
JSS Journal of Statistical Software
May 2005, Volume 14, Issue 4. http://www.jstatsoft.org/

Calling the lp_solve Linear Program Software from

R, S-PLUS and Excel

Samuel E. Buttrey
Naval Postgraduate School

Abstract

We present a link that allows R, S-PLUS and Excel to call the functions in the lp_solve
system. lp_solve is free software (licensed under the GNU Lesser GPL) that solves linear
and mixed integer linear programs of moderate size (on the order of 10,000 variables and
50,000 constraints). R does not include this ability (though two add-on packages offer
linear programs without integer variables), while S-PLUS users need to pay extra for the
NuOPT library in order to solve these problems. Our link manages the interface between
these statistical packages and lp_solve.

Excel has a built-in add-in named Solver that is capable of solving mixed integer
programs, but only with fewer than 200 variables. This link allows Excel users to handle
substantially larger problems at no extra cost. While our primary concern has been the
Windows operating system, the package has been tested on some Unix-type systems as
well.

Keywords: linear programming, lpSolve, R, S-PLUS, Excel.

1. Introduction

1.1. The Excel Solver and its limitations

The spreadsheet program Excel for Windows (see, e .g ., Walkenbach (1999)) comes sup-
plied with an add-in named Solver that performs numerical optimization including linear
and integer programming. However, Solver can handle only comparatively small problems
(200 “adjustable cells,” according to the on-line help for Excel 2002). Additional “add-ins”
that allow the solution of larger problems are available for purchase. This paper addresses a
need for a free solver to handle linear or mixed integer programs of substantial size (on the
order of 10,000 variables and 50,000 constraints). We use the free software lp_solve due
to a team including Berkelaar, Dirks, Eikland, Notebaert (see the newsgroup and ftp site

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6305015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Calling lp_solve from R, S-PLUS and Excel

at http://groups.yahoo.com/group/lp_solve), re-compiled into a dynamic linked library
(DLL) using a free compiler and development environment. (The approach in this paper uses
lp_solve version 4.0, but newer versions of our technique calling version 5 are available.)
This DLL works together with an interface written in Visual Basic for Applications on the
Excel end and in C on the DLL end to allow calls to the lp_solve application programming
interface (API). (We refer to DLLs because our concern is primarily for the Windows environ-
ment, where Excel runs. However our R software has also been shown to work on Unix-style
systems when compiled into a shared library. We will refer to DLLs in the remainder of this
article.)

The same DLL and interface allow calls to lp_solve from the statistical environments S-
PLUS (Corporation (2001)) and R (R Project Home Page, http://www.R-project.org/).
The latter is another piece of freeware. Neither of the two packages comes with a built-in
mixed integer program solver, although a library for S-PLUS called NuOPT is available for an
additional price. The solveLP function in the linprog package, and the simplex function in
the boot package, solve linear (but not integer) programs in R. lp_solve is licensed under the
GNU Lesser General Public License; see the documentation for specific terms of the licensing
agreement.

1.2. DLLs and the development environment

For this project we used the Cygwin development environment (Cygwin project, http://www.
cygwin.com/). This environment supplies a set of Unix-like tools to the Windows application
developer. In particular, it allows the use of the free GNU compiler gcc (GNU project,
http://gcc.gnu.org/). Through this environment the developer is spared the necessity
of having to purchase a commercial development environment. An alternative version of the
gcc compiler, known as MinGW-gcc (http://www.mingw.com/), works as well and is perhaps
slightly easier to use.

The gcc compiler and its associated tools allow the production of DLLs. The DLL contains
the essential instructions associated with the program. The DLL acts as a “library” that can
be attached to the main program (Excel, for example) and whose member functions can be
called as needed.

2. The pieces of the link

2.1. Description

The link that we have constructed consists of three parts. The first is Visual Basic for
Applications (VBA) code that is included in the Excel add-in. This code includes a form that
allows the user to specify the objective function, constraints, integer variables, and the place
for the results to appear. It then declares and calls the second part, a C function (lpslink)
that acts as the interface between the VBA call and the functions exposed by the lp_solve
API.

Not technically part of the link is the DLL that allows lpslink to call the functions in
lp_solve. Although the lp_solve distribution includes a DLL, we needed to re-build the
DLL in order to include our link function. (The link is necessary for reasons described in

http://groups.yahoo.com/group/lp_solve
http://www.R-project.org/
http://www.cygwin.com/
http://www.cygwin.com/
http://gcc.gnu.org/
http://www.mingw.com/

Journal of Statistical Software 3

Figure 1: Schematic of link between clients (Excel, S-PLUS, R) and lp_solve

section 2.2 below.)

The third part of the link is the lpSolve package for R and S-PLUS. This is a set of four
functions in the S language (the language common to R and S-PLUS) that allow the user
to specify the objective function, constraints, and integer variables from within the package.
These functions then handle the details of calling lpslink and managing the results. Figure 1
shows a schematic diagram of the link.

2.2. The C link

The C link is necessary in order to call lp_solve from the S language (that is, from S-PLUS
or R; for brevity we will use S to mean either S-PLUS or R). This is because in some instances
lp_solve passes function arguments by value, but when S calls a DLL all arguments must be
passed by reference. Furthermore, C functions called from S cannot return values. The C link
allows function calls originating in S to be properly“packaged.”The link is not necessary when
calling lp_solve from VBA, since VBA can accept return values and pass arguments in either
style. Still, the C link provides a simple, one-call interface to the lp_solve system. Currently,
the caller (VBA for Excel, the lpSolve package for S) provides the coefficients of the objective
function, the matrix of constraints, arrays containing the directions and right-hand sides of
each constraint, and a vector indicating which variables are required to be integers. Details of
handling these arguments (for example, lp_solve requires that the objective function array
have an additional leading 0) are currently managed by the caller.

Inside the C link, the code dispatches calls to some of the lp_solve functions. There are

4 Calling lp_solve from R, S-PLUS and Excel

about 150 of these, but in the implementation presented here only nine are used. These calls
create the program, set the objective function and the optimization direction, add constraints,
set integer variables, solve the program, extract the results, and delete the program.

2.3. The lpSolve package for S

The lpSolve package contains four S functions. These are lp (to solve general mixed integer
linear programs), lp.assign (to solve assignment problems), lp.transport (to solve trans-
portation problems), and print.lp (to print the results of a linear program). These problems
are defined in section 3.1 below. Examples can be found in section 4.4.

2.4. The VBA link

VBA is a dialect of Visual Basic that serves as a scripting language for all Microsoft applica-
tions (for an in-depth introduction, see Walkenbach (1999)). In the present case, its usefulness
descends from its ability to handle forms and to call DLLs. The VBA interface to the link
has been implemented as an Excel add-in, which means that once the add-in has been loaded,
it is available from any workbook. When the add-in is invoked, it produces a simple form
which allows the user to select whether the problem is a general mixed linear program, or
specifically an assignment or transportation problem (these types of problem are described
below). This selection produces a second form. For a general mixed integer program, the user
fills in the form to describe whether the problem is a maximization or a minimization, and
to give the ranges of the objective function, constraints, integer variables, and the location
where results should be placed. A press of a button then produces the solution. The current
interface is admittedly primitive. Figure 2 shows a screen shot of a spreadsheet; the “Choose
a Problem” and “Linear/Integer Program” windows are visible.

3. Details and some technical notes

3.1. Types of problems

As Figure 2 suggests, three types of problems are currently supported in the link. The first is a
general linear program. Here the objective function and constraints are laid out in rows, with
each variable occupying a column. Any linear program in standard form can be represented
in this way.

However, two specific types of linear programs that arise in practice are also made available.
In the transportation problem, the decision variables are arranged in a rectangular matrix, say
I by J , so that the decision variables can be denoted by xij , i = 1, . . . , I; j = 1, . . . , J . There is
a cost associated with each of the xij , and there are constraints on row and column sums. For
this problem the user needs to enter a rectangular matrix containing the decision variables,
the signs of the constraints, and the constraint values, and a second matrix containing the
costs. The program converts the constraints to the needed form and requires that all variables
be non-negative integers.

The assignment problem is a special case of the transportation problem in which all the rows
and columns are constrained to add up to one. In our implementation, the user needs to
provide one matrix with decision variables and a second with cost; the program then prepares

Journal of Statistical Software 5

the constraints and requires that all variables be non-negative integers.

We note that by default every variable in lp_solve is constrained to be ≥ zero. This is not
a serious restriction, because an unconstrained variable can be re-expressed as the difference
between two positive variables. In the examples below, we do not explicitly state the positivity
requirement.

3.2. Compilation

We created DLLs containing both the C link and the lp_solve code using the gcc compiler
in the Cygwin environment. This allows other users to modify the code without having to
purchase a commercial development environment. Note that by default the Cygwin compiler
produces DLLs that themselves depend on another DLL, cygwin1.dll, that is installed with
that environment. Since most users will not have this DLL, Cygwin gcc users should include
the -mnocygwin flag and references to the MinGW libraries so that the resulting DLL can
stand alone. The alternative MinGW compiler produces executables that do not depend on
external DLLs and this compiler has worked for us as well.

When producing a DLL for Excel, calls to the compiler should include the -mrtd flag so that
the resulting objects use the Pascal (stdcall) calling convention. This flag is included in the
Makefile. The DLL for R needs to use the C calling convention, and so calls to the compiler
need to omit the -mrtd flag. Although S-PLUS can seemingly use either convention, we use
the Excel DLL for S-PLUS use. Users creating DLLs for R should use the Makefile.R file,
which also defines a compile-time definition BUILDING_FOR_R that accounts for the fact that
integer variables are passed as int * in R but as long * in S-PLUS.

3.3. Calling from S-PLUS or R

In S-PLUS 6.2 (Corporation 2001) DLLs are loaded with the dyn.open() function; dyn.load()
accomplishes that task in R (we are currently using version 1.9.1). Recall that while the code
used to produce the DLLs for S-PLUS and R is the same the compilation schemes (and there-
fore the DLLs themselves) are different. Three functions, useable in either S-PLUS or R, serve
as the interface to the DLLs. The function lp() accepts, as arguments, the vector of objective
function coefficients, a matrix of constraints, vectors containing the signs of the constraints
and their right-hand side values, and a vector indicating which variables should be required to
be integers. The return value is a list that includes (among other things) the optimal values
of the decision variables and the objective function value. The related functions lp.assign()
and lp.transport() handle the assignment and tranportation problems in a way analogous
to the way they are handled in Excel (see section 4.4).

3.4. Calling from Excel

Calling a DLL from Excel requires two steps. First the DLL is declared, using a Declare
statement in the VBA code. Second, it is called using a Call statement. The documentation
suggests that arrays should be declared as arrays in the Declare statement, and passed as
arrays in the Call statement, like this (where the underscore character denotes line continu-
ation):

Private Declare Sub lpslink Lib "lpsolve.dll" _

6 Calling lp_solve from R, S-PLUS and Excel

(ByRef objOut() As Double,)
Call lpslink (objOut(), ...)

In fact, though, this does not seem to work. Instead, array arguments should be declared as
scalars, and the call should refer to the first element of the array (element 0 unless specified
otherwise).

Private Declare Sub lpslink Lib "lpsolve.dll" _
(ByRef objOut As Double,)
Call lpslink (objOut(0), ...)

A workbook containing examples including the ones in this document is available from http:
//web.nps.navy.mil/~buttrey/Software/Lpsolve/.

4. Examples

4.1. General integer program

An example of a simple integer program appears in Nemhauser and Wolsey (1988, p. 443).
(This example was brought to our attention by the lp_solve documentation.) The problem
is:

Maximize 592x1 + 381x2 + 273x3 + 55x4 + 48x5 + 37x6 + 23x7

subject to
3534x1 + 2356x2 + 1767x3 + 589x4 + 528x5 + 451x6 + 304x7 ≤ 119567
with x1, x2, x3, x4, x5, x6, x7 all integer.

The authors say (using our notation) “[i]t is not hard to show an optimal solution is x1 =
33, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 0, x7 = 0, and that the optimal [objective function]
value is 19972.” This is the solution produced by Excel 97 using the default settings. In
fact, though, the solution (32, 2, 1, 0, 0, 0, 0) meets the constraint and produces an objective
function value of 19979. This is the solution produced by current versions of Excel and by
the lp_solve link. Figure 2 shows a screen shot of the lp_solve link producing the correct
answer, shown in the grey cells.

At the moment the Excel link cannot handle problems with exactly one adjustable cell. Al-
though this is not a very restrictive limitation, we will correct this in a subsequent release.

4.2. Problems too big for Excel’s Solver

It is easy to construct examples too big for Excel’s Solver. A simple one demonstrating the
assignment problem is shown in Figure 3. Here there are 15 sources (say, operators) to be
assigned to 15 destinations (say, jobs). Each decision variable represents the assignment of a
source to a destination, so in this example there are 225 variables. There is one constraint
per row to ensure that each operator is assigned exactly one job, and one contrainst per
column to ensure that each job is assigned exactly one operator. Thus in this example there
are 30 constraints. Figure 4 shows a screen shot of the assignment problem in the example
worksheet. (The lower matrix shows the assignments, with the total cost of 24 just visible to

http://web.nps.navy.mil/~buttrey/Software/Lpsolve/
http://web.nps.navy.mil/~buttrey/Software/Lpsolve/

Journal of Statistical Software 7

Figure 2: lp_solve finding the correct answer to example 1

the bottom right; the upper matrix shows the costs, with highlighted cells showing the actual
assignments.)

Since there are more than 200 adjustable cells in this problem, the Excel Solver will not run.
On a desktop computer equipped with Windows XP, a 3.6GHz processor and 3GB RAM,
lp_solve handles this problem in very much less than a second. A 75×75 assignment problem
(that is, one with 5,625 variables and 150 constraints) takes about a second; a 150 × 150
problem (22,500 variables, 300 constraints) takes about four seconds; and a 250×250 problem
(62,500 variables, 500 constraints) takes around thirty seconds. It should be noted that the
constraint matrices are typically sparse: in the 250×250 problem, the 500×62, 500 constraint
matrix contains 31, 000, 000 zeros and 250, 000 ones. The overhead of manipulating such a
matrix is of course considerable. Intelligent handling of this sort of sparsity would presumably
enable lp_solve to solve much bigger problems, but we have not yet taken any steps in this
direction.

4.3. Transportation problem

An example from Bronson (1982) demonstrates the transportation problem and its implmen-
tation. In the transportation problem, the row and column sums are constrained, but not
necessarily to be equal to one. This particular problem involves scheduling production in
the garment industry. We are given demands for garments for each of the four seasons (the
”Demand” row). We are also given an initial inventory (the ”Init” row) and the ability to
produce garments using regular labor (the ”Reg” rows) or overtime labor (the ”OT” rows).
The costs as given in the ”Cost” matrix reflect the $7 cost per garment using regular labor

8 Calling lp_solve from R, S-PLUS and Excel

Figure 3: Assignment problem example. The upper matrix shows the costs (highlighted cells
show the optimal assignments); the lower matrix shows the decision variables. The optimal
cost of 28 is visible below and to the right of the lower matrix.

Journal of Statistical Software 9

Figure 4: Transportation problem example. The user supplies signs and values for each row
and column constraint (lower matrix). The costs (upper matrix) include shaded cells set to a
large value as a penalty. The optimal value of 7790 is visible in the bottom right-hand corner
of the constraint matrix.

and the costs of using overtime labor, which differ depending on the season. There is also
a carrying charge of $0.70 for any garment not used in the quarter following its production;
so a garment produced in the spring using regular labor has an effective cost of $8.40 ($7.00
plus 2 * $0.70) if sold in the winter. The ”Cost” matrix includes some artificially high prices
to ensure that nothing is consumed before it is produced, and a ”dummy” column reflecting
the excess of supply over demand.

In order to use the link, the user enters the sign and value associated with each constraint,
as in the screen shot in Figure 4. As with the assignment problem, the I × J transportation
problem is assumed to be a minimization problem, with IJ integer variables and exactly
I + J constraints. In the assignment problem it is assumed that every constraint is of the
form

∑
i xij = 1 or

∑
j xij = 1; in the transportation problem, the user needs to supply both

the direction and the right-hand sides of the constraints. These are visible at the right side
and along the bottom of the matrix of decision variables. The link enters the optimal value
for the example problem, 7790, into in the bottom-right corner of the upper matrix.

4.4. S examples

In this section we solve two of the same examples using the S interface. The lpSolve package
can be installed automatically in R with the command install.packages("lpSolve") on
a computer connected to the Internet. For manual installation in R, or in S-PLUS, the user

10 Calling lp_solve from R, S-PLUS and Excel

needs to ensure that the DLL (properly compiled) is available on the system’s path.

The integer program from section 4.1 can be run in the following way. Here the ”>” is R’s
prompt and should not be entered by the user.

#
Set up objective.
#
> ex.obj <- c(592, 381, 273, 55, 48, 37, 23)
#
The constraint needs to be a matrix.
#
> ex.con <- matrix (c(3534, 2356, 1767, 589, 528, 451, 304), nrow=1)
#
Create the sign and the right-hand side of the constraint.
#
> ex.sign <- "<="
> ex.rhs <- 119567
#
Require all seven variables to be integers. In general this
vector will contain the indices of the integer variables.
#
> ex.int <- 1:7
#
Solve the linear program. By default print only the objective
#
> lp ("max", ex.obj, ex.con, ex.sign, ex.rhs, int.vec=ex.int)
Success: the objective function is 19979
#
Solve and print the vector of optimal values.
#
> lp ("max", ex.obj, ex.con, ex.sign, ex.rhs, int.vec=ex.int)$solution
[1] 32 2 1 0 0 0 0
#
Require only variables 1 and 3 to be integer
#
> lp ("max", ex.obj, ex.con, ex.sign, ex.rhs, int.vec=c(1, 3))$solution
[1] 33.00 1.25 0.00 0.00 0.00 0.00 0.00

The transportation problem from section 4.3 is solved in the following way.

#
Set up cost matrix
#
> costs <- matrix (10000, 8, 5); costs[4,1] <- costs[-4,5] <- 0
> costs[1,2] <- costs[2,3] <- costs[3,4] <- 7
> costs[1,3] <- costs[2,4] <- 7.7
> costs[5,1] <- costs[7,3] <- 8; costs[1,4] <- 8.4; costs[6,2] <- 9

Journal of Statistical Software 11

> costs[8,4] <- 10; costs[4,2:4] <- c(.7, 1.4, 2.1)
#
Set up constraint signs and right-hand sides.
#
> row.signs <- rep ("<", 8)
> row.rhs <- c(200, 300, 350, 200, 100, 50, 100, 150)
> col.signs <- rep (">", 5)
> col.rhs <- c(250, 100, 400, 500, 200)
#
Now run. lp.transport() converts the "solution" into a matrix.
#
> lp.transport (costs, row.signs, row.rhs, col.signs, col.rhs)
Success: the objective function is 7790
> lp.transport (costs, row.signs, row.rhs, col.signs, col.rhs)$solution

[,1] [,2] [,3] [,4] [,5]
[1,] 0 100 0 100 0
[2,] 0 0 300 0 0
[3,] 0 0 0 350 0
[4,] 200 0 0 0 0
[5,] 50 0 0 0 50
[6,] 0 0 0 0 50
[7,] 0 0 100 0 0
[8,] 0 0 0 50 100

4.5. Benchmark timing

In order to examine lp_solve’s speed we used some of the problems from the the netlib
library (see http://www.netlib.org/lp/data/readme). We were not able to consider the
NUOpt package from S-PLUS because we have not purchased this product. Comparisons
were made between the lp_solve and the Excel Solver (for problems with integer variables),
and among these two and the solveLP and simplex functions (from the linprog and boot
packages, respectively) for problems with no integer variables.

Initially we chose the “agg” problem (163 variables, none integer, and 489 constraints) with
with to compare our approach with Excel’s native solver, but (even though the number of
variables in that problem is smaller than the reported maximum of 200) Excel (version 2003)
reported that the problem was ”too large for Solver to handle.” The lp_solve package pro-
duced Netlib’s solution in under a second; simplex produced errors and no solution, whereas
solveLP produced warnings and a solution that was 87% of the optimum. (It must be noted
that we programmed routines to convert among the various argument formats, which worked
in most cases. Although we can find no error in our routines, we certainly might be responsible
for the other packages not completing in some cases.)

For our second test, we used the“adlittle”problem, which has 97 variables (none integer), and
56 constraints (though Netlib reports there are 57). This problem was solved by lp_solve
and simplex in under a second. solveLP reported an error. The Excel Solver produced a
solution in around ten seconds.

http://www.netlib.org/lp/data/readme

12 Calling lp_solve from R, S-PLUS and Excel

As a final test without integer variables, we used the SC205 problem, which has 203 variables
and 204 constraints. Because the number of cells is greater than 200, the native Excel Solver
is unable to solve this problem. The lp_solve program, running on the same comparatively
powerful desktop computer described above, ran in well under a second both through Excel
and through R. In contrast, simplex took about four seconds, and the solveLP function took
about seven seconds.

As an example of a problem with integer variables, we chose the “flugpl” problem from the
“miplib” library (see, e.g., http://miplib.zip.de/miplib3). This problem has 18 variables,
all integer, and 34 constraints. It takes about a second to solve using lp_solve (either through
Excel or from R) and around thirty seconds on Excel’s Solver.

5. Conclusion and future development efforts

5.1. Conclusion

This report describes progress in solving linear programs in Excel. The existing Solver add-in
supplied with Excel handles only small problems and in earlier versions occasionally, as in
Example 1 above, produced the wrong answer. Through the C and VBA link described here
we can call the lp_solve free software from Excel and from S-PLUS and R to find solutions
for problems orders of magnitude larger. This allows users to solve moderate to large linear
and mixed integer linear programs at no additional cost. In the case of R, this adds a freeware
linear program solution capability to a high-quality freeware statistical software environment.
A workbook available from the author’s web-site demonstrates the link in general linear
programs and some functionality specific to transportation and assignment problems.

Although lp_solve appears to find the correct solution in the above examples, it cannot be
considered validated software.

5.2. Future development

Right now the link is fairly primitive. For example, no constraints other than those on the row
and column sums can be added to transportation or assignment problems, and the location
of the optimal value cannot be selected by the user. The error-checking is also primitive: if
a user enters no text at all into the objective function box, for example, that error will be
caught and a reasonable message produced. However, if she enters some text that is not a
range at all, the error is not currently caught by the link. Instead, Excel returns a run-time
error whose text is largely indecipherable. A number of improvements to the form interface
can be made; for example, right now constraints must appear in rows, not in columns.

For the moment the S-PLUS or Excel user needs either to install the DLL into one of the
system directories, or to explicitly edit the code to reflect the location of the DLL. S-PLUS
has a more intelligent installation mechanism which we have not yet implemented. We are
not sure that Excel supports installation in which the user can select the location of the DLL,
but the DLL can be used as long as it can be found on the system path. The add-in itself
is handled by Excel’s built-in add-in manager. The link will continue to be distributed under
the same license as the original lp_solve software.

More recent versions of the link now support lp_solve version 5 which allow calls to other

http://miplib.zip.de/miplib3

Journal of Statistical Software 13

lp_solve functions for, e.g., presolving and the printing of dual values. These features have
been added and others will be. The next major phase of the development effort (for R and
S-PLUS) will center on using sparse matrix representations so that bigger problems can be
solved. Interested users can always find the latest version for R, together with documentation,
at the Comprehensive R Archive Network (http://CRAN.R-project.org/); these will require
R 2.0.0 or higher. Updated versions of the link for S-PLUS and Excel will be maintained at
the author’s web site, http://web.nps.navy.mil/.

References

Bronson R (1982). Operations Research. Schaum’s Outline Series. McGraw-Hill, New York,
NY.

Corporation I (2001). S-PLUS 6 for Windows User’s Guide. Insightful Corporation, Seattle,
WA.

Nemhauser G, Wolsey L (1988). Integer and Combinatorial Optimization. John Wiley and
Sons, New York, NY.

Walkenbach J (1999). Microsoft Excel 2000 Power Programming with VBA. IDG Books,
Foster City, CA.

Affiliation:

Samuel E. Buttrey
Code OR/Sb
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943, United States of America
Telephone: +1/831/656-3035
E-mail: buttrey@nps.edu

Journal of Statistical Software Submitted: 2004-10-08
May 2005, Volume 14, Issue 4. Accepted: 2005-05-11
http://www.jstatsoft.org/

http://CRAN.R-project.org/
http://web.nps.navy.mil/
mailto:buttrey@nps.edu
http://www.jstatsoft.org/

	Introduction
	The Excel Solver and its limitations
	DLLs and the development environment

	The pieces of the link
	Description
	The C link
	The lpSolve package for S
	The VBA link

	Details and some technical notes
	Types of problems
	Compilation
	Calling from S-PLUS or R
	Calling from Excel

	Examples
	General integer program
	Problems too big for Excel's Solver
	Transportation problem
	S examples
	Benchmark timing

	Conclusion and future development efforts
	Conclusion
	Future development

