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Abstract

This manuscript overviews exact testing of goodness of fit for log-linear models using
the R package exactLoglinTest. This package evaluates model fit for Poisson log-linear
models by conditioning on minimal sufficient statistics to remove nuisance parameters. A
Monte Carlo algorithm is proposed to estimate P values from the resulting conditional
distribution. In particular, this package implements a sequentially rounded normal ap-
proximation and importance sampling to approximate probabilities from the conditional
distribution. Usually, this results in a high percentage of valid samples. However, in
instances where this is not the case, a Metropolis Hastings algorithm can be implemented
that makes more localized jumps within the reference set. The manuscript details how
some conditional tests for binomial logit models can also be viewed as conditional Poisson
log-linear models and hence can be performed via exactLoglinTest. A diverse battery of
examples is considered to highlight use, features and extensions of the software. Notably,
potential extensions to evaluating disclosure risk are also considered.

Keywords: Poisson models, exact testing, hypothesis testing, Fisher’s exact test.

Goodness-of-fit tests for Poisson log-linear models are often performed by conditioning on the
sufficient statistics for model parameters and then calculating P values from the resulting,
parameter free, distribution. Such P values result in so called “exact tests” that guarantee
that the actual Type I error rate is no larger than the nominal one. Such analyses are limited
by the fact that the set of lattice points contained in the conditional distribution is difficult to
manage, computationally or analytically. Hence, large sample chi-squared tests are generally
more popular.

The R (R Development Core Team 2006a) software package exactLoglinTest attempts to ad-
dress the computational difficulties of exact analyses using importance sampling and Markov
chain Monte Carlo (MCMC). At the heart of exactLoglinTest is a sequentially rounded ap-
proximation to the conditional distribution developed and implemented in Booth and Butler
(1999) and Caffo and Booth (2001).
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2 Exact Hypothesis Tests for Log-linear Models with exactLoglinTest

Residence Residence in 1985
in 1980 Northeast Midwest South West
Northeast 11,607 100 366 124
Midwest 87 13,677 515 302
South 172 225 17,819 270
West 63 176 286 10,192

Table 1: Residency data. Source Agresti (1990) page 423.

The manuscript is laid out as follows. In Section 1 notation and background information is
presented. Section 2 gives the basics of the algorithms while Section 3 covers several example
usages. Finally, Section 4 concludes with a discussion.

1. Problem formulation

Consider the data given in Table 1, which is a 4×4 contingency table compiled by the United
States Census Bureau tabulating subjects’ residence in 1985 by their residence in 1980. This
data set will be used as motivation for the approach.

Suppose that observed counts, y = (y1, . . . , yn), are modeled as Poisson with means, µ =
(µ1, . . . , µn), satisfying

log µ = xβ.

Here “log” is presumed to act component-wise on vectors and the design matrix, x, is assumed
to be full rank. For example, for the Residency data, we might consider the familiar model
of independence. The columns of x would contain a constant (intercept term), three columns
of indicators for the 1980 residence and three columns of indicators for the 1985 residence.

Consider investigating model fit using goodness-of-fit statistics. Specifically, let h be a test
statistic of interest such that larger values of h support the alternative hypothesis, such as
the Pearson Chi-Squared statistic

n∑
i=1

(yi − µ̂i)2

µ̂i

or the residual deviance

2
n∑

i=1

{yi log(yi/µ̂i)− (yi − µ̂i)}.

Here the term yi log(yi/µ̂i) is defined to be 0 when yi = 0 and µ̂i are maximum likelihood
estimates. For the Residency data set these statistics are both on the order 120, 000 on
9 degrees of freedom. The independence model results in such a poor fit because of the
large counts down the diagonal; that is, people tend to stay in the same geographic region.
In Section 3.1 a better fitting model for this data is considered that incorporates model
parameters for each diagonal count.

For Poisson log-linear models, it is well known that the sufficient statistic for β under the
null hypothesis is x>y, where a superscript > denotes a transpose. The existence of closed
form sufficient statistics for the Poisson log-linear model yields a method for testing goodness
of fit or eliminating nuisance parameters. In particular, because x>y is sufficient for β, the
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conditional distribution of y given x>y does not depend on any parameters. Furthermore, it
can be shown that

P(Y = y | x>y = s) =

 ∑
u∈Γ(s)

n∏
i=1

1
ui!

−1(
n∏

i=1

1
yi!

)
= C

n∏
i=1

1
yi!

, (1)

where C is a normalizing constant, u = (u1, . . . , un)> is a generic vector of non-negative
counts and Γ(s) = {u | x>u = s}. Here Γ(s) is the so called “reference set”, or the set of
allowable values of y given that x>y = s.

To illustrate, consider the independence model for the Residency data. The sufficient statis-
tics, x>y, can be shown to be the margins of the table. Hence Γ(s) is the collection of all
tables that satisfy the margins. In this case, the reference set is easily characterized. However,
in general, Γ(s) is either too complicated or contains too many elements to be characterized
in any useful way.

A conditional P value calculates the probability of all tables with values of h at least as large
as the observed value. Notationally, the conditional P value is:

P{h(y) ≥ h(yobs) | x>y = x>yobs} =
∑

{y∈Γ(sobs)}

I{h(y) ≥ h(yobs)}
C
∏n

i=1 yi!

where yobs is the observed table and sobs = x>yobs .

When compared to a fixed nominal type I error rate, such a P value is “exact”. It should
be noted that the accolade “exact” is given to tests that guarantee the nominal type I error
rate unconditionally. Thus a test that never rejects the null hypothesis is technically exact
in any situation. In particular, this illustrates that exactness may be a desirable, but is not
a sufficient property for a test to be acceptable. Moreover, this example (never rejecting) is
particularly relevant in our setting because Γ(sobs) may contain one or few elements. Hence
the conditional P value will be exactly or near one regardless of the evidence in the data vis-
a-vis the two hypotheses. However, it is also the case that the conservative conditional tests
can produce P values that are smaller than those calculated via Chi-squared approximations
(see Subsection 3.2 for an example).

A general problem with exact P values is their calculation. The reference set, Γ(sobs), is
often too large or complicated to enumerate. In this manuscript the use of Monte Carlo to
approximate conditional P values is explored. In specific, consider simulating J complete
tables, say {y(j)}J

j=1. Then a Monte Carlo approximation to the conditional P value is

J∑
j=1

w(j)I{h(y(j)) ≥ h(yobs)}/
J∑

j=1

w(j),

where {w(j)} are importance weights, the ratio of the target mass function (given by Equa-
tion 1) evaluated at the simulated table to that of the mass function used for simulation.
Note that when h is the Pearson statistic or the deviance, the fitted values, µ̂, do not change
by iteration, because every simulated data set has the same sufficient statistics.
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1.1. Binomial calculations

Conditional inference for binomial-logit models is a special case of conditional inference for
Poisson log-linear models. Therefore, the testing method outlined can also be applied to
binomial-logit model, provided some care in model specification.

Consider a binomial logit model of the form, bi ∼ Bin(ni, pi) for i = 1, . . . , k and

logit(pi) = ziγ + x>i β, (2)

where γ is a scalar of interest and β is a p dimensional vector of nuisance parameters. Fre-
quently, x>i contains only a stratum indicator and an intercept term. Conditioning on the
sufficient statistic for β results in standard conditional logistic regression. For this purpose, we
suggest the coxph function as described in Venables and Ripley (2002). Instead we consider
the more general case where xi is arbitrary. However, we stipulate that conditional inference
in such settings is not always informative, as the loss of information from conditioning can
sometimes be quite severe. For example, in many cases the reference set might contain only
the observed data.

Consider testing H0 : γ = 0 versus Ha : γ < 0 and the following model for the success
(yi1 = bi) and failure (yi2 = ni − bi) counts:

yij ∼ Poisson(µij) log(µi1) = αi + x>i β log(µi2) = αi, (3)

for j = 1, 2 and i = 1, . . . , k. The sufficient statistics for the αi are yi1 + yi2 = ni. Then
it can be shown that the conditional distribution of yi1|yi+ is precisely the model given by
Equation 2 where pi = µi1/µi+.

Therefore, conditioning out the nuisance parameters {αi} and β for the Poisson log-linear
model yields exactly the same (null) conditional distribution as conditioning out β in Model 2.
Furthermore, this exercise indicates exactly how to perform the calculations, which is per-
tinent, since exactLoglinTest only accepts models in the form of Poisson log-linear models.
It is also possible to represent many multinomial and product multinomial data as instances
of conditional Poisson models. We refer to (Agresti 1990, Chapter 8 and Section 8.6.7 in
particular) for more details.

2. The software

The software exactLoglinTest is an implementation of the algorithms presented in Booth and
Butler (1999) and Caffo and Booth (2001) using the R open-source programming language (R
Development Core Team 2006a). At the heart of both algorithms is a sequentially generated
rounded normal approximation to the conditional distribution. Full descriptions of the algo-
rithms are given in the technical references above while below we give a brief overview and
summarize related methods.

Both algorithms use the normal approximation to the Poisson as their base. That is, for large
µ, y will be approximately Normal{µ,D(µ)}, where D(µ) is a diagonal matrix with diagonal
µ. Using the properties of the multivariate-normal distribution, an approximation for the
distribution of y given x>y can be found. This process fixes some of the cells of y and leaves
some to be simulated. For example, in the independence model, x>y is the margins of the
table. Subtracting all rows except the last from the row margins yields the last row. The
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choice of which cells to fix and which to simulate from is somewhat arbitrary. The software
does an iterative search to find appropriate cells, though the choice is not optimized.

The algorithm in Booth and Butler (1999) employed the sequential distributions from the
normal approximation to the distribution of y given x>y as a candidate distribution for
importance sampling. A novel sequential rounding scheme was used to force the simulated
data to be non-negative integers.

The normal approximation allows for negative cell entries, resulting in simulated tables that
must be discarded and a potential loss in algorithmic efficiency. A refinement of the algorithm
fixes not only x>y, but also some of the remaining free cells. Because the normal approxima-
tion is lower dimensional, a greater percentage of valid tables can be generated this way (as
developed in Caffo and Booth 2001). However, this modification generates a Markov chain
instead of iid samples and hence requires more thoughtful use of the algorithm. As such,
one should switch to Markov chain sampling only when importance sampling produces an
extremely low percentage of valid tables.

Both the importance sampling and MCMC methods are implemented in a function, mcexact.
This function takes a log-linear model specification in the same form as a a call to glm. The
function mcexact uses glm to construct a design matrix and obtain fitted means (µ̂). The
algorithm proceeds to calculate goodness-of-fit statistics and subsequently runs the Monte
Carlo algorithm. The returned object is a list of class “bab” or “cab” (acronyms for “Booth
And Butler” and “Caffo And Booth” respectively) depending on which of the two algorithms
was used. The object has available methods summary, print and update. Also included in
the package are utility functions for more direct interaction with the simulated tables.

Below we discuss some of the several competing algorithms to the rounded normal approx-
imations used in Booth and Butler (1999) and Caffo and Booth (2001). However, we note
that direct software competitors to exactLoglinTest algorithms are few. From this perspec-
tive, the best developed are the network algorithms (see Mehta and Patel 1980, 1983) and
related methods incorporated in the software StatXact (Mehta 1991). This proprietary soft-
ware suite is considered the industry standard in this area. Being open source and freely
available, exactLoglinTest is targeting a different user base. In addition, we note that exact-
LoglinTest differs from the StatXact software suite by focusing only on log-linear models via
Monte Carlo calculations.

Of the many competing algorithms, perhaps the most general is due to Diaconis and Sturmfels
(1998), who used computational algebra to provide simple random walk algorithms based on
Markov bases. A limitation of this approach is that, in some settings, the computational
algebra required to obtain the Markov bases is impractical. However, Dobra (2003) calculated
the Markov bases for a large class of graphical models. Related algorithms using elegant
random scan Gibbs samplers were given by Forster, McDonald, and Smith (1996); McDonald,
Smith, and Forster (1999); Smith, Forster, and McDonald (1996). Furthermore, relevant
recent developments in sequential importance sampling (Chen, Diaconis, Holmes, and Liu
2005; Chen, Dinwoodie, and Sullivant 2006) are applicable to this setting. We refer the
reader to Caffo and Booth (2003) for an overview of Monte Carlo algorithms in this area.

In addition to Monte Carlo algorithms, there has been much relevant research in the area
of fast exact enumeration calculations for specific models (such as in Patefield 1981; Booth,
Capanu, and Heigenhauser 2005; Hirji, Mehta, and Patel 1987). Also, highly accurate sad-
dlepoint approximations have been applied with success (Strawderman and Wells 1998).
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As this brief literature review suggests, there are numerous competing algorithms. However,
most users outside of this research area would have little interest in implementing any of the
algorithms from scratch. The software package exactLoglinTest is an attempt to bridge this
gap being user-friendly, open source software for performing Monte Carlo exact goodness-of-fit
tests.

3. Examples

A copy of the package can be obtained at the Comprehensive R Archive Network, http:
//CRAN.R-project.org/. Refer to the “R Installation and Administration” manual (R De-
velopment Core Team 2006b), included with your R distribution, for details on how to install
packages. In addition, a noweb version of this document can be found at the author’s web
site.
Assuming it is properly installed, one can load exactLoglinTest with

R> library("exactLoglinTest")

R> set.seed(1)

The set.seed(1) command is used to set the random number seed to a specific value, so
that results can be reproduced.

3.1. Residency data

Recall the Residency data (Table 1). The data can be obtained by the command

R> data("residence.dat")

Clearly a model of independence does not hold, as evidenced by the large diagonal counts.
Instead we focus on the so called quasi-symmetry model (see Agresti 1990). This is a useful
alternative model when testing marginal homogeneity. The extra term, sym.pair, in the
data frame is used to fit a quasi-symmetry model. A Monte Carlo goodness-of-fit test of
quasi-symmetry versus a saturated model involves the following command

R> resid.mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair),

+ data = residence.dat, nosim = 10^2, maxiter = 10^4)

R> resid.mcx

deviance Pearson
observed.stat 2.98596233 2.98198696
pvalue 0.46311695 0.46311695
mcse 0.03679595 0.03679595

The default method used for sampling is the importance sampling algorithm of Booth and
Butler (1999). Because this method rejects simulated table with negative entries, the number
of desired simulations nosim may not be met in maxiter iterations.
The returned object is a list of class “bab”, storing the results as well as all of the relevant
information necessary to restart the simulation. More information can be obtained with
summary

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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R> summary(resid.mcx)

Number of iterations = 100
t degrees of freedom = 3
Number of counts = 16
df = 3
Next update has nosim = 100
Next update has maxiter = 10000
Proportion of valid tables = 1

deviance Pearson
observed.stat 2.98596233 2.98198696
pvalue 0.46311695 0.46311695
mcse 0.03679595 0.03679595

The “t degrees of freedom” refers to degrees of freedom used as a tuning parameter within the
algorithm, while the df refers to the model degrees of freedom.

As it stands, the Monte Carlo standard error, mcse, is too large for the P value estimate to
be useful. The simulation can be restarted using update

R> resid.mcx <- update(resid.mcx, nosim = 10^4, maxiter = 10^6)

R> resid.mcx

deviance Pearson
observed.stat 2.985962330 2.981986964
pvalue 0.397222805 0.396772921
mcse 0.003596126 0.003594809

Here nosim is the number of additional simulations desired and maxiter is the maximum
number of iterations allowed. It is important to note that update can only resume the
simulation with a new Monte Carlo sample size. It does not allow users to change the model
formulation; one must rerun mcexact independently to do that. In practice, we recommend
that users employ a large number of simulations, updating results until twice the Monte Carlo
standard error is below the number of significant digits required for reporting the P value.

This example illustrates the point that the underlying algorithms are very efficient when the
cell counts are large. When this is the case, the large sample approximations are close to the
conditional results, as we can see using the observed deviance and Pearson statistics given in
the output above:

R> pchisq(c(2.986, 2.982), 3, lower.tail = FALSE)

[1] 0.3937887 0.3944088
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3.2. Pathologists’ tumor ratings

The following example is interesting in that the large sample results differ drastically from the
conditional results. Moreover, the conditional results are less conservative. The data given
in Table 2 cross classify two pathologists’ tumor ratings and can be obtained in R with the
command

R> data("pathologist.dat")

A uniform association model accounts for the ordinal nature of the ratings by assigning ordinal
scores to the ratings (see Agresti 1990). We test the uniform association model against the
saturated model with

R> path.mcx <- mcexact(y ~ factor(A) + factor(B) + I(A * B),

+ data = pathologist.dat, nosim = 10^4, maxiter = 10^4)

R> summary(path.mcx)

Number of iterations = 4444
t degrees of freedom = 3
Number of counts = 25
df = 15
Next update has nosim = 10000
Next update has maxiter = 10000
Proportion of valid tables = 0.4444

deviance Pearson
observed.stat 16.214534925 14.729278917
pvalue 0.037393837 0.126297722
mcse 0.001194588 0.002990041

It is worth comparing these results to the asymptotic Chi-squared results

R> pchisq(c(16.214, 14.729), 15, lower.tail = FALSE)

[1] 0.3679734 0.4711083

Pathologist B
Pathologist A 1 2 3 4 5

1 22 2 2 0 0
2 5 7 14 0 0
3 0 2 36 0 0
4 0 1 14 7 0
5 0 0 3 0 3

Table 2: Pathologist agreement data. Source Agresti (1990).
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3.3. Alligator food choice data using MCMC

This example illustrates the algorithm from Caffo and Booth (2001) using the data and
Poisson log-linear model from the alligator food choice data shown in Table 3. This data set
and model is a good choice for MCMC as the percent of valid tables generated using method
= "bab" is very small, less than 1% of the tables simulated. It is often the case that the
MCMC algorithm will be preferable when the table is large and/or sparse. Using MCMC
introduces further complications in reliably running and using the output of the algorithm.
Throughout this example we consider the log-linear model

(FG, FL, FS,LGS),

where F = food choice, L = lake, S = size and G = gender.

The algorithm from Caffo and Booth (2001) uses local moves to reduce the number of tables
with negative entries that the chain produces. This method can be invoked with the option
method = "cab" of mcexact. The parameter p of mcexact is the average proportion of
table entries left fixed. A chain with p=.9 will leave most of the table entries fixed from
one iteration to the next. A high value of p will often result in a high proportion of valid
(non-negative) simulated tables. Unfortunately a large value of p can cause the chain to mix
slowly, because the tables will be very similar from one iteration to the next. However, it is
also possible that a small value of p will produce too many tables with negative entries. Hence
the Metropolis/Hastings/Green algorithm will stay at the current table for long periods and
again result in a slowly mixing chain. Therefore, adjusting the value of p is usually required.

To work with the individual iterations of the chain, the program allows for the option to save
the chain of goodness-of-fit statistics with the option savechain = TRUE. If using importance

Primary Food Choice
Lake Gender Size Fish Invert Reptile Bird Other
1 Male Small 7 1 0 0 5

Male Large 4 0 0 1 2
Female Small 16 3 2 2 3
Female Large 3 0 1 2 3

2 Male Small 2 2 0 0 1
Male Large 13 7 6 0 0
Female Small 3 9 1 0 2
Female Large 0 1 0 1 0

3 Male Small 3 7 1 0 1
Male Large 8 6 6 3 5
Female Small 2 4 1 1 4
Female Large 0 1 0 0 0

4 Male Small 13 10 0 2 2
Male Large 9 0 0 1 2
Female Small 3 9 1 0 1
Female Large 8 1 0 0 1

Table 3: Alligator data. Source Agresti (1990) page 269.
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sampling, i.e., method = "bab", then both the statistic values and the importance weights on
the log scale are saved. Consider the chain of goodness-of-fit statistics for the alligator food
choice data:

R> data("alligator.dat")

R> alligator.mcx <- mcexact(y ~ (lake + gender + size) * food +

+ lake * gender * size, data = alligator.dat, nosim = 10^3,

+ method = "cab", savechain = TRUE, batchsize = 100, p = 0.75)

R> summary(alligator.mcx)

Number of iterations = 1000
t degrees of freedom = 3
Number of counts = 80
df = 40
Number of batches = 10
Batchsize = 100
Next update has nosim = 1000
Proportion of valid tables = 0.196

deviance Pearson
observed.stat 50.26368862 52.56768703
pvalue 0.20000000 0.24900000
mcse 0.07231182 0.08921827

The chain of goodness-of-fit statistics are saved in alligator.mcx$chain. The saved chain is
discarded if the simulations are resumed with update, even if savechain = TRUE when the
simulation is resumed.
We would want to look at the autocorrelation function of the goodness-of-fit statistics. The
result of

R> acf(alligator.mcx$chain[, 1])

R> acf(alligator.mcx$chain[, 2])

is shown in Figure 1.
It is also usually useful to look at the chain of P values for the deviance statistics

R> top <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])

R> bottom <- 1:alligator.mcx$nosim

R> dev.p <- top/bottom

R> plot(dev.p, type = "l", ylab = "P value", xlab = "iteration")

R> title("Deviance P value by iteration")

and Pearson statistics.

R> top <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])

R> bottom <- (1:alligator.mcx$nosim)

R> pearson.p <- top/bottom

R> plot(pearson.p, type = "l", ylab = "Pvalue", xlab = "iteration")

R> title("Pearson P value by iteration")
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Figure 1: Autocorrelation function of the goodness-of-fit statistics.

Both are shown in Figure 2.

Note that there is an extremely slow decay in the autocorrelations of the chain of goodness-
of-fit statistics and that the P values for the two statistics do not seem to have converged.
Therefore, a much longer final run should be performed (not shown). Also, mcexact uses
batch means to estimate the Monte Carlo error, and so this suggests we should use very large
batch sizes.

With regard to batch sizes, mcexact does not require the total number of simulations to be a
multiple of the batch size. If the algorithm terminates in the middle of completing a batch,
that batch is not used in the P value calculations. However, the simulations are not wasted
if the algorithm is resumed with update.

A final run of this data, discarding all of the initial runs, could be performed by setting flush
= TRUE as an argument to update. Here, flush = TRUE, tells update to throw out all of the
data used in the initial tinkering, except that it starts the new chain from the final table from
the initial runs. This is a harmless way to burn in the chain without throwing away samples
from the final run. The chain can be restarted at the default starting value, the observed
data, by rerunning mcexact.
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Figure 2: Chain of deviance and Pearson P values.

3.4. Exact score test for binomial counts

The data given below are contained in the R dataset Titanic (see Mac and Dawson 1995).
Refer to the help page for the data set for more information. The data cross-classify survival
counts of the Titanic passengers by class, gender and age.

R> data("Titanic")

R> ftable(Class ~ Survived + Sex + Age, Titanic)

Class 1st 2nd 3rd Crew
Survived Sex Age
No Male Child 0 0 35 0

Adult 118 154 387 670
Female Child 0 0 17 0

Adult 4 13 89 3
Yes Male Child 5 11 13 0

Adult 57 14 75 192
Female Child 1 13 14 0

Adult 140 80 76 20
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A reorganized version of the same data is provided with the exactLoglinTest package

R> data("titanic.dat")

R> titanic.dat$alpha <- rep(1:16, 2)

The variable alpha is added to correspond to the αi terms from Equation 3.

We view each person’s survival as a binary outcome. Furthermore, we use a model where
a person’s age, gender and class are additive effects on the logit scale. The corresponding
Poisson log-linear model has model formula

y ~ (factor(class) + factor(age) + factor(sex)) : factor(surv) +
factor(surv) + factor(alpha)

Because mcexact was designed for goodness-of-fit tests, one must work more directly with the
simulated data in cases with an alternate goal. We use this example to illustrate the simlu-
ateConditional command, which only performs the simulation. Its result is the simulated y
values in a matrix, with each row being a simulation. When method = "bab" the importance
weights, on the log scale, are represented in the final column.

Consider the gender effect in specific. To calculate an exact P value simulateConditional
is used to simulate tables conditioning on all of the parameters, setting the interaction fac-
tor(surv) : factor(sex) to 0.

R> chain <- simulateConditional(y ~ factor(surv) + (factor(class) +

+ factor(age)):factor(surv) + factor(alpha), dat = titanic.dat,

+ nosim = 10^4, method = "cab", p = 0.1)

A P value for a score test of H0 : γ = 0 versus Ha : γ < 0 simply counts the proportion of
tables with sufficient statistic for γ is smaller than the observed value. Using the notation
from Equation 3 the sufficient statistic for γ is sγ =

∑
i ziyi ≡ z>y. We calculate the chain

of sufficient statistics and the observed sufficient statistic below.

R> z <- titanic.dat$sex * titanic.dat$surv

R> sgamma <- chain %*% z

R> sgamma.obs <- titanic.dat$y %*% z

R> mean(sgamma <= sgamma.obs[1])

[1] 0

Apparently, none of the simulated tables have sufficient statistics for γ below that of the
observed, suggesting that we would reject the hypothesis that γ = 0.

3.5. Application to disclosure limitation

Though there are certainly more rigorous procedures available (see Dobra et al. 2002), exact-
LoglinTest is a useful tool for exploring disclosure limitation in contingency tables. Consider
the Czech Auto Worker’s data given in Table 4. We investigate the potential disclosure risk
from releasing all two-way marginals from this table. The following code will load the Czech
auto worker data into a data frame:
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B no yes
F E D C A no yes no yes

neg small small no 44 40 112 67
yes 129 145 12 23

large no 35 12 80 33
yes 109 67 7 9

large small no 23 32 70 66
yes 50 80 7 13

large no 24 25 73 57
yes 51 63 7 16

pos small small no 5 7 21 9
yes 9 17 1 4

large no 4 3 11 8
yes 14 17 5 2

large small no 7 3 14 14
yes 9 16 2 3

large no 4 0 13 11
yes 5 14 4 4

Table 4: Czech auto workers data. Source Dobra et al. (2002) originally appeared in Edwards
and Havranek (1985).

R> data("czech.dat")

We will explore disclosure risk by simulating tables from the hypergeometric distribution ob-
tained by conditioning on all two way margins. However, it is necessary to save all of the
simulated table entries, not just the deviance and Pearson statistics. The function simu-
lateConditional performs this task. Recall, this function returns the simulated tables in a
matrix with each row being a complete simulated table.

Below we run the chain

R> chain <- simulateConditional(y ~ (A + B + C + D + E + F)^2,

+ data = czech.dat, method = "cab", nosim = 10^3, p = 0.4)

Now, the variable chain is a matrix so that each row is a simulated table with two-way margins
equal to those of the original table. We were particularly concerned with cells 39, 48, and 55
which contained only one, two and two individuals in the observed data respectively. Consider
the proportion of tables which have greater than zero but fewer than three individuals

R> mean(chain[, 39] > 0 & chain[, 39] < 3)

[1] 0.4

R> mean(chain[, 48] > 0 & chain[, 48] < 3)

[1] 0.534
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R> mean(chain[, 55] > 0 & chain[, 55] < 3)

[1] 0.603

This generalized hypergeometric model was used because it fixes all two-way margins. How-
ever, that model need not fit the data well (in fact, it doesn’t). Therefore, in addition to
simulating from the generalized hypergeometric density, it is also of interest to simulate from
other densities, such as a uniform distribution on tables with these margins. Though the
normal approximations for exactLoglinTest were tailored specifically to the hypergeometric
density, it allows for other target distributions. Here the density must be specified on the
log scale. Multiplicative constants (additive on the log scale) can be discarded. Therefore, to
specify a uniform density on the log scale, a function that returns 0 is supplied to the dens
= option.

R> chain2 <- simulateConditional(y ~ (A + B + C + D + E + F)^2,

+ data = czech.dat, method = "cab", nosim = 10^3, p = 0.4,

+ dens = function(y) 0)

R> mean(chain2[, 39] > 0 & chain2[, 39] < 3)

[1] 0.055

R> mean(chain2[, 48] > 0 & chain2[, 48] < 3)

[1] 0.603

R> mean(chain2[, 55] > 0 & chain2[, 55] < 3)

[1] 0.979

For each cell under consideration, the algorithm discovered tables that satisfy the margins,
but do not have a one or two cell count. Hence, the disclosure risk in releasing the two-way
marginals seems minimal.

4. Discussion

Exact tests are useful tools for investigating goodness-of-fit for contingency table data. The
primary limitation of these tests is the difficulty in implementing them. The software exact-
LoglinTest can help solve this problem for many examples. The program uses sequentially
rounded normal approximations to the relevant conditional distribution to produce Monte
Carlo approximations to P values. In this manuscript we investigated three straightforward
examples of exactLoglinTest and considered two potentially useful extensions of the program.
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