.00000 1.00000 0.50970 0.50010

Time1 0.00000 1.00000 0.24981 0.43307

Time2 0.00000 1.00000 0.23507 0.42420

Time3 0.00000 1.00000 0.23507 0.42420

Sect8T1 0.00000 1.00000 0.12490 0.33074

Sect8T2 0.00000 1.00000 0.12180 0.32718

Sect8T3 0.00000 1.00000 0.12258 0.32808
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Categories of the response variable Housing

--------------------------------------------

Category Frequency Proportion

0.00 294.00 0.22808

1.00 484.00 0.37548

2.00 511.00 0.39643

Crosstabulation of variable Section8 by the response variable Housing

----------------------------------------------------------------------

Housing

--------

Section8 0.00 1.00 2.00

----------------------------------- Total

0.00 161.0 305.0 166.0 632.0

(0.25) (0.48) (0.26)

1.00 133.0 179.0 345.0 657.0

(0.20) (0.27) (0.53)

Total 294.0 484.0 511.0 1289.0

Starting values

---------------

mean -2.900 -1.261

covariates -0.196 -0.647 -0.893 -0.967 -0.431 -0.285 -0.108 -0.216 -0.712 -0.982

covariates -1.063 -0.474 -0.313 -0.119

var. terms 0.574 0.631

==> The number of level 2 observations with non-varying responses

= 78 ( 21.61 percent )
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---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 29

Quad Pts per Dim = 20

Log Likelihood = -1109.363

Deviance (-2logL) = 2218.725

Ridge = 0.200

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 1. vs CODE 0.

-----------------------------

fixed effects

Intercpt -0.45189 0.19230 -2.34991 0.01878 (2)

Section8 0.52099 0.26831 1.94171 0.05217 (2)

Time1 1.94152 0.31197 6.22350 0.00000 (2)

Time2 2.81975 0.46605 6.05035 0.00000 (2)

Time3 2.25949 0.37835 5.97201 0.00000 (2)

Sect8T1 -0.13527 0.49003 -0.27604 0.78252 (2)

Sect8T2 -1.91710 0.61096 -3.13785 0.00170 (2)

Sect8T3 -0.95229 0.53542 -1.77858 0.07531 (2)

random effect variance term: expressed as a standard deviation

Intercpt 0.87071 0.13764 6.32613 0.00000 (1)

RESPONSE CODE 2. vs CODE 0.

-----------------------------

fixed effects

Intercpt -2.67540 0.36749 -7.28030 0.00000 (2)

Section8 0.78108 0.49088 1.59118 0.11157 (2)

Time1 2.68209 0.42491 6.31213 0.00000 (2)

Time2 4.08805 0.55933 7.30887 0.00000 (2)

Time3 4.09897 0.46938 8.73268 0.00000 (2)

Sect8T1 2.00273 0.61389 3.26236 0.00111 (2)

Sect8T2 0.54838 0.69357 0.79065 0.42915 (2)

Sect8T3 0.30403 0.61473 0.49458 0.62090 (2)

random effect variance term: expressed as a standard deviation

Intercpt 2.33380 0.19642 11.88189 0.00000 (1)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value
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Calculation of the intracluster correlation

-------------------------------------------

residual variance = pi*pi / 3 (assumed)

1 cluster variance = (0.871 * 0.871) = 0.758

intracluster correlation = 0.758 / ( 0.758 + (pi*pi/3)) = 0.187

2 cluster variance = (2.334 * 2.334) = 5.447

intracluster correlation = 5.447 / ( 5.447 + (pi*pi/3)) = 0.623
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Table 6.10 - output ¯le for trend analysis

MIXNO - The program for mixed-effects nominal logistic regression analysis

San Diego Homeless Project - Housing Outcome across time

Random intercepts and slopes model - SECT8 & TIME EFFECTS

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 1289

Level 2 observations = 361

The number of level 1 observations per level 2 unit are:

4 4 4 4 4 4 4 4 4 1 3 4 3 4 4 1 4 4 4

4 4 4 4 4 4 4 3 4 4 1 4 2 1 4 4 4 3 3

4 4 4 4 4 4 4 4 4 4 4 1 4 1 3 4 4 3 4

4 4 4 4 4 1 4 3 3 4 3 4 4 4 4 3 4 4 3

4 4 4 4 4 4 4 4 4 4 3 4 4 4 1 1 4 4 4

4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4

4 1 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 3

3 3 4 4 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4

4 2 2 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4

3 4 4 3 4 4 3 3 4 4 4 3 4 4 4 4 4 3 4

4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 1 3 2

4 4 4 4 4 4 4 4 4 4 1 4 3 2 3 2 4 4 3

4 3 4 4 4 4 4 3 3 3 3 3 4 4 4 4 4 4 4

4 1 4 4 4 3 4 4 4 4 4 1 4 4 4 4 4 4 4

4 3 4 4 4 4 4 4 3 4 4 3 4 4 4 4 3 4 1

4 1 2 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4

4 4 4 4 4 4 3 3 4 4 4 4 4 2 4 4 4 4 1

3 4 4 4 2 2 4 1 4 2 3 1 4 4 4 4 1 2 4

1 4 4 4 3 4 4 4 2 3 4 4 3 2 4 4 4 2 4

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

Housing 0.00000 2.00000 1.16835 0.77242

Intercpt 1.00000 1.00000 1.00000 0.00000

Time 0.00000 3.00000 1.42514 1.12944

Section8 0.00000 1.00000 0.50970 0.50010

Sec8Time 0.00000 3.00000 0.73623 1.08359
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Categories of the response variable Housing

--------------------------------------------

Category Frequency Proportion

0.00 294.00 0.22808

1.00 484.00 0.37548

2.00 511.00 0.39643

Crosstabulation of variable Time by the response variable Housing

------------------------------------------------------------------

Housing

--------

Time 0.00 1.00 2.00

------------------------------- Total

0.00 180.0 136.0 45.0 361.0

(0.50) (0.38) (0.12)

1.00 45.0 138.0 139.0 322.0

(0.14) (0.43) (0.43)

2.00 32.0 108.0 163.0 303.0

(0.11) (0.36) (0.54)

3.00 37.0 102.0 164.0 303.0

(0.12) (0.34) (0.54)

Total 294.0 484.0 511.0 1289.0

Starting values

---------------

mean -2.607 -0.968 0.000 0.000

covariates -0.363 -0.022 -0.399 -0.024

var. terms 1.814 0.000 0.907 1.995 0.000 1.088

==> The number of level 2 observations with non-varying responses

= 78 ( 21.61 percent )
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---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 112

Quad Pts per Dim = 10

Log Likelihood = -1093.582

Deviance (-2logL) = 2187.163

Ridge = 0.400

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 1. vs CODE 0.

-----------------------------

fixed effects

Intercpt -0.38250 0.15906 -2.40467 0.01619 (2)

Time 2.12595 0.33459 6.35395 0.00000 (2)

Section8 0.33888 0.22849 1.48311 0.13805 (2)

Sec8Time -0.41221 0.33492 -1.23078 0.21841 (2)

random effect variance & covariance terms: cholesky of var-covariance matrix

Intercpt 0.44661 0.27370 1.63174 0.05137 (1)

covariance 1.10929 0.41051 2.70225 0.00689 (2)

Time 0.96018 0.44047 2.17989 0.01463 (1)

RESPONSE CODE 2. vs CODE 0.

-----------------------------

fixed effects

Intercpt -1.73350 0.22403 -7.73794 0.00000 (2)

Time 1.99880 0.42324 4.72258 0.00000 (2)

Section8 1.05881 0.29502 3.58898 0.00033 (2)

Sec8Time 0.93802 0.48430 1.93686 0.05276 (2)

random effect variance & covariance terms: cholesky of var-covariance matrix

Intercpt 0.28216 0.28602 0.98650 0.16194 (1)

covariance 0.98178 0.53926 1.82060 0.06867 (2)

Time 2.63438 0.48839 5.39403 0.00000 (1)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value
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Calculation of the random effects variance-covariance matrix

------------------------------------------------------------

1 Intercpt variance = (0.447 * 0.447) = 0.199

covariance = (0.447 * 1.109) = 0.495

Time variance = (1.109 * 1.109) + (0.960 * 0.960) = 2.152

Covariance expressed as a correlation = 0.756

2 Intercpt variance = (0.282 * 0.282) = 0.080

covariance = (0.282 * 0.982) = 0.277

Time variance = (0.982 * 0.982) + (2.634 * 2.634) = 7.904

Covariance expressed as a correlation = 0.349

-------------------------------------

¤ Transforms of parameter estimates ¤
-------------------------------------

Transpose of the Transform Matrix (parameters by transforms)

1 2 3 4 5 6

1 Intercpt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 Time 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Intercpt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 Time 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 Section8 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

6 Sec8Time 1.0000 0.0000 2.0000 0.0000 3.0000 0.0000

7 Section8 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

8 Sec8Time 0.0000 1.0000 0.0000 2.0000 0.0000 3.0000

9 VarCov1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 VarCov2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11 VarCov3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12 VarCov1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 VarCov2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14 VarCov3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Transform Estimate Stand. Error Z p-value

--------- ------------ ------------ ------------ -----------

1 -0.07334 0.35165 -0.20855 0.83480

2 1.99683 0.48224 4.14073 0.00003

3 -0.48555 0.64765 -0.74971 0.45343

4 2.93485 0.92042 3.18861 0.00143

5 -0.89777 0.96933 -0.92618 0.35435

6 3.87288 1.38956 2.78712 0.00532

note: p-values are 2-tailed
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6.7 Section 6 SAS IML listings

Table 6.12 - computing marginal probabilities for Table 6.5 results

TITLE1 'San Diego Homeless Data - Estimated Marginal Probabilities';

PROC IML;

/* Results from MIXNO analysis - Table 6.5: output file SDHOUSE.OUT */;

w0 = f 0 0 0 0 0 0 0,

0 1 0 0 0 0 0,

0 0 1 0 0 0 0,

0 0 0 1 0 0 0g;
w1 = f 1 0 0 0 0 0 0,

1 1 0 0 1 0 0,

1 0 1 0 0 1 0,

1 0 0 1 0 0 1g;
mua = f-0.45189g;
sda = f 0.87071g;
alphaa= f 0.52099, 1.94152, 2.81975, 2.25949, -0.13527, -1.91710, -0.95229g;

mub = f-2.67540g;
sdb = f 2.33380g;
alphab= f 0.78108, 2.68209, 4.08805, 4.09897, 2.00273, 0.54838, 0.30403g;

/* Now get the estimated marginal probabilities */;

/* number of quadrature points, quadrature nodes & weights */

nq = 10;

bq = f 3.8869246, 2.9630366, 2.0883447, 1.2426890, 0.4125905,

-0.4125905, -1.2426890, -2.0883447, -2.9630366, -3.8869246g;
aq = f .0002003, .0044289, .0386501, .1540833, .3026346,

.3026346, .1540833, .0386501, .0044289, .0002003g;

/* initialize to zero */

grp0 = J(4,1,0);

grp0a = J(4,1,0);

grp0b = J(4,1,0);

grp1 = J(4,1,0);

grp1a = J(4,1,0);

grp1b = J(4,1,0);
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DO q = 1 to nq;

za0 = w0*alphaa + mua + sda*bq[q];

zb0 = w0*alphab + mub + sdb*bq[q];

za1 = w1*alphaa + mua + sda*bq[q];

zb1 = w1*alphab + mub + sdb*bq[q];

grp0 = grp0 + 1 / (1+(EXP(za0)+EXP(zb0)))*aq[q];

grp0a = grp0a + EXP(za0) / (1+(EXP(za0)+EXP(zb0)))*aq[q];

grp0b = grp0b + EXP(zb0) / (1+(EXP(za0)+EXP(zb0)))*aq[q];

grp1 = grp1 + 1 / (1+(EXP(za1)+EXP(zb1)))*aq[q];

grp1a = grp1a + EXP(za1) / (1+(EXP(za1)+EXP(zb1)))*aq[q];

grp1b = grp1b + EXP(zb1) / (1+(EXP(za1)+EXP(zb1)))*aq[q];

END;

print 'Quadrature method - 10 points';

print 'marginal probability for group 0 - category 0' grp0 [FORMAT=8.4];

print 'marginal probability for group 0 - category 1' grp0a [FORMAT=8.4];

print 'marginal probability for group 0 - category 2' grp0b [FORMAT=8.4];

print 'marginal probability for group 1 - category 0' grp1 [FORMAT=8.4];

print 'marginal probability for group 1 - category 1' grp1a [FORMAT=8.4];

print 'marginal probability for group 1 - category 2' grp1b [FORMAT=8.4];



MIXNO 67

Table 6.14 - computing marginal probabilities for Table 6.10 results

TITLE1 'San Diego Homeless Data - Estimated Marginal Probabilities';

PROC IML;

/* Results from MIXNO analysis - Table 6.10: output file SDHOUSET.OUT */;

x = f 1 0,

1 1,

1 2,

1 3g;
w0 = f 0 0,

0 0,

0 0,

0 0g;
w1 = f 1 0,

1 1,

1 2,

1 3g;
mua = f-.38250, 2.12595g;
sda = f .44661 0, 1.10929 .96018g;
alphaa= f .33888, -.41221g;

mub = f-1.73350, 1.99880g;
sdb = f .028216 0, .98178 2.63438g;
alphab= f 1.05881, .93802g;

/* Now get the estimated marginal probabilities */;

/* number of quadrature points, quadrature nodes & weights */

nq = 10;

bq = f 3.8869246, 2.9630366, 2.0883447, 1.2426890, 0.4125905,

-0.4125905, -1.2426890, -2.0883447, -2.9630366, -3.8869246g;
aq = f .0002003, .0044289, .0386501, .1540833, .3026346,

.3026346, .1540833, .0386501, .0044289, .0002003g;

/* initialize to zero */

grp0 = J(4,1,0);

grp0a = J(4,1,0);

grp0b = J(4,1,0);

grp1 = J(4,1,0);

grp1a = J(4,1,0);

grp1b = J(4,1,0);
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DO q1 = 1 to nq;

DO q2 = 1 to nq;

quadvec = bq[q1]//bq[q2];

za0 = w0*alphaa + x*mua + x*sda*quadvec;

zb0 = w0*alphab + x*mub + x*sdb*quadvec;

za1 = w1*alphaa + x*mua + x*sda*quadvec;

zb1 = w1*alphab + x*mub + x*sdb*quadvec;

grp0 = grp0 + 1 / (1+(EXP(za0)+EXP(zb0)))*aq[q1]*aq[q2];

grp0a = grp0a + EXP(za0) / (1+(EXP(za0)+EXP(zb0)))*aq[q1]*aq[q2];

grp0b = grp0b + EXP(zb0) / (1+(EXP(za0)+EXP(zb0)))*aq[q1]*aq[q2];

grp1 = grp1 + 1 / (1+(EXP(za1)+EXP(zb1)))*aq[q1]*aq[q2];

grp1a = grp1a + EXP(za1) / (1+(EXP(za1)+EXP(zb1)))*aq[q1]*aq[q2];

grp1b = grp1b + EXP(zb1) / (1+(EXP(za1)+EXP(zb1)))*aq[q1]*aq[q2];

END;

END;

print 'Quadrature method - 10 points per dimension';

print 'marginal probability for group 0 - category 0' grp0 [FORMAT=8.4];

print 'marginal probability for group 0 - category 1' grp0a [FORMAT=8.4];

print 'marginal probability for group 0 - category 2' grp0b [FORMAT=8.4];

print 'marginal probability for group 1 - category 0' grp1 [FORMAT=8.4];

print 'marginal probability for group 1 - category 1' grp1a [FORMAT=8.4];

print 'marginal probability for group 1 - category 2' grp1b [FORMAT=8.4];
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7 Latent trait model for item responses

This illustration uses data from Clogg [32] on responses to three life satisfaction questions. 1472

subjects from the 1975 US General Household Survey indicated their degree of satisfaction with

family (F), hobbies (H), and residence (R) on a three-point scale (1=low, 2=medium, or 3=high).

These data have been further described and analyzed by Masters [48] and Bartholomew [49]; the

observed frequencies that are presented in Table 7.1 can be found in either of these sources.

Table 7.1 - observed response frequencies

response observed response observed response observed
pattern frequency pattern frequency pattern frequency

F H R F H R F H R

1 1 1 15 1 2 1 3 1 3 1 5
1 1 2 11 1 2 2 12 1 3 2 14
1 1 3 7 1 2 3 5 1 3 3 16

2 1 1 16 2 2 1 23 2 3 1 18
2 1 2 26 2 2 2 58 2 3 2 38
2 1 3 12 2 2 3 31 2 3 3 27

3 1 1 23 3 2 1 45 3 3 1 64
3 1 2 49 3 2 2 117 3 3 2 191
3 1 3 54 3 2 3 126 3 3 3 466

The observed marginal response proportions and logits for the three items (x-axis) are plotted

in Figures 7.1 and 7.2, respectively. The ¯tted response proportions and logits are also presented in

the ¯gures; it will be explained later how these were obtained. For all items the response proportions

increase with the satisfaction level, however the proportion of high satisfaction responses for the

Family item is very high. Figure 7.2 expresses these proportions in terms of the two logits that are

modeled by the nominal logistic regression, namely, log[P (high)=P (low)] and log[P (med)=P (low)].

These logits indicate the higher proportion of high and medium satisfaction responses relative to

low satisfaction responses for all three items. Again, the pronounced level of high satisfaction,

relative to low satisfaction, is noted for the Family item.
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The simplest way to analyze these data using MIXNO is to input the data associated with the

33 = 27 response patterns. With three questions per response pattern, each pattern occupies three

physical lines in the dataset. Each line consists of the data associated with the response for one

of the three questions. Also, each line must include the pattern frequency as a variable ¯eld. A

partial list of the resulting dataset is given in Table 7.2.

Table 7.2 - Data from ¯rst 9 patterns

1 1 1 1 0 0 15
1 1 1 0 1 0 15
1 1 1 0 0 1 15
2 1 1 1 0 0 11
2 1 1 0 1 0 11
2 2 1 0 0 1 11
3 1 1 1 0 0 7
3 1 1 0 1 0 7
3 3 1 0 0 1 7
4 2 1 1 0 0 16
4 1 1 0 1 0 16
4 1 1 0 0 1 16
5 2 1 1 0 0 26
5 1 1 0 1 0 26
5 2 1 0 0 1 26
6 2 1 1 0 0 12
6 1 1 0 1 0 12
6 3 1 0 0 1 12
7 3 1 1 0 0 23
7 1 1 0 1 0 23
7 1 1 0 0 1 23
8 3 1 1 0 0 49
8 1 1 0 1 0 49
8 2 1 0 0 1 49
9 3 1 1 0 0 54
9 1 1 0 1 0 54
9 3 1 0 0 1 54

The variables are, in order, pattern number (from 1 to 27), degree of satisfaction (from 1 to 3), a

column of ones for the intercept, three item indicator variables, and the response pattern frequency.

The three item indicator variables (say, xl, l = 1; 2; 3) are coded equal to 1 if j = l and 0 otherwise,

where j denotes the level-1 item responses that are nested within subjects (level-2). Unlike our

previous examples, here the number of nested level-1 observations is constant (i.e., = 3) across the

level-2 units. MIXNO does not require this, and so incomplete response patterns are allowed.
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Interface screen 1 for this example is shown below. Note that Unit Weighting is set to \di®eren-

tial" to indicate that each record contains a frequency weight (i.e., the response pattern frequency).

The ¯eld that the frequency weight occupies in the dataset is identi¯ed in the Field for Assigned

Weight box (i.e., ¯eld number 7 in the dataset).

Interface screen 1

In the psychometric literature, random or mixed-e®ects models are often termed \latent trait"

models. For these data, MIXNO will ¯rst be used to ¯t a latent trait model for nominal responses

as described in Bock [25]. In Bock's model a single latent trait (i.e., random e®ect) is assumed,

however it's in°uence is allowed to vary across items and categories of the nominal items. To allow

the in°uence of the random e®ect to vary across the categories of the nominal responses, Variance

Terms option of interface screen 1 is set to \varying" (shown above). Allowing the in°uence of the

random e®ect to vary across items can be accomplished in MIXNO in the following way. First, the

three item indicator variables are all designated as random e®ects on interface screen 2 shown below.
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Interface screen 2

Then, the Random E®ects Grouping option on interface screen 5 is set to \yes" to indicate that the

random e®ects represent grouping variables.

Interface screen 5

Together, these speci¯cations designate that the in°uence of the random e®ect varies across the

three items.

For non-interface use, Table 7.3 lists the MIXNO.DEF ¯le to be used to estimate this latent trait

model for nominal responses. Note that the three item indicators are designated as random e®ects,

and that the WT, VGRP, and VCAT options are selected to indicate, respectively, frequency weighted

data, random e®ects grouping variables, and varying random e®ects variance across categories.
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Table 7.3 - MIXNO.DEF ¯le for Bock nominal latent trait model

Clogg - life satisfaction data - 3 items & 3 categories

nominal IRT model

lifesat.dat

lifesat.OUT

lifesat.def

1 7 3 0 0.0001 3 0 0 1 0 0 0 20 0 0 0 1 1

1 2

4 5 6

7

1 2 3

LifeSat

Item1 Item2 Item3

Table 7.4 list the results of this analysis. Because the data are frequency weighted, MIXNO lists

the number of patterns and observations at each of the two levels. The level-2 patterns are the 27

response patterns, the 1472 level-2 observations equal the number of subjects, and the 4416 level-1

observations equal the total number of responses (i.e., 3 responses from 1472 subjects equals 4416).

MIXNO then indicates that three responses were observed for each of the 27 response patterns.

Prior to listing the estimates of the model, MIXNO indicates that three of the response patterns

consisted of non-varying level-1 responses (i.e., 111, 222, and 333); this equals 3=27 = :1111 or

11.11 percent of the response patterns.

The estimates for the six random e®ect variance terms (3 items by 2 category comparisons)

produced by MIXNO agree almost exactly with those reported in Bartholomew [49] on page 172.

As noted by Bartholomew, there is an anomaly in that there is a negative estimate for the ¯rst

random e®ect term of the Family item (i.e., the term comparing responses between categories 2

and 1). However, because the standard error of this term greatly exceeds the estimate, it is not

signi¯cantly di®erent than zero, and so we can designate this variance term to be zero.

Turning to the ¯xed e®ects, we see that all are highly signi¯cant indicating the increased

probability of medium and high satisfaction responses, relative to low satisfaction, for all items. The

di®erence is especially pronounced for the Family item when contrasting high to low satisfaction

responses, where the estimate equals 3.03; this agrees with our previous observations based on

Figures 1 and 2. To aid in interpretation of the ¯xed e®ects, Bartholomew uses the following

parameterization:
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¼jk =
exp¹jkPK
k=0 exp¹jk

(17)

where k = 0; 1; : : : ;K response categories and j denotes the (level-1) items. Additionally, the

reference category parameter ¹j0 is set equal to zero. This yields estimates ¼̂jk that indicate the

response probability for a person at the median (in terms of the underlying latent satisfaction dis-

tribution). Using this parameterization and the estimates produced by MIXNO yields the following

results in Table 7.5.

Table 7.5 - Bartholomew parameterization of MIXNO estimates

category 0 category 1 category 2 total

Item 1 ¹10 = 0 ¹̂11 = :9623 ¹̂12 = 3:0349
exp() 1 2.6177 20.7990 24.4170

¼1k = exp()P
exp()

.041 .107 .852

Item 2 ¹20 = 0 ¹̂21 = :9210 ¹̂22 = 1:6355
exp() 1 2.5118 5.1320 8.6438

¼2k = exp()P
exp()

.116 .291 .594

Item 3 ¹30 = 0 ¹̂31 = 1:0853 ¹̂32 = 1:4127
exp() 1 2.9603 4.1070 8.0674

¼3k = exp()P
exp()

.124 .367 .509

These re-expressions of the estimated MIXNO parameters agree exactly with those reported in

Bartholomew (page 172), and as noted by Bartholomew, indicate that a median respondent has a

greater probability (.85) of being highly satis¯ed on the Family item than on either of the other

two items (.59 and .51, respectively).

Returning to the random-e®ect variance terms, notice that, for a given category, these are very

similar. As noted, the only exception is the negative random-e®ect variance term for the ¯rst item

when comparing code 2 vs. code 1 (i.e., medium vs. low). Thus, a simpler model that does not

allow the random-e®ects variance terms to vary across items might be reasonable for these data.

For nominal data, such models are generalizations of the Rasch model for dichotomous data. In

this vein, Masters [48] describes a model where the in°uence of the random subject e®ect does not

vary across items. And while the in°uence of the random e®ect does vary across categories, it does

so in a prede¯ned way. Speci¯cally, in Masters' model the in°uence of the random subject e®ect is

¯xed to be k = 0; 1; : : :K, respectively, for each of the K + 1 successive outcome categories. Here,



MIXNO 76

we will ¯t a model where the in°uence of the random subject e®ect does not vary across items, but

its varying in°uence across categories will be estimated. For this, consider the modi¯cations made

to interface screens 2 and 5 shown below.

Interface screens 2 and 5

Screen 2 indicates a random intercepts model, where the random e®ect variance varies across

categories (on screen 1, same as before). Additionally, all three item indicator variables are speci¯ed

as ¯xed explanatory variables on screen 2, and as a result, the mean of the random e®ects (i.e.,

the overall intercept) is not identi¯ed and cannot be estimated (i.e., only three ¯xed parameters

can be estimated for the three items). Thus, the \¯x to 0" option is chosen for the Random E®ect

Mean Vector box on screen 5.

For non-interface use Table 7.6 provides the corresponding MIXNO.DEF ¯le for this example.

Note that VCAT=1 and NOMU=1 are selected on line 6 to allow, respectively, the random e®ects

variance to vary across categories, and to prohibit estimation of the mean of the random e®ects.
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Table 7.6 - MIXNO.DEF ¯le for Rasch-type nominal latent trait model

Clogg - life satisfaction data - 3 items & 3 categories

nominal IRT model - Rasch-type model

lifesat.dat

lifesat1.out

lifesat1.def

1 7 1 3 0.0001 3 0 0 1 0 0 0 20 0 0 1 0 1

1 2

3

4 5 6

7

1 2 3

LifeSat

Intercpt

Item1 Item2 Item3

Results for this analysis are given in Table 7.7. A likelihood-ratio test comparing this model to

the previous one yields Â2
4 = 7484:464 ¡ 7478:817 = 5:647 which is not statistically signi¯cant at

even the .10 level. Thus, the simpler model with the assumption of equal random-e®ect variances

across items is reasonable. Though the estimates change somewhat (mostly for the Family item),

the conclusions based on this model are the same as those for the previous model. Based on these

estimates, the response probability curves in Figure 7.3 were generated. These curves indicate

the response probabilities across values of the underlying latent satisfaction level (i.e., the random

subject e®ect) for each of the three items. For each item j, these were generated using formulas

Pij0 =
1

1 + exp(¾1µi + ®j1) + exp(¾2µi + ®j2)
(18)

Pij1 =
exp(¾1µi + ®j1)

1 + exp(¾1µi + ®j1) + exp(¾2µi + ®j2)
(19)

Pij2 =
exp(¾2µi + ®j2)

1 + exp(¾1µi + ®j1) + exp(¾2µi + ®j2)
(20)

and substituting the parameter estimates and values of the random e®ect µ. The vertical lines in

the ¯gures indicate the value of µ where the probability of a response in the low category equals

the medium and high category, respectively. These are obtained as simple re-expressions of the

estimated parameters, namely ¡®̂j1=¾̂1 and ¡®̂j2=¾̂2, respectively.
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Figure 7.3 - Response Probability Curves

As noted by Masters [48], who presents a similar ¯gure, the curves show that the probability of

responding \low" is modeled to decrease with increasing life satisfaction (i.e., the random e®ect).

Similarly, the probability of responding \high" is modeled to increase with increasing life satis-

faction, and the probability of responding \medium" is modeled to increase and then decrease.

The curves also show that the Family item is unique in that even at relatively low levels of life

satisfaction, say -1, the \high" response is the most probable response.

To get the estimated marginal probabilities that are presented in Figures 7.1 and 7.2, some

additional work is required. Using equations (18)-(20) yields the response probabilities for partic-

ular values of the random e®ect µ (i.e., the subject-speci¯c probabilities mentioned in Section 6.5).
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Again, these subject-speci¯c probabilities can be used to obtain marginal probabilities by perform-

ing numerical integration. Table 7.8 (at the end of this section) contains a listing of SAS-IML code

that implements a 10 point quadrature solution for this.

7.1 Estimation of µ

As mentioned in Section 3, MIXNO provides empirical Bayes estimates of the random subject

e®ects µi. Upon convergence, these estimates are written to the MIXNO.RES ¯le. Table 7.9 lists

these estimates for both models considered here. The empirical Bayes estimates of the random

e®ects are described as \expected a posteriori" (EAP) estimates by Bock and Aitkin [29] because

they are obtained as the mean of the posterior distribution of µ given the nominal outcomes y. The

analogous standard deviation of the posterior distribution (PSD; the square root of the estimated

posterior variance) provides information about the degree of precision in the estimation of µ. Also,

the columns labeled Bock and Rasch in Table 7.9 refer to the ¯rst and second models ¯t to these

data, respectively (i.e., Tables 7.4 and 7.7).

Interestingly, Bock's model gives the lowest EAP score to pattern 211 rather than 111 (and a

lower score for 212 rather than 112, etc.). This is due to the negative variance estimate that was

obtained under this model for the Family item, response code 2 vs. 1. However, since the estimates

for these two patterns are almost the same, this has little practical signi¯cance. Because the Rasch

model assumes homogeneity of the random-e®ects variance terms across items, it yields identical

EAP and PSD estimates for patterns that share the same response values (e.g., 211, 112, and 121;

or 212, 221, and 122).

Finally, the last column of Table 7.9 lists the latent class assignments reported in Bartholomew

[49] for a three class solution. It is interesting to compare the estimated ranking based on the latent

trait models to the assignment based on the latent class analysis. To facilitate this, the table is

broken at two points where gaps in the EAP estimates are largest. As can be seen, the agreement

between the latent classes and latent trait estimates is very close, especially for class III. However,

the latent trait models do provide ¯ner groupings of subjects than the latent class model as well as

information about the relative importance of the items to the underlying latent variable. Further

discussion about the similarities and di®erences of these two methods can be found in Bartholemew

[49] and Masters [48].
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Table 7.9 - empirical Bayes estimates

response observed EAP PSD Latent
F H R frequency Rasch Bock Rasch Bock class

2 1 1 16 -1.422 -1.535 0.723 0.716 I
1 1 1 15 -1.599 -1.490 0.736 0.712 I
2 1 2 26 -1.251 -1.351 0.712 0.702 I
2 2 1 23 -1.251 -1.332 0.712 0.701 II
1 1 2 11 -1.422 -1.308 0.723 0.699 I
1 2 1 3 -1.422 -1.289 0.723 0.698 II
2 2 2 58 -1.085 -1.155 0.703 0.691 II
1 2 2 12 -1.251 -1.113 0.712 0.689 II

2 1 3 12 -0.641 -0.816 0.691 0.680 I
2 3 1 18 -0.641 -0.793 0.691 0.680 II
1 1 3 7 -0.800 -0.776 0.693 0.680 II
1 3 1 5 -0.800 -0.752 0.693 0.680 II
3 1 1 23 -0.800 -0.748 0.693 0.680 II
2 2 3 31 -0.483 -0.629 0.690 0.680 II
2 3 2 38 -0.483 -0.624 0.690 0.680 II
1 2 3 5 -0.641 -0.589 0.691 0.681 II
1 3 2 14 -0.641 -0.583 0.691 0.681 II
3 1 2 49 -0.641 -0.579 0.691 0.681 II
3 2 1 45 -0.641 -0.561 0.691 0.681 II
3 2 2 117 -0.483 -0.390 0.690 0.686 II

2 3 3 27 0.127 -0.091 0.712 0.700 III
1 3 3 16 -0.039 -0.047 0.703 0.703 III
3 1 3 54 -0.039 -0.043 0.703 0.703 III
3 3 1 64 -0.039 -0.018 0.703 0.705 III
3 2 3 126 0.127 0.161 0.712 0.718 III
3 3 2 191 0.127 0.167 0.712 0.718 III
3 3 3 466 0.809 0.793 0.770 0.776 III
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7.2 Section 7 MIXNO Output

Table 7.4 - output ¯le for Bock nominal latent trait model

MIXNO - The program for mixed-effects nominal logistic regression analysis

Clogg - life satisfaction data - 3 items & 3 categories

nominal IRT model

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 4416.00

Level 1 patterns = 81

Level 2 observations = 1472.00

Level 2 patterns = 27

The number of level 1 patterns per level 2 pattern are:

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

LifeSat 1.00000 3.00000 2.49932 0.69458

Item1 0.00000 1.00000 0.33333 0.47146

Item2 0.00000 1.00000 0.33333 0.47146

Item3 0.00000 1.00000 0.33333 0.47146

Categories of the response variable LifeSat

--------------------------------------------

Category Frequency Proportion

1.00 513.00 0.11617

2.00 1185.00 0.26834

3.00 2718.00 0.61549

Starting values

---------------

mean -1.388 0.170 0.453 0.554 0.000 0.000

var. terms 1.814 0.907 0.907 1.995 1.088 1.088
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==> The number of level 2 patterns with non-varying responses

= 3 ( 11.11 percent )

---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 37

Quad Pts per Dim = 20

Log Likelihood = -3739.408

Deviance (-2logL) = 7478.817

Ridge = 0.100

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 2. vs CODE 1.

-----------------------------

fixed effects

Item1 0.96228 0.26303 3.65838 0.00025 (2)

Item2 0.92095 0.14084 6.53878 0.00000 (2)

Item3 1.08525 0.12659 8.57314 0.00000 (2)

random effect variance & covariance terms: cholesky of var-covariance matrix

Item1 -0.08825 0.26782 -0.32953 0.74175 (2)

Item2 0.40460 0.17429 2.32146 0.02026 (2)

Item3 0.36614 0.16066 2.27892 0.02267 (2)

RESPONSE CODE 3. vs CODE 1.

-----------------------------

fixed effects

Item1 3.03490 0.22838 13.28902 0.00000 (2)

Item2 1.63554 0.13300 12.29763 0.00000 (2)

Item3 1.41271 0.12244 11.53793 0.00000 (2)

random effect variance & covariance terms: cholesky of var-covariance matrix

Item1 1.55194 0.29205 5.31391 0.00000 (2)

Item2 1.54380 0.21996 7.01849 0.00000 (2)

Item3 1.49291 0.21146 7.06004 0.00000 (2)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value
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Table 7.7 - output ¯le for Rasch-type nominal latent trait model

MIXNO - The program for mixed-effects nominal logistic regression analysis

Clogg - life satisfaction data - 3 items & 3 categories

nominal IRT model - Rasch-type model

Random-effects distribution: normal

Numbers of observations

-----------------------

Level 1 observations = 4416.00

Level 1 patterns = 81

Level 2 observations = 1472.00

Level 2 patterns = 27

The number of level 1 patterns per level 2 pattern are:

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Descriptive statistics for all variables

----------------------------------------

Variable Minimum Maximum Mean Std.Dev.

LifeSat 1.00000 3.00000 2.49932 0.69458

Intercpt 1.00000 1.00000 1.00000 0.00000

Item1 0.00000 1.00000 0.33333 0.47146

Item2 0.00000 1.00000 0.33333 0.47146

Item3 0.00000 1.00000 0.33333 0.47146

Categories of the response variable LifeSat

--------------------------------------------

Category Frequency Proportion

1.00 513.00 0.11617

2.00 1185.00 0.26834

3.00 2718.00 0.61549

Starting values

---------------

covariates 0.000 0.000 0.000 0.000 0.000 0.000

var. terms 0.574 0.631
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==> The number of level 2 patterns with non-varying responses

= 3 ( 11.11 percent )

---------------------------------------------------------

¤ Final Results - Maximum Marginal Likelihood Estimates ¤
---------------------------------------------------------

Total Iterations = 13

Quad Pts per Dim = 20

Log Likelihood = -3742.232

Deviance (-2logL) = 7484.464

Ridge = 0.000

-------- ------------ ------------ ------------ ------------

Variable Estimate Stand.Error Z p-value

-------- ------------ ------------ ------------ ------------

RESPONSE CODE 2. vs CODE 1.

-----------------------------

fixed effects

Item1 1.32651 0.16055 8.26236 0.00000 (2)

Item2 0.88231 0.10995 8.02481 0.00000 (2)

Item3 1.07369 0.10383 10.34058 0.00000 (2)

random effect variance term: expressed as a standard deviation

Intercpt 0.33254 0.09742 3.41331 0.00032 (1)

RESPONSE CODE 3. vs CODE 1.

-----------------------------

fixed effects

Item1 3.16593 0.15017 21.08222 0.00000 (2)

Item2 1.61479 0.11019 14.65431 0.00000 (2)

Item3 1.40294 0.10940 12.82365 0.00000 (2)

random effect variance term: expressed as a standard deviation

Intercpt 1.58237 0.10337 15.30775 0.00000 (1)

note: (1) = 1-tailed p-value

(2) = 2-tailed p-value

Calculation of the intracluster correlation

-------------------------------------------

residual variance = pi*pi / 3 (assumed)

1 cluster variance = (0.333 * 0.333) = 0.111

intracluster correlation = 0.111 / ( 0.111 + (pi*pi/3)) = 0.033

2 cluster variance = (1.582 * 1.582) = 2.504

intracluster correlation = 2.504 / ( 2.504 + (pi*pi/3)) = 0.432
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7.3 Section 7 SAS IML listing

Table 7.8 - computing marginal probabilities for Table 7.7 results

TITLE1 'Satisfaction Data - Estimated Marginal Probabilities';

PROC IML;

/* Results from MIXNO analysis - output file: LIFESAT1.OUT */;

w = f 1 0 0, 0 1 0, 0 0 1 g;
alpha1 = f1.32651, 0.88231, 1.07369g;
sigma1 = .33254;

alpha2 = f3.16593, 1.61479, 1.40294g;
sigma2 = 1.58237;

/* Now get the estimated marginal probabilities */;

/* number of quadrature points, quadrature nodes, and weights */;

nq = 10;

bq = f 3.8869246, 2.9630366, 2.0883447, 1.2426890, 0.4125905,

-0.4125905, -1.2426890, -2.0883447, -2.9630366, -3.8869246g;
aq = f .0002003, .0044289, .0386501, .1540833, .3026346,

.3026346, .1540833, .0386501, .0044289, .0002003g;
/* initialize to zero */;

mprb0 = J(3,1,0);

mprb1 = J(3,1,0);

mprb2 = J(3,1,0);

DO q = 1 to nq;

z1 = sigma1*bq[q] + w*alpha1;

z2 = sigma2*bq[q] + w*alpha2;

mprb0 = mprb0 + ( 1.0 / (1.0 + EXP(z1) + EXP(z2)))*aq[q];

mprb1 = mprb1 + (EXP(z1) / (1.0 + EXP(z1) + EXP(z2)))*aq[q];

mprb2 = mprb2 + (EXP(z2) / (1.0 + EXP(z1) + EXP(z2)))*aq[q];

END;

/* compute logits */;

mlogit1 = log ( mprb1 / mprb0);

mlogit2 = log ( mprb2 / mprb0);

/* print out results */;

print 'Quadrature method - 10 points';

print 'marginal probability for category 0', mprb0 [FORMAT=8.4];

print 'marginal probability for category 1', mprb1 [FORMAT=8.4];

print 'marginal probability for category 2', mprb2 [FORMAT=8.4];

print 'marginal logit for cat 1 vs cat 0', mlogit1 [FORMAT=8.4];

print 'marginal logit for cat 2 vs cat 0', mlogit2 [FORMAT=8.4];
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8 Hardware and software speci¯cations

MIXNO is written in standard FORTRAN-77 with double arithmetic precision and requires a math

coprocessor. All necessary matrices and vectors are stored in a single one-dimensional array. There

are no ¯xed limitations on the numbers of level-2 units, level-1 units, or model variables. MIXNO

utilizes some MATCAL subroutines [52] for matrix algebra operations.

9 Availability

The MIXNO program is available at no charge and can be downloaded from the author's website

at http://www.uic.edu/ehedeker/mix.html. Along with the program, the manual and example

datasets are provided at this website. Any comments regarding program usage can be e-mailed to

the author at hedeker@uic.edu.
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APPENDIX: Some Common MIXNO Errors

There are a few errors which can prevent MIXNO from running correctly, or even running at

all. First, as mentioned above, missing values that are not given a speci¯ed numeric missing value

code, but instead left as blank ¯elds, will most likely cause the program to fail (or to estimate a

model which is incorrect from the user's perspective). To see if this has occurred, the user can check

the correctness of each variable's descriptive statistics (minimum, maximum, mean, and standard

deviation) listed in the output ¯le. If these descriptive statistics are incorrect, the data are not

being read into the program correctly and a common reason is that missing values are being left as

blank ¯elds in the data ¯le.

Second, use of the crosstabulation option on interface screen 2 (or the CATYX option for non-

interface use) is somewhat tricky. The values listed by the user for the levels of the crosstabulation

variable must be exactly the same as the values that are found in the data ¯le. If a strange error

prevents MIXNO from running and this option is selected, it might be best to unselect this option.

Third, the Level-2 Units to List option on the ¯rst screen (or the NPR option), which is used

to list data to the screen, can cause MIXNO to stop in certain cases. This can happen when the

number of digits to be listed for a variable exceeds the format speci¯cation of the program. If the

program stops after indicating (on the screen) the number of random and ¯xed e®ects in the model,

but prior to listing any iterative results to the screen, the user can set this ¯eld to zero and re-run

the program.

Fourth, problems can develop if the user tries to ¯t a model with a single random e®ect, and that

random e®ect is not the intercept. In this case, the procedure used to generate starting values for

the program is sometimes poor. Instead, the user can enter user-de¯ned starting values on interface

screen 3 (or choose the START option) and specify \naive" starting values of 0 for the mean of the

random e®ect and for the explanatory variable e®ects, and some fraction of the assumed residual

variance for the random-e®ect variance term (e.g., .5 or 1).

Finally, if the program \blows up," it may be that the speci¯ed model is not estimable. In this

case, the user should try ¯tting a less complicated model by specifying fewer random e®ects, or

fewer explanatory variables, or collapsing some of the response categories if these are sparse. If the

number of random e®ects is 1, and problems still exist, it may be that the random-e®ect variance

cannot be reliably estimated as being di®erent from zero. In this case, a model without random

e®ects may be warranted.
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