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ABSTRACT. Robust statistical methods are designed to work well when

classical assumptions, typically normality and/or the lack of outliers, are

violated. Almost everyone agrees on the value of robust statistical pro-

cedures. Nonetheless, after more than 40 years and thousands of papers,

few robust methods were available in standard statistical software pack-

ages until very recently.

This paper argues that one of the primary reasons for the lack of ro-

bust statistical methods in standard statistical software packages is the

fact that few developers of statistical methods are willing to write user-

friendly and readable software for the methods they develop, regardless

of the usefulness of the method. Recent changes in academic statistics

make it highly desirable for all developers of statistical methods to pro-

vide usable code for their statistical methods.

1. INTRODUCTION

Academic research in statistics often involves the introduction of new sta-

tistical methods. The method is often justified theoretically, in simulations,

and by examples. Obviously, the simulations and examples require the

method be programmed. Most academics write code only for their own
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use. They have numerous excuses for not writing more user-friendly code.

An incomplete list includes:

• Code isn’t publishable.

• Software isn’t fundable and doesn’t help your career.

• Writing code is no fun.

• You don’t want to embarrass yourself with your poor programming

skills.

• No one will use it.

• It takes extra time.

The remainder of this paper addresses these excuses, discusses the case of

robust regression and concludes with further comments.

2. CODE ISN’ T PUBLISHABLE

That is no longer true. In particular, as this article shows, statistical soft-

ware can be published in the electronic Journal of Statistical Software (JSS)

which can be found at www.jstatsoft.org. Abstracts are published in the

Journal of Computational and Graphical Statistics (JCGS). Quoting from

the JSS website, JSS will publish:

(1) Manuals, user’s guides, and other forms of description of statistical

software, together with the actual software in human-readable form.

(2) Code snippets – small code projects, any language.

(3) Special issues on topics in statistical computing.

(4) A yearly special issue documenting progress of major statistical

software projects.

(5) Reviews and comparisons of statistical software.

(6) Reviews of books using statistical software. (Recently added.)

file:www.jstatsoft.org
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The typical JSS paper will have a section explaining the statistical tech-

nique, a section explaining the code, a section with the actual code, and

a section with examples. All sections will be made browsable as well as

downloadable. The papers and code should be accessible to a broad com-

munity of practitioners, teachers, and researchers in the field of statistics

and beyond.

3. SOFTWARE ISN’ T FUNDABLE AND DOESN’ T HELP MY CAREER

In reality, it is theoretical research in statistics that rarely gets funded. For

example, in the United States, the National Science Foundation (NSF) wants

”useful and innovative” to quote an NSF Statistics and Probability Program

Director. ”Useful” can be taken in several ways, but clearly user-friendly

code helps argue for usefulness. If no one can use the method, then it could

be argued that the method isn’t useful. A great way to show that statistical

methods are useful is to have collaborators who can apply your methods.

The advantage of collaborators includes the fact they have ”real” problems,

thus at least doubling your funding options. They also at least double your

publication options. These collaborators will also support you and your

department. ”Innovative” means that NSF, and presumably other funding

agencies, are not overly interested in funding incremental steps forward in

any particular area. They would much rather see innovative approaches to

new problems. Of course, innovative does not mean crazy. One must still

convince the funding agency that the project is doable. User-friendly code

is one excellent way to do that.

Historically, many junior academics thought that the best way to get funding

was to collaborate with a funded senior colleague. Although it occasionally
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works, there are serious disadvantages of this strategy. Many funding agen-

cies give priority to junior, not senior, faculty. Having a senior colleague as

a collaborator may actually decrease the likelihood of funding. More im-

portantly, when junior academics are evaluated, there is a tendency to think

that the junior faculty member got the grant because he or she collaborated

with a senior colleague.

Other funding agencies want medical applications or military applications.

Often junior faculty are discouraged from being Co-Principal Investigators

(Co-PIs) on such grants because ”it’s just consulting” and the academic

should be ”writing papers instead.” If this consulting takes away from re-

search, this point is well taken. On the other hand, this funding can be used

to reduce teaching loads, thus providing more time for research. Consulting

papers also provide breadth to one’s resume. Being a Co-PI also often leads

to interesting real research problems, for which the statistician can be the

PI.

4. WRITING CODE IS NO FUN

Writing code may not be fun, but seeing researchers use your methods is lots

of fun! If your method is useful, researchers will use it if they know about

it and have the tools. Statistical software applications must be published in

a variety of journals in order to have an impact.

5. I DON’ T WANT TO EMBARRASS MYSELF WITH MY POOR

PROGRAMMING SKILLS

What counts is code that works, not how pretty it is or even how fast it is.

Obviously, making code readable prior to publication is important, but it is

far more important to get useful code out so it can be used. In fact, it seems
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far more valuable to spend time on robustifying the code so it crashes less

frequently, then making the code pretty.

6. NO ONE WILL USE MY SOFTWARE

No one has a chance to use your method if you don’t provide code, which

is worse than no one using the code at all. If you write code in a readable

and user-friendly way, and the statistical method is itself useful, my expe-

rience is that several groups will be interested. Researchers interested in

comparing their new method with yours will use it (and reference it). Any-

one reading about your method in a methods journal will be thrilled to have

a chance to try the method on their data. They will reference your papers

and code for others to use. User-friendly code that stands the test of time

may then be incorporated into standard statistical packages.

7. WRITING CODE TAKES EXTRA TIME

It is true that writing user-friendly readable code take more time than code

that can only be used by its author. Since code must be functional in order

for authors to run simulations and examples, it is frequently only a bit more

effort to make the code user-friendly. The availability of R to everyone

makes it a good platform, other factors being equal.

8. EXAMPLE : THE CASE OF ROBUST REGRESSION

Multiple linear regression is one of the most used of all statistical methods.

It’s easy to convince everyone that outliers can have devastating effects on

a linear regression fit. The need for robust linear regression estimators that

can automatically downweight outliers is clear. In fact Huber proposed the
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M-estimator nearly 40 years ago. M-estimators will be available for the first

time in base SAS in Version 9.0.

Why did it take so long for robust regression to be incorporated into base

SAS? There are many reasons, including conservatism, the desire to provide

what the market wants and the need to supply technical support. Another

important part of the reason is that at the time M estimators were proposed,

statisticians’ main emphasis was on theory and not applications, so there

was little incentive to program methods. Yet another reason was that com-

puting anything in 1964 was hard. Statisticians worked on improvements

to M estimators and came up with many. This started extensive discus-

sion on which robust regression estimate was the best. Applied statisticians

understood the need for robust estimators, but it was now unclear which

robust regression estimator should be incorporated into software packages.

The 1972 Princeton Robustness Study was an effort to compare robust loca-

tion estimators via computer simulations. A general, if possibly unfounded,

conclusion from the study was taken to be that a high breakdown point

estimator was desirable for a robust estimator. Unfortunately, this conclu-

sion further delayed the implementation of robust estimators because high

breakdown estimators were computationally intensive and no high break-

down regression estimate had been found. Such estimators are still hard

to compute today so that conclusion, although correct, likely greatly in-

creased the time needed to get robust regression estimators into base SAS.

In 1984, Peter Rousseeuw introduced the Least Median of Squares (LMS)

estimator. He and others provided code and thus made robust regression

estimation possible in practice. Improvements to LMS were quickly in-

troduced, each one with slightly improved theoretical properties, but few

practical comparisons were done because major journals were unwilling to
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publish such comparisons. Again, this caused confusion again about what

robust regression estimator should be used in practice. It took until Version

9.0 to get robust regression into base SAS. Had applied statisticians been

able to compute M estimates from the beginning, it seems very likely that

they would have been incorporated into standard statistical packages. That

not being the case, it took almost 40 years before most researchers could

compute this useful estimator easily.

9. EXAMPLE : THE EVOLUTION OF A GOOD STATISTICAL IDEA

Suppose you have an idea for a new statistical method. Ideally the method

addresses a real problem proposed by a collaborator who is not a statistician.

How should you proceed? First, you have to find out if the idea is right.

There are two choices, start with the theory or the simulations. If you start

with the theory and the idea is wrong, you are going to waste a lot of time

trying to prove something that isn’t true. It’s better to start with simulations

in either SAS, Matlab, S-PLUS, R, or other vectorizable software. If the

idea works, work on the grant application and the proof. The simulations

convince the funding agency that the idea is good. The theory will follow

with appropriate assumptions. Once the theory and simulations are done,

use your collaborators’ data and submit it to a statistical methods journal.

While that paper is under review, work on user-friendly software for the

method. Submit the code and documentation to the Journal of Statistical

Software. In the meantime, your collaborator is writing a methods paper for

their field showing off this new method. One good idea, three publications

and a grant. How could life be any better?
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10. CONCLUSION

Reviewing the excuses for not writing usable code found in the Introduction

to this paper, it is clear that most of them are baseless:

• Code is publishable.

• Software is fundable and helps your career.

• Writing code is fun, especially when others use it.

• Your programming skills may be better than you think.

• Everyone will use useful code.

• It takes little extra time.
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