
OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9737

MODELLING DECISION TABLES FROM DATA

by

Geert WETS

Jan VANTHIENEN

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

ONDERZOEKSRAPPORT NR 9737

MODELLING DECISION TABLES FROM DATA

0/1997/2376/39

by

Geert WETS

Jan VANTHIENEN

MODELLING DECISION TABLES FROM DATA

Geert Wets, Jan Vanthienen

Katholieke Universiteit Leuven, Department of Applied Economic Sciences, Naamsestraat 69,

B-3000 Leuven, Belgium, E-mail: {geert.wets.jan.vanthienen}@econ.kuleuven.ac.be

Harry Timmermans

Eindhoven University of Technology, Faculty of Architecture, Building and Planning,

Department of Architecture and Urban Planning, P.O. Box 513, Mail station 20, NL-5600 MB

Eindhoven, The Netherlands, E-mail: h.j.p.timmermans@bwk.tue.nl

Abstract

On most datasets induction algorithms can generate very accurate classifiers. Sometimes,
however, these classifiers are very hard to understand for humans. Therefore, in this paper it
is investigated how we can present the extracted knowledge to the user by means of decision
tables. Decision tables are very easy to understand. Furthermore, decision tables provide
interesting facilities to check the extracted knowledge on consistency and completeness. In
this paper, it is demonstrated how a consistent and complete DT can be modelled starting
from raw data. The proposed method is empirically validated on several benchmarking
datasets. It is shown that the modelled decision tables are sufficiently small. This allows easy
consultation of the represented knowledge.

Keywords

Decision tables, verification, visualization

1. Introduction

Currently, there is an urgent need for techniques which can extract knowledge from the data
by discovering relations and patterns between the data elements in a (nearly) automatic way.
The need for these techniques and tools has created a new field of research called knowledge
discovery in data (KDD). KDD can be defined as CFayyad, Piatetsky-Shapiro & Smyth,
1996):

"Knowledge discovery in databases is the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data."

KDD covers the whole process from raw data until the knowledge, which is extracted from
the dataset, will be used. The knowledge extraction process itself is commonly denoted as
data mining. While considerable research is devoted to improving data mining algorithms
less attention is paid to the verification and validation of the extracted patterns. In this paper,
we will show how the output of some classification techniques can be verified using decision
tables (DTs). This technique allows some easy checking on consistency and completeness of
the extracted knowledge. Furthermore, DTs are quite suited to visualize the extracted
knowledge. In this paper, we will show how a computer can learn a proper DT (consistent,
complete and sufficiently small) given certain data.

This paper is organized as follows. First, DTs are introduced. Subsequently, it is described
how a complete and consistent DT can be modelled starting from raw data. Then, the
proposed approach is empirically validated using some benchmarking datasets. Finally, some
conclusions are given and some topics for further research are outlined.

2. Decision tables

A DT is a tabular representation used to describe and analyze procedural decision situations,
where the state of a number of conditions jointly determines the execution of a set of actions.
Not just any representation, however, but one in which all distinct situations are shown as
columns in a table, such that every possible case is included in one and only one column
(completeness and exclusivity). The tabular representation of the decision situation is
characterized by the separation between conditions and actions, on one hand, and between
subjects and conditional expressions (states), on the other. Every table column (decision
column) indicates which actions should (or should not) be executed for a specific combination
of condition states. In this definition, the DT concept is deliberately restricted to the single-hit
table, where columns are mutually exclusive. Each possible combination of conditions can be
found in one and only one column. Only this type of table allows easy checking for
consistency and completeness (Vanthienen and Dries, 1997). Many other variations of the DT
concept exist which look similar at first sight. The most important criterion when
distinguishing tables is the question whether all columns are mutually exclusive (single-hit
versus multiple-hit). In a single-hit table each possible combination of conditions can be
found in one and only one column. This facilitates unambiguous use of the table. In multiple
hit tables the same combination of conditions can occur in different columns. As a result, the
overview over the columns is lost, and with it, the simplicity of inspection. For these reasons

we do not consider these latter tables to be real DTs. A DT consists of four parts (Codasyl,
1982):

1. The condition subjects are the criteria which are relevant to the decision-making
process. They represent the items about which information is needed to take the right
decision. Condition subjects are found in the upper left part of the table.

2. The condition states are logical expressions determining the relevant sets of values for a
given condition. Every condition has its set of condition states. Condition states are
found at the right hand side of the table.

3. The action subjects describe the results of the decision-making process. They are found
in the lower left part of the table.

4. The action values are the possible values a given action can take. They are found at the
right hand side of the table.

These four parts can be defined more formally:

CS = {CS i} (i = 1, ... , cnum) is the set of condition subjects;
CD = {CDd (i = 1, ... , cnum) is the set of condition domains,

with CDi the domain of condition i, i.e. the set of all possible values of condition subject
CSi,

CT = {CTd (i = 1, ... , cnum) is the set of condition state sets,

with CTi = {Sik} (k = 1, ... , ni) an ordered set of ni condition states Sik. Each condition state
Sik is a logical expression concerning the elements of CDi, that determines a subset of CDi,
such that the set of all these subsets constitutes a partition of CDi (completeness and
exclusivity of the condition states);

AS = {ASj} (j = 1, ... , anum) is the set of action subjects;
AV = {AVj} (j = 1, ... , anum) is the set of action value sets,

with A Vj = {true (x), false (-), null C.)} the set of action values, which is, in first instance,
null for every action subject, for reasons of consistency checking. A '-' value in the
condition part means irrelevant. In the action part it means don't execute. A null value
means unknown.

A DT is a function from the Cartesian product of the condition states to the Cartesian product
of the action values, by which every condition combination is mapped into one (completeness)
and only one (exclusivity) action configuration. If each column only contains simple states
(no contractions or irrelevant conditions), the table is called an expanded DT. An example is
gi ven in Figure 1.

1. 8pace (8) 8<20 20<=8<40 8>=40

2. Costs (C) C<2 2<=C<4 C>=4 C<2 2<=C<4 C>=4 C<2 2<=C<4 C>=4

1. Premium 1 - - x - x x - x x

2. Premium 2 x x x x - x - - x

Figure 1: Example of an expanded DT

- 2-

If it is necessary, columns in an expanded DT can be contracted. Contraction combines
columns or groups of columns that only differ in the state value of one condition and that have
equal action configurations into respectively one column. It is important to note that
contraction does not change the knowledge contained in the DT. Only the format in which it
is presented to the user is changed. Contraction is important in order to enhance the
effectiveness of the decision-making or to provide a more compact formulation that can serve
as a basis for discussion between the expert and the knowledge engineer. The contracted
version of the expanded DT of Figure 1 is depicted in Figure 2. There are only five columns
in the contracted DT instead of the nine columns in the expanded DT.

1. Costs (C) C<2 2<=C<4 C>=4

2. Space (S) S<20 or 20<=S<40 S>=40 S<20 20<=S<40 Dr S>=40 -
1. Premium 1 - - - X x

2. Premium 2 x - x - x

Figure 2: Example of a contracted DT

3. Modelling DTs from data

To model a DT three information elements are necessary: conditions, actions and the decision
logic. First, conditions, actions and their respective states have to be retrieved from the
dataset. Because we want to extract these information elements automatically from a dataset,
the data contained in the dataset should satisfy some constraints. All information about an
instance in the dataset should be expressed in terms of a list of values of a number of features
(also called attributes). One out of these features is the goal attribute (also called the class or
the label) or to put it in DT terminology is the action. The other attributes are the conditions.
Furthermore, it is necessary that the features are discrete. If continuous features occur, they
have to be discretized by splitting up the domain of the feature in non-overlapping partitions.
A plethora of discretization methods has been proposed in the literature. For an overview see
Dougherty, Kohavi and Sahami (1995). In our experiments we used the algorithm proposed
by Fayyad & Irani (1993). Fayyad and Irani describe an algorithm that uses the entropy
function to split the continuous space in two partitions. Recursively, more partitions can be
created by the algorithm until some stopping criterion is attained.
Furthermore, it is possible that also some irrelevant features in the dataset occur. Because the
number of columns in a DT increases exponentially as the number of conditions increases, it
is very important only to select the relevant features in the dataset using some feature selection
algorithm. In our experiments, the data were pre-processed using the lDTM algorithm
(Kohavi, (1995)).

After that the conditions and the actions are obtained the decision logic has to be derived.
In a classical DT modelling method, the decision logic is elicited from an expert (e.g., in the
form of rules) and subsequently these rules are used to model the DTs (Vanthienen & Wets,
1994). In this paper, however, the decision logic will be extracted from the dataset using
some kind of classification technique and then it will be imported into the DT. Several
hypothesis spaces can be used to model the decision logic (e.g. rules and decision trees). In
our experiments, we used C4.5 (Quinlan, 1993) to obtain the decision logic. C4.5 is a well
known example of a classification tree algorithm. This type of algorithms tries to fit a tree to

- 3 -

a training sample using recursive partitioning. This means that the training set is split into
increasingly homogeneous subsets until the leaf nodes contain only cases from a single class.
After that the decision tree is obtained, C4.5 allows to transform the decision tree in rules.
These rules can be used to model the DT, as will be explained next.

At this point in the development process two major options can be chosen: constructing a
DT from the decision logic which reflects all the information present in the decision logic
(thus, also, several types of anomalies such as inconsistency and incompleteness); or
constructing a DT which is consistent, complete and correct. When the former option is
chosen, the expert himself has to decide how the anomalies which are presented in the DT
have to be resolved. The latter option proposes a DT with no anomalies to the expert. To
construct such a DT, anomalies which are present in the DT have to be removed using some
heuristic. However it is not only necessary that those anomalies are not reflected anymore in
the DT, but also the constructed DT should be as correct as possible. Of course it is clear that
a DT which is completely correct cannot be constructed for real-life problems because the
induced decision logic only partly represents that correct hypothesis.

Both options can easily be combined. For each anomaly in the DT the system can make a
suggestion, but it is up to the expert to decide whether he agrees to this suggestion. Next, both
options will be explained in more detail.

3.1 Construct a DT in a straightforward way

This option will construct the DT using the extracted knowledge, but the system will offer no
help to solve possible anomalies which are present in the decision logic. It will only indicate
that there exist anomalies in the DT. The decision to resolve these anomalies will be left to
the expert.

First, the empty expanded table has to be drawn using the information elements which had
been obtained previously. The name of each feature that occurs in the extracted decision logic
will occur in the condition stub of the DT. The possible values of each feature which occur in
the decision logic will be reflected in the condition entries part of the DT. Based on this
information, the empty expanded DT will be constructed such that it is a single hit tree
structured DT. According to the definition of an expanded single hit DT, each combination of
condition values must be unique and the condition states must not be irrelevant. The
condition entries are filled in such a way that a tree structured DT is obtained. This is a DT
that can be evaluated top-down by continuously choosing the relevant condition states until a
specific column is reached. In this case, the DT is a straightforward representation of the
decision tree with all conditions tested in the same order. The tree structure also implies that
the combination of condition values occur from left to right in lexicographical order, in other
words that the states of the lowest conditions vary first.

The action stub can be filled using the names of the actions which occur in the decision
logic. The condition entries part consists of the Cartesian product of the various condition
states. Finally, based on the decision logic the action entries are filled. To fill the action
entries based on the extracted rules, the user can either choose to perform this operation
interactively or in batch. If the user chooses the first option, each time a rule will be added a
new DT will be constructed and a V & V step will be performed. As a result, anomalies which
are present in the rules will be immediately reflected in the DT. Thus, the user can

-4-

immediately correct anomalies in the DT. If the second option (batch mode) is chosen by the
user, all rules will be used to construct the DT. Then, the user can start to correct the possible
anomalies in the DT.

3.2 Construct a complete and consistent DT

The second option to construct a DT differs from the first option only in the way that the
action entries are filled. Hereby, the system will offer the user some help in order to remove
the anomalies present in the decision logic. As was already mentioned, a proper DT needs to
be consistent, complete and correct. With respect to this last property, recall that it is not
possible to construct a DT which is completely correct for most real-life applications, because
the induced hypothesis space is only an estimation of the extremely complex real hypothesis
space. Therefore we want to emphasize that the DT, which should be constructed based on
the proposed approach, should always be checked by the expert whether it reflects the correct
decision for each case. Next, we will investigate how we can construct a consistent and
complete DT, which approximates best the, in most cases unknown, correct DT.

In order to construct a consistent and complete DT, we have to ensure that for each
possible combination of condition values it should be unambiguously specified which actions
should be performed for this combination of condition values. However, if the extracted
decision logic contains ambiguity for some combinations of condition values, the following
question has to be solved. Which actions should be executed for a combination of condition
values, given the fact that the decision logic for this combination of condition values specifies
ambivalent actions?

To solve this problem we have to look differently at the condition entries part of an
expanded single hit DT. Each column in the condition entries part consists of a unique
combination of condition values. Therefore, we will consider such a combination of
condition values as an unlabelled instance which has to be classified, by means of the induced
rules. In the context of the construction of a DT, classification means filling in the proper
action entries for this combination of condition values. When the action entries for a
combination of condition entries are filled in, this procedure will be repeated for the
remaining combinations of condition values in the DT. It depends on the expert whether he
will check each suggestion of the system separately, or that he will check the DT after that the
system has filled in all necessary action entries. As a consequence, our initial problem can be
reformulated into the following formulation: "how can an unlabelled instance be classified by
the induced rules?". For any unlabelled instance during classification three situations may
happen:

1. the unlabelled instance is classified unambiguously by one or more rules;
2. the unlabelled instance is classified by some rules into a class and at the same time

classified by some other rules in another class;
3. the unlabelled instance is not classified at all.

1. THE UNLABELLED INSTANCE IS CLASSIFIED UNAMBIGUOUSLY

Situation 1 poses no problems, since the unlabelled instance is classified unambiguously by
one or more rules. However, this does not mean that this unlabelled instance is classified
properly. It only means that, given the induced rule set, this unlabelled instance can be

- 5 -

classified unambiguously. Still, it has to be approved by the expert that the unlabelled
instance has been classified properly.

2. THE UNLABELLED INSTANCE IS AMBIGUOUSLY CLASSIFIED

In situation 2, more than one rule matches the unlabelled instance and the matching rules
specify contradictory actions to be executed. The question is: how should such an unlabelled
instance be classified? In the machine learning literature, several approaches are proposed to
deal with this problem.
A first approach to the above mentioned problem uses decision lists (Rivest, 1987). A
decision list is an ordered list of rules. The earliest rule that matches an unlabelled instance
will classify the unlabelled instance. The last rule is a default rule. This rule will classify the
unlabelled instance as no other rule does classify the unlabelled instance. Decision lists are
the most simple technique to solve the problem of inconsistency. Well-known machine
learning algorithms which use decision lists are C4.5 (Quinlan, 1993) and the original CN2
algorithm (Clark & Niblett, 1989).

A second approach to classify an unlabelled instance is used in AQ15 (Michalski, Mozetic,
Hong & Lavrac, 1986). AQ15 will select the rules which completely match the unlabelled
instance (using AQ15 terminology, "strict matching"). Using an heuristic which uses
information about the matching rules, the unlabelled instance will be classified. Therefore, in
AQ 15 with every rule R an estimate of probability EP(R) is associated. This estimate is
defined as follows:

EP(R) = number of examples classified properly by rule R

total number of training examples

Based on these EP(RD, the number EP(C), describing the class C, is computed as the
probabilistic sum of all EP(RD matching C. Note that by doing so the EP(RD are treated as if
they were probabilities, since the probabilistic sum computes the probability of the disjunction
of n events (here n rules). But one has to keep in mind that in fact the EP(Ri) are only
estimates of probabilities. The unlabelled instance is classified as belonging to the class
which has the highest probabilistic sum.

Another approach to classify an unlabelled instance is presented in Holland, Holyoak &
Nisbett (1986) under the name "bucket brigade algorithm". The same strategy has been
adopted by the LERS system (Grzymala-Busse, 1994). In this approach, the decision to which
class an unlabelled instance belongs is made on the basis of three factors: strength, specificity
and support. The meaning of these factors is as follows:

• The strength factor measures how well a rule has performed in the past (e.g., on a training
set).

• Specificity measures the relevance of a rule. The more detailed the rule's condition part,
the greater its specificity. Specificity of a rule is equal to the number of attributes in the
condition part of a rule.

• Support is defined as the sum of scores of all matching rules from the class. The score for
a rule is calculated by multiplying the strength factor for the rule with the specificity of the
rule. An unlabelled instance will be classified as belonging to the class with the highest
support.

- 6 -

In our experiments the DTs were modelled using decision lists. Currently, we are investing
also the other techniques to model DTs from data.

3. THE UNLABELLED INSTANCE IS NOT CLASSIFIED AT ALL

In this situation, there is no rule which exactly matches the unlabelled instance. This means
that not all attribute values of the rule are matched by their counterparts in the unlabelled
instance. As a consequence, the DT that will be modelled will not be complete. Because it is
an important goal to construct a complete DT, this situation is unsatisfactory.

A first solution to this problem uses a default rule. A default rule is a rule which will
classify the unlabelled instance if all other rules fail to do so. It can be seen as a last resort. A
well-known induction algorithm which uses a default rule is C4.5.
A second solution is used in AQ15. AQ15 will classify an unlabelled instance using partial
matching (using AQ15 terminology, "analogical matching"). To this end an heuristic is
proposed which uses information about the partial matching rules. Based on this heuristic, the
unlabelled instance will be classified. First, a measure of fit for each attribute value (aD
occurring in a rule and each attribute value (it) occurring in an unlabelled instance. This
measure of fit MF(ai, fi) can be defined as follows. First, a measure of fit MF(R) for every
rule is calculated. This measure of fit is defined as follows:

if ai =fi then MF(ai,fi) = 1
else MF(ai, fi) = 1Iinumber of the attribute's possible valuesl

Note that in AQ15 it is possible that the left hand side of a rule contains expressions of the
form (a,fl v 12 v ... v 1k). This expression indicates that the value for the attribute a may take
k different values. As a result, MF(ai, fi) will become equal to k / Inumber of the attribute's
possible valuesl.

If there are n attributes in a rule the measure of fit for a rule can be defined as:

MF(R) = (ITMF(a.,fJ)*(strengthof,a.rule)
i=! " total number of trammg examples

In this expression, IT MF(ai' f) is a weighting factor. This factor indicates how good the
i=!

unlabelled instance matches the rule. Based on the measure of fit for the rules, a measure of
fit for a class C can easily be computed. The same procedure as that was used to compute
EP(C) is taken. Given n partial matching rules, the measure of fit for a class is the
probabilistic sum of all MF(R).

A third solution is presented in LERS. To compute the support in case of partial matching
besides strength and specificity an additional factor is taking into account, the matching factor.
This factor is defined as follows:

() number of matched attribute values in rule R
Matching R = ----------------

total number of attributes in rule R

Thus, the support for a rule R can now be calculated as follows:

Support(R) = Matching(R) * Strength(R) * Specijicity(R)

-7-

Subsequently, using the support which was calculated for each rule R, the support for a class
C can be computed. The support for each class C is calculated by taking the summation of the
support of rules with respect to the class C.

In our experiments we used a default rule to avoid completeness. Currently, we are also
experimenting with the other outlined techniques.

4. Empirical evaluation

To illustrate the proposed approach, it was tested on seven datasets. All the datasets used in
this section came from the DC Irvine repository (Merz & Murphy, 1996). Prior to the
analysis, instances with missing values were removed from the training set. In the next table,
an overview of the selected datasets is given.

Dataset Features Classes Trainine: size Test size
Breast 10 2 699 lO-fold stratified CV
Cleve 13 2 303 lO-fold stratified CV
Aucrx is 2 690 lO-fold stratified CV
Pima 8 2 768 lO-fold stratified CV
Sick 25 2 3163 10-fold stratified CV
Monkl 6 2 124 432
Monk3 6 2 122 432

Table 1: Summary of datasets used

First, the datasets were pre-processed (discretization using Fayyad's and Irani's method and
feature selection using IDTM). Then, the decision logic was induced using C4.S. Finally, the
DTs were constructed and contracted. In the experiment, we used lO-fold stratified cross
validation. In general, this method allows that we accurately measure the estimated accuracy.
Because lO-fold stratified cross-validation was used ten rule sets for each dataset exist. If not
all folds classify an example in the same way, the class which occurs most frequently is used.
In case of a tie, the default class is used. In Figure 3 the modelled DT is depicted for the
dataset Breast.

1. uniforcellsha (U) 1<=U<3 3<=U<S S<=U

2. barenuclei (6) 1 <=6<3 or 3<=6<6 6<=6 1 <=6<3 3<=6<6 or 6<=6 -
3. mitoses (M) - 1 <=M<2 2<=M 1 <=M<2 2<=M - -

1. benign x - x - x - -
2. malignant - x - x - x x

Figure 3: DT for Breast dataset

It can be seen that this DT is sufficiently small, so that it can be interpreted easily. Also the
other DTs were quite small as is depicted in the next table. The major reasons why the DTs
are so small is pre-processing by discretization and feature selection and optimization of the
DT by table contraction. It can easily be seen that the impact of this reduction is enormous
with respect to the number of possible columns in the DT. For example, for the dataset breast
the number of possible columns in the DT before discretization and feature selection is a
staggering 109. The expanded DT after discretization and feature selection shows only

- 8 -

eighteen columns. Table contraction reduces the number of columns even further. The
contracted table shows only seven columns.

Dataset # columns # columns
(expanded) (contracted)

Breast 18 7
Cleve 24 8
Aucrx 72 2
Pima 32 9
Sick 6 3
Monkl 36 8
Monk3 12 3

Table 2: Number of columns in the modelled DTs

One may argue that the number of columns is largely reduced. But, this might be at the cost
of a significant reduction in expected accuracy. Therefore, in the next table, results of
C4.5rules on the raw data are compared with the results of the classification accuracy attained
by the DTs.

Dataset Accuracv of C4.5rules Accuracv of the DT
Breast 95.76 96.47
Cleve 75.34 82.67
Aucrx 83.93 85.20
Pima 72.78 77.92
Sick 97.23 96.93
Monkl 91.67 100.00
Monk3 96.30 97.22
AVG 86.12 89.87

Table 3: Comparison of accuracy

In this table, it can be seen that for most datasets the accuracy actually improves after feature
selection and discretization. These results show that feature selection and discretization
improve greatly the comprehensibility of the DTs and moreover, the accuracy of the
knowledge contained in the DTs gives still a very good estimation of the actual unknown
distribution of the data.

5. Conclusion and future research

Originally, DTs were constructed based on some knowledge provided by an expert or some
piece of regulation. In this paper, we have demonstrated that it is possible to model a
complete and consistent DT from data. Therefore, a DT was interpreted as a set of examples
which have to be appropriately classified using some knowledge induced from the dataset.
Our proposed approach was empirically validated and it was shown that the modelled DTs are
small enough in order to facilitate consultation.

In this paper several techniques to model a complete and consistent DT were presented.
However, in our experiments only one technique was used so far. Although the results, as we
have demonstrated, are satisfactory it would be interesting to compare all the proposed
techniques to model DTs from data. Currently, such experiments are carried out.

- 9 -

6. References

Clark, P. & Niblett, T. (1989), The CN2 induction algorithm, Machine Learning 3, pp. 261-283.

Codasyl (1982), A Modern Appraisal of Decision Tables, Report of the decision table task group, ACM, New

York (N. Y.).

Dougherty, I., Kohavi, R. & Sahami, M. (1995), Supervised and unsupervised discretization of continuous

features, Machine Learning: Proc. of the 12th IntI. Conf, pp. 194-202.

Fayyad, U. M. & Irani, K. B. (1993), Muiti-intervai discretization of continuous-valued attributes for

classification learning, Proc. of the 13th IntI. Joint Conf on Artificial Intelligence, pp. 1022-1027.

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996), From data mining to knowledge discovery: An

overview, in: Advances in Knowledge Discovery and Data Mining, Fayyad, U. M., Piatetsky-Shapiro, G.,

Smyth, P. & Uthurusamy, R. (eds.), MIT Press, Menlo Park (CA), pp. 1-34.

Holland, I. H., Holyoak, K. J. & Nisbett, R. E. (1986), Induction: Processes of Inference, Learning and

Discovery, MIT Press, Cambridge (MA).

Grzymala-Busse, I. W. (1994), Managing uncertainty in machine learning from examples, Proc. of the Workshop

on Intelligent Information Systems III, pp. 70-84.

Kohavi, R. (1995), The power of decision tables, Proc. of the European Conf on Machine Learning, Lecture

Notes in Artificial Intelligence 914, Springer Verlag, Berlin, pp. 174-189.

Merz, C. J. & Murphy, P. M. (1996), VCI Repository of machine learning databases

[http://www.ics.uci.edu/-rnlearnlMLRepository.html].Irvine.CA: University of California, Dept. of

Information and Computer Science.

Michalski, R. S., Mozetic, I., Hong, I. & Lavrac, N. (1986), The multi-purpose incremental learning system

AQ15 and its testing application to three medical domains, Proc. of the 5th National Conf on AI, pp. 1041-

1045.

Quinlan, I. R. (1993), C4.5 Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo (CA).

Rivest, R. L. (1987), Learning decision lists, Machine Learning 2, pp. 229-246.

Vanthienen, I. & Dries, E. (1997), Decision tables: Refining concepts and a proposed standard, Comm. of the

ACM, to appear.

Vanthienen, I. & Wets, G. (1994), From decision tables to expert system shells, Data & Knowledge

Engineering 13, pp. 265-282.

- 10-

