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Abstract

This paper presents tests for the null hypothesis of no regime switch-
ing in Hamilton’s (1989) regime switching model. The test procedures
exploit similarities between regime switching models, autoregressions
with measurement errors, and finite mixture models. The proposed
tests are computationally simple and, contrary to likelihood based
tests, have a standard distribution under the null. When the method-
ology is applied to US GDP growth rates, no strong evidence of regime
switching is found.

1 Introduction

Hamilton’s (1989) regime switching framework is a popular approach to
modeling macroeconomic and financial data. It has been used to study the
behavior of GNP growth rates (Hamilton, 1989), real interest rates (Garcia
and Perron, 1996), stock returns (Hamilton and Susmel, 1994), trade-off be-
tween inflation and unemployment (Ho, 2000) (for a review of the methods
and applications see Kim and Nelson (1999)). In this model, the observed
process is a sum of two unobserved components. The first component is a
Markov chain with a finite number of states that describes the conditional
mean of the process (where conditioning is on the current state of the econ-
omy). The second component is a weakly dependent noise responsible for
deviations from the conditional mean. The popularity of the regime switch-
ing model is due to several reasons. First, it allows one to model structural
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breaks without explicitly specifying the break points. Second, the regime
switching formulation has natural interpretations in many cases. For ex-
ample, in the Hamilton’s original paper, the GNP growth rates have two
possible regimes: recessions and booms. The model allows one as well to
study such important characteristics as durations of states (for example, the
duration of recessions).

Estimation and inference in the regime switching framework is not a
trivial task due to the fact that the state variable is unobservable. Hamilton
(1989, 1990) develops a maximum likelihood (ML) estimation procedure by
the means of a nonlinear recursive filter. Given the values of the parameters
and conditional on the observed data, the filter allows one to compute the
probability of the state variable taking on some particular value. Provided
with the filtered probabilities, the likelihood function can be evaluated. One
can obtain the ML estimates by numerical maximization of the likelihood
function. However, this approach suffers from several drawbacks. First, im-
plementation of the filter requires correct dynamic specification of the noise
component. It is not clear how the filter behaves if the noise component is
misspecified. The usual practice is to assume an autoregressive (AR) form
of finite order. However, computation becomes more and more cumber-
some as the number of AR terms increases, which makes manipulation with
different dynamic specifications impracticable. Second, the asymptotic like-
lihood has no unique maximum and is not locally quadratic (Hansen, 1992;
Boldin, 1996). As a result, optimization appears to be unstable with respect
to starting points. For example, Hamilton (1996) says that an econometri-
cian should investigate hundreds of different starting points before he can
achieve reasonable results. In practice, iterations tend to end up very close
to starting points, at one of the numerous local maxima. Thus, estimation
may indicate presence of regime switching even if there is no such behavior
in the data. The third problem concerns testing of the model. Typically,
after estimation of the model, econometricians will be interested in testing
for regime switching. However, in this framework, likelihood-based statis-
tics have nonstandard distributions, because the transition probabilities are
not identified under the null. While there are solutions to the last problem
(Hansen, 1992), the first two can create serious obstacles.

This paper presents two different testing procedures that aim to help
the econometrician to decide whether there is regime switching in the data
prior to ML estimation of the model. Proposed tests are computationally
simple and have standard distributions under the null. The first approach
that I consider exploits similarities between the regime switching model with
AR disturbances and an autoregression with measurement errors. The AR
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model with measurement errors has been studied by Tanaka (1983, 2002).
I argue that Tanaka’s test for measurement errors allows for detection of
regime switching as well. The major disadvantage of this approach is the
fact that it requires correct specification of the order of the AR component.
The second class of tests avoids this problem by using the steady-state dis-
tribution of a process with regime switching, which has a finite mixture
form.

The regime switching models can be viewed as a time-series generaliza-
tion of mixture models (for a discussion of mixture models see Everitt and
Hand (1981) and McLachlan and Peel (2000); see Chen et al. (2004) and
papers cited therein for examples of the tests for finite mixture models).
A mixture model assumes that the probability density function is of the
following form:

m(x) =
∫

f(x, α)dP (α), (1)

where α is the vector of parameters and P is a probability measure. One
can consider two estimators for the density: a parametric estimator that
exploits (1), and a nonparametric estimator that makes no assumptions
concerning the mixture form. Large differences between two alternative
estimators will indicate that the data may not fit the mixture (or regime
switching) framework. Hence, a test of regime switching can be based on
discrepancy between the two estimators for the steady state density function.
Since some transformations of the density function, such as the moment
generating function, have the mixture form as well, similar tests can be
developed using those transformations. In this paper, the tests based on
the steady state distribution are of the Lagrange Multiplier (LM) type. The
tests are derived using a GMM type criterion function and are referred to as
GMM tests. This approach is also related to the Empirical Characteristic
Function method of Knight and Yu (2002).

The two approaches discussed in this paper rely on different character-
istics of the regime switching model. The Tanaka’s test is based on the
short-run dynamic structure of the model. The rejection occurs, if, in ad-
dition to an autoregressive component of the pre-specified order, the test
detects presence of another stochastic component. The second approach is
based on the long-run properties of the model. The test compares properties
of the distribution implied by the data with those of the theoretical steady
state distribution specified under the null. In the case of the null hypothesis
of no regime switching and under the normality assumption for the errors,
the test rejects the null if the steady state distribution of the data deviates
significantly from the normal distribution. While the test can be viewed
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as a normality test, it has been designed specifically for the finite mixture
alternative. Further, this approach can be extended to testing, for example,
the null of two states against the alternative of at least three states in the
steady state distribution. The GMM approach to normality testing has been
considered recently by Bontemps and Meddahi (2005).

Naturally, due to their differences, the two testing procedures can lead
to different conclusions in practice. I recommend to use the Tanaka’s test
only when it is desirable to avoid assumptions on the distribution of the
errors, while their dynamics is correctly specified. In all other cases, the
testing procedure based on the steady-state mixture form appears to be
more attractive. It is important to emphasizes that, since the state variable
is unobservable, the regime switching model cannot be fully nonparametric
in dynamics of the errors and their distribution. Distributional or finite
order AR assumptions are required in order to separate between the two
unobservable components.

The paper proceeds as follows. Section 2 describes the model and tests.
Section 3 presents Monte Carlo size and power results. Section 4 applies the
methodology to US GDP growth rates. Section 5 concludes.

2 The model and tests

2.1 The model

This section describes the model and illustrates some problems associated
with the ML approach in the regime switching framework. Suppose that
the econometrician observes a random process {yt ∈ R : t = 1, 2, . . . , n}
generated according to the following model:

B (L) (yt − µ0 − µ1St) = εt, (2)

where B (L) = 1− β1L− . . .− βqL
q is a polynomial in lag operator with all

roots lying outside the unit circle, {εt} are iid mean zero random variables
with the finite variance σ2, and St is an unobservable state variable. The
state variable St takes values in {0, 1} and is independent from the errors εt.
It is assumed that Sn follows an ergodic Markov chain with the transition
probability matrix given by

(
p00 1− p00

1− p11 p11

)
, where (3)

pii = Pr {St+1 = i|St = i, St−1 = j, . . .}
= Pr {St+1 = i|St = i} , for i, j = 0, 1.

4



The hypothesis of interest is H0 : µ1 = 0 (no regime switching). It is usually
assumed in the literature that the errors εt are normally distributed. This
assumption is not required for the test presented in Section 2.2. However,
the tests proposed in Section 2.3 are valid only if the errors εt are normal.

The ML estimation of the model is usually based on a nonlinear recursive
filter developed by Hamilton (1989). The filter allows one to obtain the
distribution of the state variable conditional on the observed data and the
model parameters. The likelihood function can be computed as a by-product
of the filter. However, as it has been mentioned in the introduction, this
approach suffers from severe computational problems. In order to illustrate
this point, I performed the following simulation exercise. I generated 100
observation using the AR(1) model yt = 0.5yt−1 + εt, where the errors εt

were iid standard normal random variables (in this case, the true value
of the regime switching parameter µ1 is zero). Next, I evaluated the log-
likelihood using the Hamilton’s filter assuming the AR(1) specification. I
fixed p00 = p11 = 0.9, µ0 = 0, σ = 1, and constructed the log-likelihood as a
function of the regime switching parameter µ1 for β1 = 0.5 and 0.01. Figure
1 plots the log-likelihood function against the values of µ1. When the AR
parameter β1 equals its true value (β1 = 0.5), the log-likelihood function is
well behaved and maximized in the neighborhood of the true value of µ1.
However, in the case of β1 = 0.01, the log-likelihood has two local maxima
away from the true value of µ1, and a local minimum at µ1 = 0. As a result, a
wrong choice of starting points for numerical optimization of the likelihood
may lead to estimates with poor properties. The problem becomes more
severe as the number of autoregressive coefficients increases.

[Figure 1 about here.]

2.2 Tanaka’s test

This section presents a test of no regime switching based on similarity be-
tween the regime switching model and an AR model with measurement er-
rors. Equation (2) implies that yt can be written as a switching component
plus an AR process:

yt = µ0 + µ1St + ut, where (4)

ut = B−1 (L) εt. (5)

The AR model with measurement errors was studied by Tanaka (1983, 2002);
it is similar to (4)-(5) with µ1St replaced by an iid Gaussian measurement

5



error process:

yt = µ0 + ηt + ut,

ηt ∼ iid N(0, ρ), (6)

where ρ ≥ 0, ut as in (5) and independent of ηt. Testing for the absence of
measurement errors is equivalent to testing ρ = 0 in (6). Under the null,
the model becomes a simple AR equation:

yt = µ0 + β1yt−1 + . . . + βqyt−q + εt, (7)

where εt are iid. Tanaka (2002) suggested to base a test of the null of no
measurement errors on the following LM type statistic.

Tn =
√

n
β̂′n Ĵn r̂n(

β̂′n Ĵn V̂n Ĵ ′n β̂n

) 1
2

, (8)

where β̂n is the OLS estimator of β = (β1, . . . , βq)
′ in (7),

r̂n,k =
∑

t

ε̂tε̂t−k/
∑

t

ε̂2
t ,

r̂n = (r̂n,1, . . . , r̂n,q)
′, Ĵn is the plug-in type estimator of

J =




−1 0 . . . 0
β1 −1 . . . 0
β2 β1 . . . 0
. . . . . . . . . . . .

βq−1 βq−2 . . . −1




,

and V̂n is a consistent estimator of V = I − σ2 (J ′ΓJ)−1, with Γ being the
variance-covariance matrix of (yt−1, . . . , yt−q)

′. The important component
of (8) is r̂n, the vector of autocorrelations of the fitted regression residuals
ε̂t. Under the null, the OLS estimator of β is consistent. Furthermore,
enough correlation is removed from the regression residuals to make them
asymptotically uncorrelated in the sense that r̂n = Op

(
1√
n

)
. In this case,

Tanaka (1983) shows that
√

n r̂n →d N (0, V ) , (9)

and, as a result, under the null of no measurement errors,

Tn →d N(0, 1). (10)
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Tanaka (1983) shows that Tn tends to be positive in presence of measure-
ment errors. Consequently, a one-sided test should be used when testing for
measurement errors.

Although the test discussed above has been derived for the model with
measurement errors, it can be used in the regime switching framework as
well. The two models, regime switching and measurement errors, share an
important feature. In both cases, there exists an additional disturbance
component independent of the autoregressive part. Under the null hypoth-
esis of no measurement errors or no regime switching both models have the
same form. Therefore, under the null of no regime switching, Tanaka’s test
statistic (8) has the same asymptotic distribution as in (10).

In presence of regime switching, equations (4) and (7) imply that the
regression residuals ε̂t are computed from a misspecified model. In this
case, the correct model is

yt = µ0 + β1yt−1 + . . . + βqyt−q

+ µ1 (St − β1St−1 − . . .− βqSt−q) + εt. (11)

In general, omitting relevant variables will cause the OLS estimator of β to
be inconsistent. Moreover, the regression residuals will be asymptotically
correlated. As a result, r̂n converges in probability to a non-zero constant
almost always, and a test statistic based on

√
nr̂n diverges to −∞ or +∞

depending on the model parameters. Hence, I propose to use a two-sided
test against the alternative of regime switching, i.e. reject the null if |Tn| >
z1−α/2.

I argue that Tanaka’s test statistic is almost always consistent against
the alternative hypothesis of regime switching. It is consistent only ”almost
always” for the following reason. It is possible to find values for β, p00 and
p11 such that r̂n is op(1) regardless of the value of µ1. However, the set of
such values is negligible with respect to the Lebesgue measure defined on the
appropriate measure space for the model parameters. In order to illustrate
this point, suppose that q = 1, i.e. ut in (4) follows AR(1). It is known
that St has the following AR(1) representation (see, for example, Gong and
Mariano (1997)):

St = ϕ0 + ϕSt−1 + ξt, (12)
ϕ = p00 + p11 − 1,

ξt ∼ iid
(
0, σ2

ξ

)
.

Suppose further that β1 = ϕ. In this case, equation (11) becomes

yt = (µ0 + µ1ϕ0) + β1yt−1 + (µ1ξt + εt) ,
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which is a usual AR(1) model. Hence, result (9) holds for all values of
the regime switching parameter µ1. Consequently, in such a situation Tn

asymptotically has a standard normal distribution regardless of the value of
µ1. The vector of the coefficients (β1, p00, p11) takes values in W = (−1, 1)×
(0, 1)× (0, 1). However, the set

{(β1, p00, p11) ∈ W : β1 = p00 + p11 − 1}

is negligible with respect to the Lebesgue measure on (W,B (W)), where B
denotes the Borel σ-field. I show in the Appendix that r̂n = op(1) if and only
if β1 = p00+p11−1, provided that µ1 6= 0 and that the errors in (4) follow an
AR(1) process. Therefore, Tanaka’s test statistic is almost always consistent
against the regime switching model with AR(1) disturbances. More details
on the behavior of r̂n in the presence of regime switching can be found in
the Appendix.

The procedure proposed above does not require estimation of the regime
switching component, since this is an LM test and the model needs to be
estimated only under the null. Furthermore, the normality of εt in (5) is
not required. Instead, the procedure relies heavily on correct specification
of the length of the polynomial B (L). For example, regardless of the value
of µ1, the test based on Tn tends to reject the null, if the dimension of β̂n is
smaller than the order of B (L). On the other hand, the test may have poor
power properties, if the dimension of β̂n is larger than necessary.

2.3 GMM-type tests

This section presents the tests derived using the mixture form of the steady
state distribution of the regime switching process. Unlike the test discussed
in the previews section, these tests do not require explicit specification of
the dynamic structure for the errors. However, it is assumed that the dis-
tribution of the errors is known up to the value of its parameters. In what
follows, I assume that the errors ut in (5) are normally distributed and
satisfy a strong mixing condition.

In the regime switching framework, the normality assumption may be
unavoidable due to identification problems. Let f(x, α1), . . . , f(x, αk) be
density functions depending on the parameter vectors αi, and let c1, . . . , ck

be scalars such that
∑k

i=1 ci = 1, ci ≤ 1 for all i. The weighted sum h(x) =∑k
i=1 cif(x, αi) is called the finite mixture density. The mixture density is

said to be identifiable if and only if
∑k

i=1 cif(x, αi) =
∑k

i=1 c′if(x, α′i) implies
that for all i there exists j such that ci = c′j and αi = α′j . Unlike many other
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distributions, normality implies that the parameters of the finite mixture are
identified (see Teicher (1963), Everitt and Hand (1981)).

Quandt and Ramsey (1978) acknowledged the shortcomings of likelihood
based methods when applied to the mixture model and suggested an alterna-
tive route. They studied a simple mixture of normals model with the mean
and variance switching independently between two possible values. They
proposed to estimate the model through minimization of a function based
on the sum of squares of the differences between the theoretical and sample
moment generating functions (MGFs). Although the Markov regime switch-
ing model has more complex dynamics than that of Quandt and Ramsey,
its steady state distribution has a finite mixture form as well, which makes
it possible to apply their approach to regime switching.

First, I briefly describe the Quandt and Ramsey’s framework. The ran-
dom sample {yt ∈ R : t = 1, . . . n} is such that yt ∼ N

(
µ0, σ

2
)

with proba-
bility λ, and yt ∼ N

(
µ0 + µ1, σ

2
)

with probability 1 − λ. The MGF of yt

evaluated at x is given by

MGF
(
x; µ0, µ1, σ

2, λ
)

= λ exp
(

µ0x +
σ2x2

2

)

+ (1− λ) exp
(

(µ0 + µ1) x +
σ2x2

2

)
, (13)

and its natural estimator is n−1
∑n

t=1 exp (xyt). Quandt and Ramsey (1978)
proposed the following estimation procedure. One selects the constants
x1, . . . , xk, where k ≥ 4, and minimizes

Qn

(
µ0, µ1, σ

2, λ
)

=
k∑

j=1

(
1
n

n∑

t=1

exp (xjyt)−MGF
(
x; µ0, µ1, σ

2, λ
)
)2

with respect to µ0, µ1, σ2 and λ to obtain their estimates. They show
that this method leads to a consistent and asymptotically normal estimator
of the parameters, provided that the true data generating process (DGP)
is a mixture of normals; they did not address the problem of testing the
hypothesis that the true model consists of only one component, i.e. µ1 = 0.
In this case, the usual t-test based on µ̂1 and its asymptotic standard error
leads to a statistic with a non-standard distribution, since the nuisance
parameter λ is not identified under the null. Alternatively, one can use
the LM principle to derive a test statistic with a standard distribution. I
follow this approach for testing of the regime switching model (4). The tests
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discussed in this section are derived using variations of the function Qn,
which is a GMM-type function. I refer to such tests as GMM-type tests.

In the steady state, we have that

yt| {St = 0} ∼ N
(
µ0, σ

2
)
,

yt| {St = 1} ∼ N
(
µ0 + µ1, σ

2
)
,

where the event {St = 0} occurs with the probability

λ = P (St = 0) =
1− p11

2− p00 − p11
.

Therefore, the steady state MGF of a process generated according to (4)
with normal errors has exactly the same form as that in (13). I assume that
S0 was drawn from the steady state distribution of the state variable. Next,
I define a k-vector of the normal MGFs evaluated at the points x1, . . . , xk:

m(µ, σ2) =
(

exp
(

µx1 +
σ2x2

1

2

)
, . . . , exp

(
µxk +

σ2x2
k

2

))′
,

and its nonparametric estimator:

mn =

(
1
n

n∑

t=1

exp (ytx1) , . . . ,
1
n

n∑

t=1

exp (ytxk)

)′
.

Lastly, I define

QMGF
n

(
µ0, µ1, σ

2
u, λ

)
=

∥∥An

(
mn − λm

(
µ0, σ

2
u

)− (1− λ)m
(
µ0 + µ1, σ

2
u

))∥∥2
,

where σ2
u is the variance of ut, and An is a possibly random k × k weight

matrix. I assume that An →p A, where A is some non-random matrix of
rank k. Ignoring the constants, the derivative of QMGF

n with respect to µ1

evaluated at µ1 = 0 is given by

∂QMGF
n

(
µ0, 0, σ2

u, λ
)

∂µ1
∼ ∂m

(
µ0, σ

2
u

)′
∂µ

A′nAn

(
mn −m

(
µ0, σ

2
u

))
. (14)

Let µ̂0 and σ̂2
u be the sample mean and variance of yt (note that, under the

null, the variances of yt and ut are equal). Equation (14) implies that the

10



LM test statistic is based on mn − m
(
µ̂0, σ̂

2
u

)
. Applying the mean value

theorem element-by-element to mn −m
(
µ̂0, σ̂

2
u

)
, one obtains

√
n

(
mn −m

(
µ̂0, σ̂

2
u

))
=
√

n
(
mn −m

(
µ0, σ

2
u

))

−
(

∂m
(
µ0, σ

2
u

)

∂µ
,
∂m

(
µ0, σ

2
u

)

∂σ2

)
√

n

(
µ̂0 − µ0

σ̂2
u − σ2

u

)
+ op(1). (15)

Under the null hypothesis,
√

n
((

mn −m
(
µ0, σ

2
u

))′
, µ̂0 − µ0, σ̂

2
u − σ2

u

)
→d N(0,Σ), (16)

where Σ is the long-run covariance matrix of exp (ytx1)−exp
(
µx1 + σ2x2

1
2

)
,

. . ., exp (ytxk) − exp
(
µxk + σ2x2

k
2

)
, ut, and u2

t − σ2
u, and is assumed to be

positive definite. Equations (15) and (16) imply that under the null
√

n
(
mn −m

(
µ̂0, σ̂

2
u

)) →d N(0,W ), (17)

where

W = ΛΣΛ′, (18)

Λ =

(
Ik,−

∂m
(
µ0, σ

2
u

)

∂µ
,−∂m

(
µ0, σ

2
u

)

∂σ2

)
. (19)

In view of the above results, I define the MGF-based test statistic as follows:

QRMGF
n =

√
n

∂m(µ̂0,σ̂2
u)
′

∂µ A′nAn

(
mn −m

(
µ̂0, σ̂

2
u

))
(

∂m(µ̂0,σ̂2
u)′

∂µ A′nAnŴnA′nAn
∂m(µ̂0,σ̂2

u)
∂µ

) 1
2

, (20)

where Ŵn is a consistent estimator of W and can be constructed from (18)
and (19). The covariance matrix Σ can be estimated using the HAC ap-
proach (see Andrews (1991)). A consistent estimator of Λ can be obtained
by replacing the unknown parameters in (19) by their null-restricted esti-
mators. The results from the GMM literature (see Hansen (1982)) suggest
that the optimal choice of An is the one that satisfies

A′nAn = Ŵ−1
n .

In this case, (20) becomes

QRMGF
n =

√
n

∂m(µ̂0,σ̂2
u)
′

∂µ Ŵ−1
n

(
mn −m

(
µ̂0, σ̂

2
u

))
(

∂m(µ̂0,σ̂2
u)′

∂µ Ŵ−1
n

∂m(µ̂0,σ̂2
u)

∂µ

) 1
2

.
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The result in (17) implies that, under the null, QRMGF
n converges in

distribution to a standard normal random variable. Thus, the proposed
test statistic asymptotically has a standard distribution. Furthermore, the
statistic is computationally simple, since it does not require estimation of
the regime switching model. It only requires computation of the sample
mean, variance and the estimates of the MGF evaluated at a finite number
of points.

The QRMGF
n statistic has been derived using the fact that the MGF

of the regime switching process has a mixture form in the steady state.
In addition to the MGF, other transformations of the probability density
function (PDF) and the PDF itself can be used to construct a test. Next,
I present a test based on the steady state PDF. I define a k-vector of the
normal PDFs corresponding to the mean µ and variance σ2 and evaluated
at the fixed points x1, . . . , xk:

f
(
µ, σ2

)
=

(
φ

(
x1 − µ

σ

)
, . . . , φ

(
xk − µ

σ

))′
,

where φ(·) denotes the standard normal PDF. The density at the point x
can be estimated from the data by a nonparametric estimator of the form

(nhn)−1
n∑

t=1

K

(
yt − x

hn

)
,

where K(·) is a kernel function such that
∫∞
−∞K (x) dx = 1, and hn, the

bandwidth, is a function of n and goes to zero as n → ∞. Let fn be a k-
vector of the nonparametric estimates of the PDF at the points x1, . . . , xk:

fn =

(
(nhn)−1

n∑

t=1

K

(
yt − x1

hn

)
, . . . , (nhn)−1

n∑

t=1

K

(
yt − xk

hn

))′
.

The PDF-based criterion function is defined as follows:

QPDF
n

(
µ0, µ1, σ

2
u, λ

)
=

=
∥∥An

(
fn − λf

(
µ0, σ

2
u

)− (1− λ)f
(
µ0 + µ1, σ

2
u

))∥∥2
.

The PDF-based statistic can be derived along the same lines as QRMGF
n .

First,

∂QPDF
n

(
µ0, 0, σ2

u, λ
)

∂µ1
∼ ∂f ′

(
µ0, σ

2
u

)

∂µ
A′nAn

(
fn − f

(
µ0, σ

2
u

))
.
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Second, provided that hn = o
(
n−1/5

)
, and that some additional technical

conditions found in Robinson (1983) (see also Pagan and Ullah (1999)) hold,
under the null, the asymptotic distribution of fn is given by

√
nhn

(
fn − f

(
µ0, σ

2
u

)) →d N(0, V ), (21)

where V = K2diag
(
f

(
µ0, σ

2
u

))
, and K2 =

∫
K2(x)dx. Third,

√
n

(
f

(
µ0, σ

2
u

)− f
(
µ̂0, σ̂

2
u

))
= Op (1) ,

and, since hn = o(1), it follows that
√

nhn

(
fn − f

(
µ̂0, σ̂

2
u

))
=

√
nhn

(
fn − f

(
µ0, σ

2
u

))
+ op(1). (22)

Thus, replacement of unknown parameters µ0 and σ2
u by their estimators

does not affect the asymptotic distribution of fn − f
(
µ0, σ

2
u

)
. I define the

PDF-based test statistic as follows

QRPDF
n =

√
nhn

∂f ′(µ̂0,σ̂2
u)

∂µ A′nAn

(
fn − f

(
µ̂0, σ̂

2
u

))
(

∂f ′(µ̂0,σ̂2
u)

∂µ A′nAnV̂nA′nAn
∂f(µ̂0,σ̂2

u)
∂µ

) 1
2

,

where V̂n = K2diag
(
f

(
µ̂0, σ̂

2
u

))
. Note that since V̂n is diagonal, if for ex-

ample An is an identity matrix, the statistic QRPDF
n takes the following

form:

√
nhn

∑k
j=1 (xj − µ̂0) φ

(
xj−µ̂0

σ̂u

)(
φn (xj)− φ

(
xj−µ̂0

σ̂u

))

(
K2

∑k
j=1 (xj − µ̂0)

2 φ
(

xj−µ̂0

σ̂u

)3
) 1

2

.

The optimal choice of An is given by A′nAn = K−1
2 diag

(
1/f

(
µ̂0, σ̂

2
u

))
. In

this case we have that QRPDF
n is given by

√
nhn

∑k
j=1 (xj − µ̂0)

(
φn (xj)− φ

(
xj−µ̂0

σ̂u

))

(
K2

∑k
j=1 (xj − µ̂0)

2 φ
(

xj−µ̂0

σ̂u

)) 1
2

.

Similarly to the MGF-based test, under the null of no regime switching
QRPDF

n →d N (0, 1), as implied by the results in (21) and (22).
In the case of regime switching, µ1 6= 0 and, consequently, mn−m

(
µ̂0, σ̂

2
u

)
and fn − f

(
µ̂0, σ̂

2
u

)
converge in probability to nonzero vectors. As a result,

13



QRMGF
n and QRPDF

n diverge to ±∞ depending on the values of the pa-
rameters and the choice of x1, . . . xk. Therefore, size α tests of the null of no
regime switching are given by

∣∣QRMGF
n

∣∣ > z1−α/2 for the MGF-based statis-
tic and

∣∣QRPDF
n

∣∣ > z1−α/2 for the PDF-based statistic, where zα denotes
the α-quantile of the standard normal distribution.

The asymptotic variance of the term
√

nhn

(
fn − f

(
µ̂0, σ̂

2
u

))
takes a sim-

pler form than that of
√

n
(
mn −m

(
µ̂0, σ̂

2
u

))
. It is due to the fact that the

kernel density estimators at different points are asymptotically independent,
and because the reminder term in (22) is negligible. As a result, the PDF-
based statistic appears computationally more appealing. On the other hand,
the PDF-based statistic may be less reliable, since, in addition to choosing
the points for the density evaluation, a researcher has freedom to select the
value of hn. The PDF-based test is also expected to be less powerful due to
the nonparametric rate of convergence.

For the purpose of testing, one can select the value of k smaller than the
number of the parameters, including k = 1. In this case, the test is based on
discrepancy between parametric and nonparametric estimators of the MGF
or PDF around a single point. Naturally, inference is affected by the choice
of the evaluation points. I postpone investigation of the optimal choice of k
and the location of x1, . . . , xk for further study.

3 Simulations results

In this section, I investigate small sample size and power properties of the
above tests in a Monte Carlo (MC) study. The data is simulated according
to the DGP described by (2) and (3) with normally distributed errors εt.
Since in Section 4 the tests are applied to US GDP growth rates data, for the
power results the data is simulated using the Hamilton (1989) estimates for
US GNP growth rates: µ0 = −0.358, µ1 = 1.522, σ = 0.769, p00 = 0.755,
p11 = 0.905, q = 4 and β = (0.014,−0.058, 0.245, 0.213). For the size
results I use µ1 = 0, µ0 = 0.739 (the steady-state mean computed from the
Hamilton’s estimates), and the same values for σ, q and β as for the power
results. In all MC experiments reported here, the number of simulation
repetitions is 2,000.

Since the DGP includes an AR(4) component, I use four lags to compute
Tn unless noted otherwise. Computation of the GMM-type statistics requires
a selection of the evaluation points for the MGF and PDF. It also requires a
choice of the weighting matrix An, kernel functions and bandwidth parame-
ters for density estimation and HAC covariance matrix estimation. In order
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to compute QRPDF
n , the density was evaluated at a series of points equally

spaced on the interval [−2, 2] in steps of 0.1. For computation of QRMGF
n ,

the MGF was evaluated at the points -0.7, -0.6, -0.4, -0.1, 0.1, 0.4, 0.6 and
0.7. I set An = Ik for all GMM-type tests, and use the normal kernel for the
PDF-based statistic. The bandwidth for the density estimation was chosen
in the following way. The Mean Integrated Square Error (MISE) optimal
value of the bandwidth for density estimation is of the form cn−1/5, where
c depends on the second derivative of the PDF. It simplifies to c = 1.06σ,
provided that the normal kernel function is used and that the data is dis-
tributed according to N(µ, σ2) (see, for example, Pagan and Ullah (1999)).
However, Silverman (1986) reports that the choice c = 0.9min (σ,R/1.34),
where R is the interquartile range, performs better in the case of a mix-
ture of normals. In addition, the rate of convergence of the MISE optimal
bandwidth is not fast enough to guarantee (21). After some simulations, I
concluded that the rate n−0.35 performs reasonably well in this case. I use
hn = 0.9min

(
σ̂, R̂/1.34

)
n−0.35, where σ̂ is the sample standard deviation

and R̂ is the sample interquartile range. I used the Quadratic Spectral kernel
with the bandwidth equal to n1/5 for HAC covariance matrix estimation.

Table 1 reports the size results for the nominal size α = 0.01, 0.05, 0.10,
and the sample size n = 200, 300 and 500. The finite sample distributions of
Tn and QRMGF

n are approximated reasonably well by the standard normal
distribution. However, the PDF-based test tends to over reject especially
for n = 200 and 300. The power results are reported in Table 2. All three
statistics have power even in relatively small samples. For example, for
α = 0.05 and n = 200 the obtained rejection rates for Tn, QRMGF

n and
QRPDF

n are 34%, 45% and 56% respectively (note that these results are not
size corrected). The rejection rates increase with the sample size for all three
tests.

[Table 1 about here.]

[Table 2 about here.]

The MGF-based test is the most appealing among the three considered
procedures. The test based on Tn and QMGF

n have good size properties,
however, the MGF-based test is more powerful than the Tn test. Further-
more, misspecification of the AR component may have an adverse effect on
the power and size properties of the Tn test as illustrated below.

Table 3 reports the size results when the number of lags used to com-
pute Tn is less than 4, the number of lags in the true DGP. As expected,
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misspecification distorts the size of the test. The test rejects the null too
often, and rejection rates increase with the sample size. Table 4 reports the
power results when the number of lags used in computation of Tn exceeds
the number of lags in the true DGP. The rejection rates for 5, 6 and 7 lags
are lower than in the case of the correctly specified model, and actually may
decrease with the sample size.

[Table 3 about here.]

[Table 4 about here.]

Lastly, I compare the MGF-based test with the likelihood ratio test sug-
gested by Hansen (1992). He treats the likelihood function as an empirical
process in the nuisance parameters and parameters of interest. This ap-
proach allows one to obtain bounds on the asymptotic distribution of the
likelihood ratio (LR) statistic. The test requires constrained optimization
of the likelihood function with respect to µ0, the variance of εt and autore-
gressive parameters for each combination of µ1, p00 and p11 using some grid
of values. The distribution of the resulting statistic is nonstandard, and the
critical values must be simulated. The CPU requirements for a MC study
of the Hansen’s LR test applied to the AR(4) two-state regime-switching
model are enormous. Therefore, for power and size comparisons I consider
the iid errors case by setting β = (0, 0, 0, 0). The sample size is 100, and the
number of replications is 500. For each replication, the critical values for
the LR test were simulated using 1,000 simulation replications. I used the
same grid as in Hansen (1992): the range [0.1,2] in steps of 0.1 for µ1, and
[0.2, 0.8] in steps of 0.2 for p00 and p11.

Second and third columns of Table 5 report the size and power results
respectively for the Hansen’s likelihood ratio and MGF-based test statistics.
Similarly to the results reported in Table 1, the MGF-based test shows good
size properties. The test based on the LR statistic under rejects the null in
the case of no regime switching, which reflects the fact that the Hansen’s LR
test is conservative. Nevertheless, the LR test is more powerful than the test
based on QRMGF

n . However, the advantage of the GMM-type tests suggested
in this paper is that, contrary to the Hansen’s LR test, they do not require
correct specification of the dynamic component. Last column of Table 5
illustrates this point. In this case, the error component was simulated as
AR(1), with the first-order autoregressive coefficient equal to 0.5, while the
LR statistic was constructed under the assumptions that the errors are iid.
As a result, the LR tests strongly over rejects the null, with the rejection
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rates achieving 92% for the significance level of 5%. At the same time, the
rejection rates of the MGF-based test are very close to assumed nominal.

[Table 5 about here.]

4 Application to GDP growth rates

In this section, I apply the test proposed in Section 2 to US GDP growth
rate data. Hamilton (1989) used the regime switching framework to study
business cycle patterns. He estimated the regime switching model for US
GNP growth rates for the sample period 1952:II-1984:IV. His estimates sug-
gest two regimes with recession and boom periods. Kim and Nelson (1999,
Chapter 4) re-estimated the model on the US GDP growth rates data for
the same sample period and found parameter estimates very close to those
reported in Hamilton (1989). However, the model failed when they extended
the sample to 1952:II-1995:III. Hansen (1992) investigated the same problem
using a likelihood approach and concluded that the Hamilton (1989) specifi-
cation did not fit the data. He decided in favor of a simple switching model
with states arriving independently over time. Since simple switching fits
in the mixture class as well, the tests presented in Section 2 are consistent
against such an alternative.

I apply the Tn, QRMGF
n and QRPDF

n tests to the first differences of the
log of quarterly GDP. I compute the test statistics for the three sample
periods, 1952:II-1984:IV, 1952:II-1995:III and 1947:I-2001:IV. The choice of
the testing periods was determined by the availability of the data and the
results in the literature. Note that in the case of the period 1952:II-1984:IV,
Hamilton (1989) and Kim and Nelson (1999) found regime switching. I
compute the Tanaka’s statistic using four lags. Construction of the GMM-
type tests is as described in Section 3 unless noted otherwise.

Table 6 reports the test statistics and their p-values. The Tanaka’s test
has a low p-value (0.0745) for the period 1952:II-1984:IV, strongly rejects
the null hypothesis for the period 1952:II-1995:III, however, it is unable to
reject the null for the period 1947:I-2001:IV. Neither version of the GMM-
type tests reject the null for any of the considered periods.

[Table 6 about here.]

The sample period 1947:I-2001:IV consists of 219 observations, and,
therefore, one can learn about the power properties of the tests from the
first rows of Table 2. The table shows that even in fairly small samples,
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the probability to reject the null attains 45%-63% for the GMM-type tests,
depending on the nominal size. In order to evaluate the likelihood of the
results reported in Table 6 in presence of regime switching, I performed the
following exercise. I simulated 1,000 samples of size 219 using the Hamilton’s
estimates as the DGP. In each simulated sample, I computed Tn, QRPDF

n

and QRMGF
n . Figure 2 shows the estimated densities of the three statistics.

The vertical lines indicate the values of the statistics obtained for the sample
period 1947:I-2001:IV. Note that the figure plots the estimated distributions
of the statistics, provided that the Hamilton’s results accurately describe the
true DGP. In this case, Tn and QRMGF

n tend to be negative, while QRPDF
n

tends to be positive. The Tn statistic exceeds its value found for the GDP
growth rates only in about 10% of the simulation repetitions. The simulated
QRPDF

n was smaller than its value obtained for the GDP growth rates in
approximately 29% of the simulation replications. As it appears, the test
based on QRPDF

n is rather inconclusive. However, in the case of QRMGF
n ,

only in about 3% of the simulation replications the statistic was on the right
of its value obtained for the GDP growth rates. While these result evaluate
only one specific alternative and do not take into account uncertainty as-
sociated with the Hamilton’s estimates, nevertheless, they suggest that the
regime switching model does not provide an accurate description of the be-
havior of the GDP growth rates. The results for the Tanaka’s test in Table
6 can be explained by misspecification of the AR component. It is likely
that the number of lags the true DGP exceeds four.

[Figure 2 about here.]

Lastly, Tables 7 reports the result for the GMM-type tests for different
choices of the evaluation points. This is to see whether the choice of evalu-
ation points affects the results obtained for the QRMGF

n and QRPDF
n tests.

In all cases, the test statistics are not significant at 5% level. Only in two
cases small p-values (0.0561 and 0.0738) were obtained for the QRPDF

n test
for the period 1952:II-1984:IV. In all cases, the p-values are large for the full
sample period.

[Table 7 about here.]

I offer the following explanation to the Kim and Nelson (1999) findings.
The estimates of the regime switching model for the period 1952:II-1984:IV
imply that recessions last on average four quarters, and booms last ten quar-
ters. It is likely that low and high points of the GDP growth rate process
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follow this pattern only during the period 1952:II-1984:IV. Since in general
the US GDP growth rate does not follow the regime switching model, the
evidence of switching behavior disappears when more data becomes avail-
able.

5 Conclusion

This paper presents a number of tests for the hypothesis of no regime switch-
ing. Contrary to the tests based on the ML principle, the proposed tests
enjoy such attractive properties as computational simplicity and standard
distribution under the null. The MC study shows that the tests have good
size and power, especially in moderately large samples. When the method-
ology is applied to US GDP growth rates, no strong evidence in support
of regime switching is found. The direction for future work include investi-
gation of the optimal choice of the points for evaluation of the MGFs and
PDFs. The GMM-type procedure can be extended as well to estimation of
the number of states in the regime switching model.

6 Appendix

The Tanaka’s statistic is based on r̂n, the autocorrelation coefficient of the
fitted regression residuals ε̂n. This appendix discusses properties of r̂n in
the case of regime switching. I define

γ(k) = cov (yt, yt−k) ,

γk = (γ(k), γ(k + 1), . . . , γ(k + q − 1))′ ,
Γk = (γk, γk−1, . . . , γk−q+1) ,

θ(k) = cov (St, St−k) ,

ψ(k) = cov (ut, ut−k) .

Equation (4) and independence of St and ut imply that

γ(k) = µ2
1θ(k) + ψ(k). (23)

Equation (12) implies that

θ(k) = ϕθ(k − 1), (24)

It follows from equation (5) that

ψ(k) = β1ψ(k − 1) + . . . + βqψ(k − q). (25)
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Next, under the usual regularity conditions (see, for example, White (2001,
Chapter 3))

1
n

n∑

t=k+1

ε̂tε̂t−k = γ′1Γ
−1
0

(
ΓkΓ−1

0 γ1 − γk+1

)
+ op(1). (26)

Under the null hypothesis µ1 = 0, and therefore γ(k) = ψ(k), γk+1 =
Γkβ, and β = Γ−1

0 γ1. Consequently, the first term on the right-hand side of
(26) is zero, and the regression residuals ε̂t are asymptotically uncorrelated.
Under the alternative, the first term on the right-hand side of (26) is different
from zero, unless some particular combination of the model parameters is
chosen. Consider the case q = 1. Equations (23)-(25) imply that

γ′1Γ
−1
0

(
ΓkΓ−1

0 γ1 − γk+1

)
=

γ(1)θ(0)ψ(0)
γ2(0)

µ2
1 (ϕ− β1)

(
ϕk − βk

1

)
.

The above result implies that the AR residuals ε̂t are asymptotically un-
correlated if and only if µ1 = 0 or β1 = ϕ. As a result, Tn is almost al-
ways consistent with respect to the Lebesgue measure on (W,B (W)), where
W = (−1, 1) × (0, 1) × (0, 1), the space of possible values for (β1, p00, p11)
and B, denotes the Borel σ-field.
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Figure 1: Log-likelihood function for different values of the autoregressive
parameter β1: (a) β1 equals to its true value, (b) β1 is different from its true
value. The true value of the regime switching parameter is zero.
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Figure 2: Estimated distributions of (a) Tn, (b) QRMGF
n and (c) QRPDF

n in
the case of regime switching and their values obtained for US GDP growth
rates (vertical lines)
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Table 1: Finite sample size of Tn, QRMGF
n and QRPDF

n tests for different
values of nominal size (α) and sample size (n)

α Tn QRMGF
n QRPDF

n

n = 200
0.01 0.013 0.007 0.034
0.05 0.064 0.043 0.112
0.10 0.120 0.102 0.182

n = 300
0.01 0.011 0.008 0.019
0.05 0.055 0.047 0.078
0.10 0.112 0.098 0.143

n = 500
0.01 0.011 0.008 0.010
0.05 0.050 0.051 0.058
0.10 0.097 0.104 0.120
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Table 2: Finite sample power of Tn, QRMGF
n and QRPDF

n tests for different
values of nominal size (α) and sample size (n)

α Tn QRMGF
n QRPDF

n

n = 200
0.01 0.208 0.193 0.406
0.05 0.338 0.449 0.557
0.10 0.403 0.592 0.630

n = 300
0.01 0.289 0.358 0.504
0.05 0.443 0.632 0.669
0.10 0.527 0.751 0.744

n = 500
0.01 0.352 0.630 0.667
0.05 0.520 0.828 0.801
0.10 0.606 0.897 0.866
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Table 3: Finite sample size of Tn test for different values of nominal size (α)
and sample size (n), when the number of lags (q) used in computation of Tn

is smaller than 4, the number of lags in the true DGP
α q = 1 q = 2 q = 3

n = 200
0.01 0.326 0.488 0.150
0.05 0.434 0.613 0.309
0.10 0.513 0.698 0.698

n = 300
0.01 0.281 0.627 0.627
0.05 0.405 0.733 0.359
0.10 0.500 0.789 0.445

n = 500
0.01 0.319 0.734 0.307
0.05 0.491 0.824 0.466
0.10 0.580 0.873 0.566
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Table 4: Finite sample power of Tn test for different values of nominal size
(α) and sample size (n), when the number of lags (q) used in computation
of Tn exceeds 4, its value in the true DGP

α q = 5 q = 6 q = 7
n = 200

0.01 0.079 0.112 0.148
0.05 0.143 0.186 0.202
0.10 0.216 0.248 0.251

n = 300
0.01 0.074 0.066 0.129
0.05 0.171 0.126 0.192
0.10 0.238 0.186 0.256

n = 500
0.01 0.075 0.043 0.095
0.05 0.197 0.101 0.166
0.10 0.301 0.156 0.227
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Table 5: Rejection rates for Hansen (1992) LR and QRMGF
n tests for dif-

ferent DGPs: no switching with iid errors, switching with iid errors and no
switching with AR(1) errors, and significance levels (α).

α no switching switching no switching
iid errors iid errors AR(1) errors

LR
0.01 0.006 0.702 0.844
0.05 0.022 0.838 0.920
0.10 0.048 0.912 0.956

QRMGF
n

0.01 0.002 0.198 0.002
0.05 0.048 0.550 0.032
0.10 0.104 0.686 0.008
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Table 6: Tn, QRMGF
n and QRPDF

n test statistics and corresponding p-values
for US GDP growth rates for different sampling periods

1952:II-1984:IV 1952:II-1995:III 1947:I-2001:IV
statistic p-value statistic p-value statistic p-value

Tn 1.7834 0.0745 2.4050 0.0162 1.3528 0.1761
QRMGF

n -1.3672 0.1715 -1.0155 0.3099 0.0217 0.9827
QRPDF

n 1.2910 0.1967 0.7767 0.4374 0.7511 0.4526
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Table 7: The values QRMGF
n and QRPDF

n test statistics for US GDP growth
rates for different sampling periods and values of the evaluation points for
the MGF and PDF (p-values in parenthesis)

1952:II-1984:IV 1952:II-1995:III 1947:I-2001:IV
QRMGF

n

−0.9,−0.8, . . . , 0.9 −1.1728 −0.8189 0.2814
(0.2409) (0.4129) (0.7784)

−1.9,−1.7, . . . , 1.9 −0.7723 −0.4321 0.8015
(0.4399) (0.6656) (0.4228)

−0.5,−0.45, . . . , 0.5 −1.3613 −1.0543 −0.1089
(0.1734) (0.2918) (0.9133)

QRPDF
n

−3.0,−2.9, . . . , 3.0 1.9104 0.9735 0.2767
(0.0561) (0.3303) (0.7820)

−5.0,−4.9, . . . , 5.0 1.7876 0.9383 0.2449
(0.0738) (0.3481) (0.8065)

−6.0,−5.9, . . . , 6.0 1.2640 0.6639 0.1764
(0.2062) (0.5067) (0.8600)
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