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a generalization of the standard Ramsey prices and also of the locational marginal 
prices (LMP). The model is illustrated with a numerical model based on the Belgian 
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Ramsey Pricing in a Congested Network  
with Market Power in Generation:  

A Numerical Illustration for Belgium 

1. INTRODUCTION 

This paper introduces a model that calculates socially optimal transmission prices in situations where 
the transmission capacity on the network is limited, the network operator faces a budget constraint and 
competition in generation is imperfect. Its focus is on the transmission prices. These prices can be 
regarded as a generalization of three cases.  

First, they are a generalization of the well known Ramsey prices, which are the optimal prices when 
the network operator faces a budget constraint, when competition in generation is perfect and when 
there is no congestion on the network. Second, the prices are a generalization of the marginal nodal 
spot prices (Schweppe, Caramanis et al. (1988)). These latter prices result in an efficient use of a 
congested network, when generators are perfectly competitive and when the network operator does 
not face a budget constraint. Finally, even in the absence of network congestion and a budget 
constraint, transmission prices can become non-zero. With imperfect competition, a welfare 
maximizing network operator will use transmission prices to move the market outcome towards the 
first best outcome. Some of the prices will become negative, reflecting subsidies to generation plants, 
in order to stimulate them to increase production. This result can be found in most undergraduate 
textbooks, see also Tirole (1988) pg 68. 

The model is illustrated with numerical simulations that capture the major features of the Belgian 
electricity system, both in terms of its technical characteristics of generation and transmission, and in 
terms of the demand for electricity. These characteristics, such as generation plants, grid layout, and 
1n −  security constraints will be described in more detail in section 4.  

Four scenarios are considered in the numerical simulations. In the first scenario (“First Best”), we 
assume that the network operator does not face a budget constraint, and that generation is perfectly 
competitive. Given the presence of congestion in the network, the network operator will set 
transmission prices equal to network congestion charges. 

In the second scenario (“Second Best”), we assume that the network operator faces a budget 
constraint and has to cover his fixed costs by increasing the transmission prices. Network congestion 
is still assumed to be present.  

The third and the fourth scenarios still have a budget constraint and limited transmission capacity, but 
now imperfect competition in generation is added. The third scenario considers a monopoly in the 
generation market. As the Belgian electricity market is currently highly concentrated (the largest 
generator owns 83 % of the production capacity), this scenario could be considered as the current 
situation. The fourth scenario considers three Cournot players in generation. This can be interpreted 
as a market where some of the monopolist's production capacity is virtually auctioned, a mechanism 
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that currently is implemented in Belgium, or as a market that could emerge when some new 
generators would enter the market. 

The structure of the paper is as follows: the next section starts with a general discussion of socially 
optimal transmission prices under a number of assumptions and continues with a review of relevant 
literature on strategic behavior in the electricity market. It starts with a description of models of 
imperfect competition in electricity generation without transmission constraints, and continues with a 
discussion of some Cournot models in which transmission constraints are present. 

Sections 3 and 4 describe the structure of the model and the data, respectively. Section 5 discusses 
the simulation results and, finally, section 6 presents conclusions and some extensions for future 
research. 

2. MODELING THE ELECTRICITY MARKET 

2.1. Transmission pricing in the network 

As stated in the introduction, this paper develops a model for calculating the social optimal 
transmission prices when there is congestion on the network, when the network operator is faced with 
a budget constraint and when competition in generation is imperfect. This subsection starts with a very 
simple reference case where (1) there are no binding transmission constraints, (2) the network 
operator has no budget constraint, and (3) generators are perfectly competitive. Then we will look at 
how each of these three assumptions affects socially optimal transmission prices.  

1 Reference case 

It is assumed that electricity transport is costless1. In that case, optimal transmission prices are zero, 
as any non-zero transmission price would create distortions in the market and would decrease welfare. 
As competition in generation is perfect, there will be perfect arbitrage between the different nodes in 
the network, and the price for electricity will be the same for all generators and for all consumers, 
independent of their location in the network. 

2 Network congestion2 

If transmission capacity is scarce, then the optimal price for transmission is no longer zero. 
Transmission prices should become positive and will be set according to the peak load pricing rule, as 
discussed by Schweppe, Caramanis et al. (1988)3. The network operator sets the price of 
transmission equal to the opportunity cost of using the transmission line, i.e., congestion charges or 
marginal nodal congestion charges.  

Another way of looking at network capacity is to consider it as a public good which is used by the 
different users of the network. As long as the network is not congested, the use of the network does 

                                                      
1  We make abstraction of the thermal losses on the network in this paper. 
2  We will call this scenario the first best later on in the text. 
3  In the US, this system is also part of the standard market design of the FERC and is called Locational Marginal Prices. 
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not create an externality and it is not priced. When the network becomes congested, the optimal tariff 
for using the network is equal to the external cost that one unit of transportation produces. This is the 
well known Pigouvian taxation rule (Pigou (1932)). 

3 Network operator with a budget constraint 

The operation of the transmission network is a natural monopoly, featured by decreasing average 
costs as transmission output increases4. As a simplification we assume that the network operator has 
a fixed cost, independent of the network use, and zero marginal costs. 

Given zero marginal transmission costs, the optimal use of the network requires the transmission price 
to be zero. But a zero price will not generate sufficient revenue to cover the costs of the network 
operator, and the network operator will lose money. 

In order to cover costs, the network operator will set positive transmission prices. A welfare 
maximizing network operator will do this such that total deadweight loss is minimized, i.e. using 
Ramsey prices (Ramsey (1927)). Transmission tariffs are set inversely proportional to the demand and 
supply elasticities at the different nodes. 

In this paper, we implicitly assume that the network operator cannot use a two-part tariff. This 
assumption is not in line with common practice, as in most countries the transmission fee has a fixed 
and a variable component. However, in most cases the ‘fixed’ part is not completely fixed, and 
depends on the actual use of the network, so there is still creation of deadweight loss5. As long as 
there are no distortion-free instruments, it remains optimal to use a form of Ramsey prices.  

4 Imperfect competition in generation  

Suppose that there is a monopoly in generation. The monopolist will generate less electricity than the 
social optimal quantity. In such a case, the optimal transmission tariff is not equal to zero. Instead, the 
welfare maximizing network operator will subsidize the monopolist for using the transmission line6. 
This transmission tariff will change the monopolist’s incentives to generate electricity in such a way 
that we obtain the first best outcome. 

Overview 

The results of the previous discussion are summarized in Table 1. Analytic expressions for the social 
optimal transmission prices for the cases 2 to 4 are derived in Appendix B :. 

                                                      
4 This output includes the transport of electricity, but also other functions, such as the provision of reliable electricity supply 

(operation of reserve power and balancing markets) and of qualitative power (e.g. voltage level, frequency stability). 
5  The fixed part often depends on the maximal usage of the network over a certain time period, or the average use of the 

network over a time period. As the fixed part is a function of the actual use of the network, users will take it into account 
when they make their decision about how much transmission they want to use. They will transport less electricity than the 
welfare optimum, and deadweight loss is created.  

6  Note that we assume that the Network Operator does not have a budget constraint. 
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Welfare maximizing pricing rule 

1 - - - Zero price for transmission, uniform price for electricity 
2 - √ - Optimal Nodal pricing 
3 √ - - Standard Ramsey Pricing 
4 - - √ Subsidize Monopolist until marginal willingness to pay  is equal to marginal 

costs 
Table 1: Welfare maximizing prices in the reference case and when one of the imperfections 

is added. 

Several market imperfections 

In the numerical simulation in section 5, we will gradually add extra assumptions to the model. 

In the first scenario we look at the first best. (Model 2 in Table 1) In the second scenario we add the 
budget constraint and study the second best (combination of the models 2 and 3) and in the last two 
scenarios we also add imperfect competition (combination of models 2, 3 and 4).7  

Before we describe the model itself, we review some relevant literature of imperfect competition in 
generation. We start with a description of models of imperfect competition in electricity generation 
without transmission constraints, and continue with a discussion of some Cournot models in which 
transmission constraints are present.  

2.2. Imperfect competition in generation 

Due to the non-storability of electricity and its highly variable demand, electricity systems tend to 
feature a mix of base load plants and peak load plants. Peak load plants are typically characterized by 
high marginal production costs and low investment costs, while base load plants typically have low 
marginal costs and high investment costs. Peak load plants are only used in periods of high demand, 
base load plants are used at all times. Peak load power and base load power could therefore be 
considered as two different goods. Two types of equilibrium have been developed in the specialized 
literature to model imperfect competition in such a multi-good market: the multi-unit auction and the 
supply function equilibrium. 

Multi-unit auction 

In the multi-unit auction, generators bid a price for each plant at which they are willing to supply given 
capacities8. The equilibrium price, determined as the price that clears the market, is applied to all infra-
marginal units9. In this setting, bidders, offering more than one unit of capacity, have an incentive to 
increase their bids for those plants that are likely to be marginal. For example Wolfram (1998) uses the 
multi-unit auction approach to find empirical evidence that, in the England & Wales market, large 

                                                      
7  Buchanan (1969) and Barnett (1980) study the combination of model 2 and 4, and discuss the optimal taxation of 

externalities when there is market power in the output market. 
8 See for instance the models of von der Fehr and Harbord (1993). 
9 Other types of auctions can also be considered. 
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players effectively try to use their market power in this way. A drawback of multi-unit auctions is that 
they are particularly hard to model, and do not always have a Nash equilibrium. 

Supply Function Equilibrium 

The supply function equilibrium concept is based on Klemperer and Meyer (1989). Generators choose 
a continuous and differentiable supply function, which, for each price, specifies the quantity they are 
willing to generate. Again, the electricity price is established as the market clearing price. Klemperer 
and Meyer show that an infinite number of Nash equilibriums exist when electricity demand is known 
with certainty. The reason is that only one point on the supply function is required to determine the 
market clearing price, the remainder of the supply function can be chosen more or less free. 

However, if electricity demand is uncertain when generators decide about their supply function, then 
the latter function has to be appropriate for several situations, and the number of equilibriums is 
reduced10. Klemperer and Meyer even show that, under certain conditions, the differentiable supply 
function equilibrium becomes unique. 

An example of the supply function equilibrium approach is Green and Newbery (1992). These authors 
apply the Klemperer and Meyer model to the two largest generators in the English market11. By adding 
an output constraint for each generator, they can further reduce the set of equilibriums. Furthermore, 
Green and Newbery assume that generators will coordinate on the equilibrium that maximizes total 
profit. Their model predicts that, in the absence of a threat of entry, the two generators are able to 
sustain a non-collusive equilibrium in which prices are well above operating costs. 

One of the major drawbacks of the two types of models discussed above is that  the spatial structure of 
the electricity market, and therefore the impact of transmission constraints, is often omitted. Applying 
these two approaches in a market with transmission constraints is quite difficult12. 

Most researchers therefore opt for some kind of Cournot market, while dropping some of the multi-
good aspects of the actual market. This option is supported by an empirical study of Wolak and Patrick 
(2001) who suggest that Cournot competition is an appropriate representation of the electricity 
generation market13. This paper will also follow the Cournot approach for the electricity generation 
market. 

2.3. Cournot in generation - Price taking in transmission 

Even Cournot models become quite cumbersome when simulations are made for larger networks with 
transmission constraints. This is the case because generators realize that, with scarce transmission 
capacity, transmission prices can be influenced, and congestion can be created. Cournot-Nash 
equilibriums are then no longer guaranteed to exist, and rationing rules or arbitrageurs need to be 

                                                      
10 Klemperer and Meyer consider horizontal shifts in demand. 
11 Other studies using this model are Bolle (1992), Newbery (1998), Green (1996) and Rudkevich, Duckworth et al. (1998). 
12  One notable exception is the work of Hobbs, Metzler et al. (2000) who restrict themselves to linear supply functions. 
13 Other studies using Cournot competition are Oren (1997), Stoft (1997), Borenstein, Bushnell et al. (2000), Borenstein, 

Bushnell et al. (1999), Borenstein and Bushnell (1999), Hogan (1997), Cardell, Hitt et al. (1997). 
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added to the model. Papers looking at this issue are Hogan (1997), Borenstein, Bushnell et al. (2000), 
Willems (2002b), Willems (2002a). 

Therefore, this paper assumes that generators behave à la Cournot in the energy market (buying and 
selling of electricity), but are price takers in the transmission market. This approach is inspired by the 
model of Smeers and Wei (1997) and Wei and Smeers (1999), two models to be discussed in the next 
section. 

2.4. Network operation 

In addition to the question of how generators perceive transmission prices, there is also the question 
of how the transmission firms set prices. With respect to the latter question, different assumptions can 
be made. Examples are congestion pricing (Smeers and Wei (1997)), regulated pricing (Wei and 
Smeers (1999)), and strategic price setting (this paper). A short discussion follows. 

Congestion pricing 

Smeers and Wei (1997) assume that the network operator sets prices for using the network on the 
basis of congestion charges (CC )14. As long as a line is not used at full capacity, the transmission 
tariff equals zero. If the line becomes congested, the transmission tariff is increased until demand for 
transmission equals supply. This can be illustrated for a network with one line of capacity Q . With Q  

the demand on the line, and Τ  the transmission tariff, we have:  

 
if then

if then

         

         

0

0

Q Q

Q Q

Τ > =

Τ = ≤
 (1) 

Congestion pricing can be interpreted as the result of assuming that the network operator behaves 
perfectly competitive. Thus, the network operator acts as a price taker in the transmission market and 
appears to be unaware of his market power in that market. Congestion charges can be implemented 
when the network operator is forced to sell all transmission capacity in an auction, is not allowed to 
withhold capacity from the market, and is not allowed to set a minimal reservation price for the 
transmission rights. Hobbs (2001) extended the framework of Smeers and Wei, by adding a DC flow 
model and allowing for arbitrage between the nodes. (See Appendix B : for a discussion of arbitrage). 

Regulated prices 

Wei and Smeers (1999) study regulated transmission prices. Here, the transmission charge is the sum 
of two parts: a congestion charge CCΤ , and a regulated charge RΤ 15: 

 ( ) ( ) ( )CC RQ Q QΤ = Τ + Τ  (2) 

The term ( )R QΤ  is set according to a regulatory rule which depends on the use of the line. They 

study two types of regulatory rules: marginal cost pricing and average cost pricing. The average cost 
                                                      
14 This type of pricing is also called Location Marginal Pricing (LMP) or nodal spot pricing. (Schweppe, Caramanis et al. (1988)) 
15 Wei and Smeers (1999) give a different interpretation to the congestion charges than we do here. They look for a 

Generalized Nash Equilibrium where transmission constraints are internalized. In that case, congestion charges are internal 
multipliers.  
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pricing rule sets the regulated charge for a transmission line equal to the average cost of building a 
new transmission line. With the marginal cost pricing rule, the regulated charges are set according to 
the marginal cost of building transmission lines. 

The congestion charge ( )CC QΤ  is required to clear the market when the demand for transmission is 

in excess of available capacity at a transmission price equal to the regulated charge ( )R QΤ . Wei and 

Smeers assume that congestion charges are not used to refund the network operator for building new 
transmission capacity16. 

Both models of Smeers and Wei assume no strategic behavior from the side of the transmission firm. 
This paper drops this assumption and assumes the transmission firm to behave strategically.  

Welfare maximizing network operator 

Smeers and Wei (1997) assume that transmission is priced according to marginal cost. Underlying this 
pricing rule are the assumptions that (A) marginal cost pricing is optimal, and (B) the network operator 
can be perfectly regulated. 

In this paper we drop the first assumption and look at the two cases where marginal cost pricing is not 
optimal17.  

First, with increasing returns to scale in network operation, marginal cost pricing does not guarantee 
sufficient revenue for cost recovery. Network operation is featured by decreasing average costs, 
implying marginal costs are below average costs at relevant transmission output levels. Competition in 
network services is not sustainable, and, for that reason, most regions opted for a single regulated 
transmission firm operating the whole regional network18. If the losses of this transmission firm cannot 
be subsidized via transfers (i.e. the transmission firm has a binding budget constraint), then other 
pricing rules, generating prices above marginal cost, will have to be applied. 

Second, it is optimal for the transmission firm to deviate from marginal cost pricing if competition in 
generation is imperfect. Imperfect competition would result in output levels below the welfare optimum 
and a welfare maximizing network operator will subsidize the generator(s) in order to increase output 
and, hence, to decrease dead-weight losses. 

This paper models the transmission firm’s decision process as a two stage Stackelberg game. In the 
first stage, the network operator sets the transmission charges at each consumption and generation 
node. The network operator maximizes welfare, taking into account the effect of its pricing decision on 
the strategic behavior of the players in the second stage. 

In the second stage, generators behave à la Cournot, taking the nodal transmission surcharges and 
the congestion charges as given. The current model differs from the regulated prices model of Wei 
and Smeers (1999) in that the transmission charges are set by the network operator, rather than by a 
regulatory rule.  

                                                      
16 It has often been argued that congestion payments should not go to the network operator as this could give the wrong 

incentives. 
17 In a companion paper we will also drop the second assumption that the network operator can be regulated perfectly. 
18 See for example Train (1991) for a discussion of the conditions for a natural monopoly. 
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3. THE MODEL 
Define the sets F  and G  as the sets of generation firms and generation plants. Let fG  be the set of 
generation plants owned by generation firm f F∈ . With I  being the set of network nodes, 

iG denotes the generation plants at node i I∈ , and fiG  the generation plants at node i  owned by 
firm f . Furthermore, let A  be the set of transmission lines in the network. 

For notational simplicity, the model will be further described as if it concerned a one period model, i.e. 
a model that does not distinguish between peak and off-peak periods. However, the numerical 
simulations discussed in section 5 differentiate between peak and off-peak demand in a 4-period 
model. 

The model distinguishes three types of players: consumers, generation firms and the network 
operator. 

Consumers are price takers. At node i , they consume is  units of electricity. Their inverse demand for 
electricity, denoted as ( )i ip s , is downward sloping and concave. Consumer prices include 

compensation for both the generation and the transmission of electricity. 

Generation firm f F∈  maximizes profits, while acting as a price taker in transmission. At node i , it 
owns the generation plants fig G∈ . 

Electricity generation in plant g  is gq  and the generation cost is ( )g gC q . Total generation costs are 
convex, with fixed generation costs normalized to zero. The generation capacity of plant g  is 
labeled gq . Output should be nonnegative, and cannot exceed available generation capacity. 

Therefore, we have 

 0 g gq q≤ ≤   

The network operator or transmission company maximizes social welfare and sets a nodal 
transmission charge ciτ  for consumers and p

iτ  for generators. This is the per unit payment generators 

have to make for injecting power, and that consumers have to pay for taking power from the grid. 
These charges can be different. For instance, a generator who generates electricity in node i  and 
sells electricity in node j  will pay p c

jiτ τ+ . Only the sum of the consumer and generation 

transmission charge is important, and therefore one of the charges can be set equal to zero without 
loss of generality. 

As explained before, the model has two stages. In the first stage, the transmission operator sets 
transmission prices. In the second stage, generation firms play a Cournot game in which transmission 
prices and their competitor's quantities are assumed as given. The next subsection describes the 
second stage of the game. 

3.1. The second stage 
Each firm f  observes the transmission charges p

iτ  and c
iτ  as set by the network operator and plays 

a Cournot game. A firm f  collects revenue by selling fis  units of electricity at node i  at the per unit 

price ip . Firms also set the production level gq  ( )fg G∈  at each of their plants. Their competitor's 
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sales in node i , denoted by fis− , are taken as given. Apart from generation costs, firms also pay a 

transmission cost p
iτ  for injecting electricity to the network at node i , and c

iτ  for the delivery of 
electricity to node i . This results in the following profit function for generation firm f , 

 ( ) ( )[ ]
fi

pGen c
f i i fi g g gi

i I i I g G
p s C q qτ τ

∈ ∈ ∈
Π = − ⋅ − +∑ ∑ ∑  (3) 

The nodal price ip  that is received by generator f  depends on the total sales in that node, i.e. 

 
( )i i i

i fi fi

p p s

s s s−

=

= +
  

where a tilde indicates that the variable is considered as given. In equation (3), the first term reflects 
revenues from electricity sales net of transmission charges paid at the consumption nodes. The 
second term reflects generation costs and transmission charges to put the electricity on the network. 
Summarizing, we have the following maximization problem for a generator19: 

 

( )
( ) ( )[ ]

( )
( )

Max
,

. . 0 ,

fi g f
fi

f

pGen c
f i i fi g g gis q g G i I i I g G

g g g g f

p
fi g f

i I g G

i fi fi

p s C q q

s t q q g G

s q

s s s i I

τ τ

µ µ

λ

∈ ∈ ∈ ∈

∈ ∈

−

Π = − ⋅ − +

≤ ≤ ∀ ∈

=

= + ∀ ∈

∑ ∑ ∑

∑ ∑
 (4) 

As noted before, the first constraints reflect generation capacity constraints. The second constraint 
represents the energy balance at the firm level, i.e. total output should equal total sales. The last 
constraint represents demand. This constraint has no multiplier as it is substituted into the objective 
function and the other constraints before derivatives are taken. 

The following first order conditions are then derived: 

 
( )

,g g p p
g g fii f

g

C q
g G i I

q
τ µ µ λ

∂
+ + − = ∀ ∈ ∀ ∈

∂
 (5) 

 
( )i i pc

i fi i f
i

p sp s i I
s

τ λ∂+ − = ∀ ∈
∂

 (6) 

These are the standard first-order conditions for profit maximization, i.e. as long as generation 
constraints are not binding, marginal revenue equals marginal cost in all market segments. The 
Lagrange multiplier of the energy balance constraint p

fλ , is the value of energy in the network for 

generation firm f . This value is different for every firm. 

                                                      
19 Note that in this formulation nodal sales of the generators can become negative. Generators can act like arbitrageurs that 

buy electricity in one region and sell it in another. They will, however, still take into account the effect on the marginal 
revenue in both regions. Therefore, with a limited number of firms, not all price differences will be arbitraged away. As the 
number of generation firms increases, arbitrage will improve. 
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Cost minimization requires that each firm equalizes the sum of the marginal cost and the generation 
charge at all generation plants. Profit maximization requires that marginal revenues net of 
consumption charges are equalized. 

Note that each firm’s reaction function with respect to the sales fis−  and the transmission charges, 
c
iτ and p

iτ  can be derived from the equations (4), (5) and (6). 

The multipliers gµ  and gµ  are positive, and satisfy the complementarity conditions:  

 ( )
0 0

0 0

g g g

g g gg

q

q q

µ µ

µ µ

≥ ⋅ =

≥ ⋅ − =
 (7) 

Electricity transmission 

The model captures the technical features of the electricity system, especially at the level of electricity 
transport. Electricity transport is subject to physical constraints. These constraints have an impact on 
the power flow through the network and therefore potentially also on the pricing of transmission 
services. In this paper we concentrate on active power and we adopt a simplified DC flow model 
without losses.20 

Each line a A∈  in the network is characterized by a transmission capacity aQ . Denoting the flow 
over the line a  as aQ , we must have  

 a aQ Q a A≤ ∀ ∈  (8) 

Transmission must not be larger than the available transmission capacity. This is also called the 
thermal constraint of linea , because the line's temperature increases too much if the line carries larger 
flows. 

The flow over a line a  depends on the injection and the extraction of electrical energy in all the nodes 
of the network. The flow on line a is equal to:  

 
swing node

,
/{ }

( )a i i i a
i I

q s Qθ
∈

− =∑  (9) 

with ,i is q  the total consumption and generation in node i , respectively: 

 i fi
f F

s s i I
∈

= ∀ ∈∑  (10) 

 
i

i g
g G

q q i I
∈

= ∀ ∈∑  (11) 

The flow over a transmission line is a linear function of the net injections at all nodes. The variables 
,a iθ  are the power transmission distribution factors (PTDFs). They describe how much a change of net 

                                                      
20 Such a model assumes that line resistance is  small relative to reactance, that voltage magnitudes are the same at all nodes, 

and that voltage angles between nodes at opposite ends of a transmission line are small. Engineers often use the linearised 
model of the network for long term planning. See Schweppe, Caramanis et al. (1988).  

 The alternative, AC-power flow, was used in a previous version of the program, but did not give fundamentally different 
results. 
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injection in node i  will change the flow on linea . The PTDFs are determined by the physical 
properties of all the lines and the layout of the network. 

Equations (8)-(11) describe the transmission possibilities of the network, i.e. they define the production 
feasibility set of the network operator.  

Security of supply 

The network operator also needs to secure the supply of electricity. A minimal requirement for this is 
that, if unexpectedly a line goes out of service the remaining lines should still be able to transport all 
supplied electricity. This is the “ 1n − ” rule. The network operator will check that for all contingencies 
k K∈  the network is still capable of accommodating all flows.  

For instance, if during contingency k  the line Aα ∈  breaks down, then the set of the remaining lines 
{ }\A a  should be able to transport the power over the network. After a contingency, the flows 

redistribute themselves over the network, and these new flows should still be feasible given the 
thermal constraints of the remaining lines. 

Taking into account the security of supply for all contingencies K, the following equation needs to be 
added to the network Equations (8)-(11): 

 
swing node

,
/{ }

( ) ,k
a i i i a

i I
q s Q a A k Kθ

∈
− ≤ ∀ ∈ ∀ ∈∑  (12) 

For notational simplicity, we will assume that the set of contingencies K also includes the case where 
all lines are available, such that we can drop equations (9) and (8). Equations (10)-(12) describe the 
feasibility set of transmissions on the security constrained network.  

3.2. The first stage 

The network operator maximizes welfare subject to a budget constraint. He sets the consumption and 
generation transmission charges ( c

iτ  and p
iτ ), which can be differentiated over the nodes. It is 

assumed that the cost of providing transmission services is separable into operating costs and 
capacity costs. In the present model, operating costs and network losses are neglected. Therefore, 
only the capacity costs B  remain. 

The profit of the network operator is then equal to: 

 ( )ptr c
i i ii

i I
s q Bτ τ

∈
Π = + −∑  (13) 

The first term between brackets is the revenue of selling transmission services to consumers at 
node i . The second term is the revenue of selling transmission to the generators at node i . The last 
term represents capacity costs. By assumption, capacity costs are fixed.  

The network operator maximizes  

 ( ) ( )
0

is
i g g

i I g G
W p t dt C q

∈ ∈
= −∑ ∑∫  (14) 
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subject to the energy balance at the firm level, 

 
f

fi g
i I g G
s q f F

∈ ∈
= ∀ ∈∑ ∑  (15) 

the Cournot behavior (Sales - Production), 

 ( )
( )
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i
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 (16) 
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the network equations  
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 i fi
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i
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∈
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and the budget constraint: 

 ( ) 0pc tr
i i ii

i I
s q Bτ τ

∈
+ − = Π ≥∑  (22) 

This latter constraint is added in order to avoid that the network operator goes bankrupt. 

4. DATA AND CALIBRATION 

Before continuing with the simulations, we discuss the data that have been used as an input for the 
model. Also, the calibration procedure will be described. The choice of the technical features of the 
transmission grid and of the available generation plants is inspired by the Belgian electricity system.  

4.1. The Network 

Figure 1 shows the network that has been modeled. It consists of 55 nodes and 92 lines and includes 
all the Belgian 380 kV and 220 kV transmission lines, but also some 380 kV lines in The Netherlands 
and France because they are important for the flows inside the Belgian network. The full lines on the 
graph are 380 kV lines, the dotted lines are 220 kV lines. The line between Gouy and Avelgem 
represents several lines of the 110 kV network that connect both nodes. 21 

                                                      
21 Network data was kindly provided by Peter Van Roy and Konrad Purchala of the K.U.Leuven Electrical Engineering 

Department. More detailed information on origin and destination, voltage level, admittance, thermal capacity… is available 
upon request. 
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Figure 1: The Belgian high voltage network, situation in 2002. 

The 1n −  rule holds for all Belgian 380 kV lines, except for some loose ends. Using the 1n −  rule 
for these lines makes no sense when we do not include lower voltage levels. Also, the 1n −  rule is 
not imposed for the interconnections with France and The Netherlands and for the lines within these 
countries, because sufficient or adequate information is lacking. 

4.2. Electricity generation 

The total generation capacity connected to the grid is 14 475 MW. Of this capacity, approximately 
1070 MW consists of smaller generation plants which are not included in the model. These are mainly 
combined heat and power generation units (970 MW), and some small hydro units (90 MW). We 
assume that in any time period, 50 % of these plants produce electricity. The remaining production 
capacity (13405 MW), is spread over 51 generation units, which are modeled in the paper based upon 
data of the year 200222. Each generator is assumed to have constant marginal production costs gC . 

In the simulations, two alternative scenarios are considered with respect to market power of the 
generators. First, we assume a generation monopoly, i.e. all generation units are owned by one profit 
maximizing generator. The second scenario considers three Cournot players, having a market share in 
generation capacity of 43%, 34% and 23%, respectively. 

                                                      
22 Some of the data was kindly provided by Leonardo Meeus and Kris Voorspools of the Departments of Electrical and 

Mechanical Engineering, respectively. Data was also taken from several editions of the BFE statistical yearbook, the annual 
report of Electabel.  Data are available from the authors upon request. 
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Each player maximizes profit, taking into account plant characteristics. Generation decisions are 
described by the first order conditions (5) and the complementarity conditions (7). The player's 
complementarity conditions are highly non-linear at the zero production level and at the maximal 
capacity of each plant. This makes the model in this paper a Mathematical Program with Equilibrium 
Constraints (MPEC). MPECs are a class of problems which are known to be difficult to solve (Luo, 
Pang et al. (1996)). This paper uses a pragmatic approach23 to solve them and relaxes the 
complementarity conditions (18) to  

 
( )

( )

g

g

g g g g

g g ggg

q

q q

φ

φ

µ β α

µ β α

⋅ + =

⋅ − + =
 (23) 

The parameters gα , gβ  and gφ  are the relaxation parameters of the complementarity conditions. 
When gα and gβ become equal to zero, we obtain again the exact complementarity conditions.  

After solving for the Lagrange multipliers 
g
µ  and gµ  in equation (23), the optimal sales decision (5) 

can be rewritten as  
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 the smoothed marginal cost function: 
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 (25) 

This is the approach followed in the numerical simulations. By smoothing the marginal cost functions 
of the generators, we make sure that the generators will choose an internal solution, and not one of 
the boundary generation levels 0  or gq . 

Three plants are pumped storage plants, i.e. they can store energy in the form of a water reservoir. 
When generation costs are low, these plants consume electricity and pump water to a higher level. 
When generation costs are high, the reservoir is emptied and electricity is produced. The underlying 
decision process is not modeled in this paper. We assume that these plants generate electricity during 
peak periods at a marginal cost of €13 per MWh, and we count them as part of the consumption side 
during the off-peak periods.24 

                                                      
23  The paper does not try to develop new ways of solving MPECs. Instead it focuses on the economic intuition behind the 

model. We do not think that the use of more complex solvers would increase the economic insight in the model. For a 
comparison of different methods to solve MPEC problems see Fletcher and Leyffer (2002). 

24 A better modelling of the pumped storage plants would require to take into account the capacity constraint of the water 
reservoir, and to make the generation and consumption decisions endogenous. 
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4.3. Electricity demand 

The model has been calibrated on the basis of Belgian data for electricity demand in 200225. In that 
year the average demand was 9.52 GW. Total yearly demand in Belgium is 83.4 TWh per Year. Figure 
2 presents a histogram of demand in Belgium. The histogram is based on periodical observations with 
a length of 15 minutes. The highest and lowest observed demand levels were 13.7 GW and 5.8 GW, 
respectively. 

Demand Characteristics Belgium, 15' level (2002)
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Figure 2: Histogram of electricity demand in Belgium in 2002 (Source Elia). 

Extending the model from one period to multi periods 

Obviously, the demand for electricity is not constant over time and in order to take this into account, 
the numerical one-period model has been extended to a 4-period model. For this, the model needs to 
be slightly extended, as one time period might have an effect on other time periods. In the present 
model, we distinguish four potential links. 

First, cross-substitution can take place between time periods. For example, demand for electricity 
during the night will not only depend on the price in the night, but also on the price that is charged 
during the day. In this model it is assumed that these cross-substitution effects are zero. There is thus 
no intertemporal substitution. 

Second, as was mentioned before, the consumption and generation decision of the pumped storage 
plants can be endogenized. 

Third, there are intertemporal production constraints for generation. Generators can increase or 
decrease output only at a certain speed (ramping constraints). Starting up and shutting down 
generators is costly and requires time. These production constraints are not included in the model. 

Finally, when the budget constraint of the network operator is binding, then this budget constraint 
creates a link between the different time periods. The marginal welfare cost of obtaining revenue for 

                                                      
25 The network of one part of Luxembourg forms an integral part of the Belgian network. Demand levels for that part are 

included in the model here. 
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the network operator should now be equal over each time period. In this paper, only the last link is 
taken into account. 

4.4. Network operator 
The network operator has total costs of €649B M=  per year (Source: Annual report ELIA, 2002). 
Capital costs are about 50% of the total costs, the other 50% being operating costs, such as wages 
and network maintenance costs. Wages and network maintenance costs are not directly related to the 
amount of MW transported over a line, they are inherent to the existence of that line. Therefore, as we 
could not find a more detailed description of the cost function of the network operator, we assume all 
costs to be fixed. Network losses are neglected in the model. Clearly, these would depend on the 
actual use of the network. With a total electricity demand of 83.4 TWh in 2002, the average cost of the 
network operator is €7.78 per MWh. 

4.5. Calibration 

The calibration of the model involves three steps. Each of these three steps is described below. 

Fixing periodic aggregate demand and the length of each period 

The first step is to decide about the level of electricity demand in each of the four periods, and about 
the length of each period in a standard year. This has been done on the basis of the data presented in 
Figure 2. This figure shows how often a certain demand level occurs in the Belgian market. We will 
consider 4 periods with average demand levels fixed at 8, 10, 11.5 and 12.5 GW. The length of each 
time period is then set such that the cumulative distribution function of the 4 periods approximates the 
observed cumulative distribution function (Table 2). As 500 MW of this demand is provided by small 
generators, the demand level as seen by the generators in our model is fixed 500 MW lower. Thus, the 
demand levels used to calibrate the demand functions are 7.5, 9.5, 11 and 12 GW. 

Period Observed 
Demand 

Period Length Model 
Demand 

Reference 
price 

 (GW) (hr) (%) (GW) (€ per MWh) 
1 12.5  208 2.4% 12.0 45.2 
2 11.5  1759 20.1% 11.0 37.9 
3 10.0  3410 38.9% 9.5 35.6 
4 8.0  3383 38.6% 7.5 27.0 

Average 9.6  8760 100.0% 9.1 33.0 
Table 2: Calibration of the 4 time periods 

Fixing a reference price for each period 

Given the periodic electricity demand derived in the first step, we minimize the production costs to 
supply this demand. Here, it is assumed that pumped water storage can only be used in periods one 
and two. In periods three and four, pumped storage plants pump water into a reservoir. 

Via this procedure, we obtain the marginal production cost for each period. The obtained values are 
increased with the average costs of the network operator ( €7.78 per MWh) to obtain a reference price 
for each period (Table 2). 
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Fixing periodic electricity demand in the consumption nodes 

In the third step, we derive for each node a linear demand function. The price elasticity of demand is 
assumed to be −0.2 in all nodes and all periods. Total demand is distributed proportionally over the 
different periods on the basis of the demand data in Van Roy (2001) and the reference prices are 
calculated in step 2. This information is sufficient to derive for each consumption node the parameters 
of the linear demand function. 

4.6. Transit 

The model also takes into account that the Belgian grid is used for relatively large transit flows. These 
flows are generally directed from France to The Netherlands and, as a first approximation, we impose 
an exogenous transit flow of 1000 MW from the south to the north. This transit is assumed to occur in 
all periods. The foreign generation and load nodes are summarized in Table 3. 

Imports from France to Belgium are neglected. Without modeling the French generator(s), imports 
cannot be included in our model in a sound way. In practice, imports are about 400 MW. 

Clearly, this is only an approximation. A more detailed and better modeling procedure should be the 
subject of further research. 

The Netherlands 

Node   
Maasbracht   -731 MW 
Geertruidenberg   -368 MW 
Borssele   99 MW 
 TOTAL  -1000 MW 

France 

Node   
Avelin   543 MW 
Lonny   34 MW 
Moulaine   423 MW 
 TOTAL  1000 MW 

Table 3: Exogenous generation levels at the foreign nodes (Negative numbers are loads). 

5. SIMULATION RESULTS 

This section discusses some simulation results obtained from the model. Before starting the 
discussion, we first try to grasp some intuition on setting the transmission charges for consumers and 
generators. Subsection 5.2 discusses the simulation results in the first best case, with perfect 
competition in generation, and no budget constraint for the network operator. 

The following subsections then will subsequently drop each of these assumptions. Subsection 5.3 
adds the budget constraint to the network operator, and subsection 5.4 adds imperfect competition in 
generation. It considers two alternative market structures: monopoly competition and Cournot 
competition. 
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5.1. Interpreting transmission prices 

It is assumed that the network operator is able to set a transmission price for generation and 
consumption in each node: p

iτ  and c
iτ 26. However, the optimal transmission charges are not uniquely 

defined. First, take a node i  at which no consumers are connected. For that node, the consumer 
transmission price c

iτ  does not play a role and it can safely be set equal to zero. The same is true for 
nodes without generation. Here, p

iτ is not uniquely defined and the charge is set equal to zero. 

Second, note that a firm generating electricity in node i  that is sold in node j , has to pay a per unit 

transmission charge equal to 

 p c
ij iiτ τ τ= +   

For the generation firm, only the total transmission charge is important, not its exact composition. The 
network operator has therefore one degree of freedom in setting the transmission charge components. 
This can easily be checked from the equations (16) and (17), and by noting that one can uniformly 
increase all generation tariffs with t  and decrease all consumer tariffs with t  without changing the 
sum of the charges. Indeed, the new tariffs *c

iτ  and *p
iτ  will then equal 

 
*

*

c c
i i

p p
i i

t

t

τ τ

τ τ

= −

= +
  

but the total charge for transmission between any two nodes i , and j  remains the same, 

i.e. *
ij ijτ τ= . We can therefore arbitrarily fix the consumers' transmission price in one node equal to 

zero. This is done for the consumption charge in the swing node: 

 swing node0c
i iτ = =   

Finally, note that the model implicitly assumes that the charges need to be paid for all consumption 
and generation, even if generation and consumption are located at the same node. A generator in 
node i  who sells electricity locally does not use the transmission network, but will have to pay a 
transmission payment pc

ii i iτ τ τ= + . We will call this charge the price wedge, because this charge 

creates a wedge between the consumer price and the generator price in node i 27. 

The next subsection continues with a discussion of the simulation results for the first best case. 

5.2. First Best 

The first best case considers the situation where the network operator does not face a budget 
constraint and generators are competing competitively, but where the transmission capacity is limited. 

                                                      
26 Within the set of linear price structures, this is the most general assumption. It encompasses a number of 'price structure' 

options as special cases. For example, only charging consumption, only charging generation, a separate but uniform tariff for 
generation and consumption and, one uniform tariff for both generation and consumption as the most extreme case. 

27 With imperfect competition, the generator price is not defined. 
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Table 4 shows the simulation results in terms of welfare, the surpluses for the economic agents, the 
network operator costs, the generation level and the multiplier of the budget constraint (which in this 
case is zero by definition). The table looks at a representative hour in each period. 

Peak demand is situated in period 1. The periods 2 and 3, have intermediate demand, and period 4 
has off-peak demand. The first column in Table 4 gives the values for an average hour over the course 
of the year, taking into account the length of each period. 

Table 5 shows the aggregate values for all time periods and for a whole year. 

First Best  Average Period 1 Period 2 Period 3 Period 4 
Length of the period  %  2,4% 20.1% 38.9 38.6% 
Welfare  (k€ per hr) 908.6 1,647.5 1,256.3 1,003.4 586.9 
Consumer surplus  (k€ per hr) 772.4 1,301.8 1,031.7 837.1 539.8 
Producer surplus  (k€ per hr) 170.8 305.2 230.6 194.1 107.9 
Profit Network operator  (k€ per hr) -34.5 40.5 -5.9 -27.8 -60.8 
Revenue Network operator  (k€ per hr) 39.5 114.6 68.2 46.3 13.3 
Fixed cost network 
operator 

 (k€ per hr) 74.1 74.1 74.1 74.1 74.1 

Multiplier budget 
constraint  (€ per €) - - - - - 
Total generation  (MWh per hr) 9,108 11,657 10,880 9,403 7,734 
Average price  (€ per MWh) 32.2 48.0 37.9 35.5 22.4 
Minimum price  (€ per MWh) 18.5 26.1 23.2 17.6 15.4 
Maximum price  (€ per MWh) 76.4 121.7 91.7 92.6 46.8 

Table 4: First Best, results for a representative hour. 

Consumption in the low and the high demand period are 7734 MW and 11664 MW, respectively. Total 
annual production is 79791 GWh.28  

First Best  Average Period 1 Period 2 Period 3 Period 4 
Length of the period  hrs 208 1,759 3,410 3,383 
Welfare  (M€) 7,959 342 2,210 3,422 1,986 
Consumer surplus  (M€) 6,766 270 1,815 2,855 1,826 
Producer surplus  (M€) 1,496 63 406 662 365 
Profit Network operator  (M€) -303 8 -10 -95 -206 
Revenue Network operator  (M€) 346 24 120 158 45 
Fixed cost network operator  (M€) 649 15 130 253 251 
Multiplier budget constraint  (€ per k€) - - - - - 
Total generation  (GWh) 79,790 2,420 19,138 32,067 26,165 

Table 5 First Best, aggregate results 

In Table 4, the indicated prices are wholesale prices, covering generation as well as transmission. If all 
transmission charges would be set equal to zero, then in all periods the network capacity would be 
insufficient to satisfy the demand for transmission. Thus, congestion is an issue in the four periods, 
and network use must be charged in order to solve capacity problems. A welfare maximizing network 
operator will set charges such that distortions are minimized. The best way to do this is to tax the 
effective use of the network, but not the 'intra-nodal' trade, i.e. the network operator will set the price 
wedge equal to zero, i.e. 0iiτ = ( )pc

i iτ τ= − . The reason for this is simple: setting a positive price 
wedge 0pc

ii i iτ τ τ= + > , increases the distortion in the local market at node i , but only has an 

indirect effect on the network flows that cause the congestion. Therefore, it is best to set the price 

                                                      
28  This is lower than the 83.4 TWh that was used to calibrate the demand functions. The reason for this is that we neglected the 

network constraints when we were calibrating. The network constraints reduce demand for electricity. 



  21

wedge equal to zero. Note that this only makes sense for nodes at which both generators and 
consumers are connected. If not, the price wedge does not play a role.  

These congestion charges allow the network operator to collect a revenue equal to €13 300 per hour 
in the low demand period and €114 600 per hour in the peak demand period. Aggregated over the four 
periods, the network operator would cover 53% of its fixed costs by charging these congestion 
charges. Note that hourly congestion revenue is mainly collected in the periods 1, 2 and 3. (See Table 
4). Congestion is low in period 4, so congestion revenue is rather low. 

The congestion charges are node specific. They depend on how much consumption in a node affects 
the flows on the congested lines. In fact, the network operator uses the standard nodal pricing 
model29. As a consequence, consumers at different nodes will pay different prices for electricity. In the 
low demand period, prices range between €15 and €47 per MWh. In the peak period, the price range 
is €26 to €122 per MWh. 

Table 6 shows which transmission constraints are binding in the optimum. If the line in the first column 
would break down, then the line in the second column would be loaded up to its thermal capacity. The 
last column shows the shadow price of the thermal constraint of the lines that become constrained. 
The shadow price expresses how much welfare would be increased if the transmission constraint 
would be increased with one MW for a period of one hour (€ per MWh). 

The number of congested lines is highest during peak demand, and lowest during off-peak demand. 
This must not necessarily be the case, as will be discussed below. Finally, note that the results largely 
depend on the assumed distribution of demand. Better information is needed in order to get a more 
realistic prediction about congestion in practice. 

First Best - Contingencies 
IF this line breaks THEN this line is at limit Shadow price 

From To From To (€ per MWh) 
  Period 1   

Aubange Moulin (FR) Aubange Brume 155.7 
Doel 2 Mercator Doel 2 Zandvliet 11.8 
Jupille Lixhe Gramme Rimiere 24.0 
Le Val Seraing Herderen Lixhe 102.8 

  Period 2   
Aubange Moulin (FR) Aubange Brume 113.1 
Doel 2 Mercator Doel 2 Zandvliet 2.2 
Jupille Lixhe Gramme Rimiere 16.7 
Le Val Seraing Herderen Lixhe 66.0 

  Period 3   
Aubange Moulin (FR) Aubange Brume 38.6 
Aubange Moulin (FR) Doel 2 Zandvliet 118.0 
Le Val Seraing Herderen Lixhe 37.2 

  Period 4   
Aubange Moulin (FR) Aubange Brume 21.5 
Aubange Moulin (FR) Doel 2 Zandvliet 42.2 

Table 6: Congested lines in the first best model 

                                                      
29  The optimal transmission prices are derived analytically in Appendix B : 
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Two remarks should be made before moving on to the second best case. The first remark has to do 
with the result that congestion is present in all periods. The second one discusses the role of the 
elasticity of demand. 

Congestion in peak as well as in off peak periods 

On first sight, one would expect that at times of low demand, the network is more likely to be 
uncongested. This is however not necessarily the case, as in periods of low demand only base-load 
plants are running and, therefore, the 'average distance' between consumption and generation nodes 
can increase compared to periods of peak demand. As a result the network is used more30. In the 
case of a contingency, flows are rerouted to a greater extent, as there is often no generation to 
provide the electricity locally. 

On a larger scale this is exactly what happens on the French - Belgian interconnector during summer 
periods31. As demand is low in France, cheap French electricity, produced with nuclear power plants, 
is exported to Belgium and to the Netherlands. As a result, we observe congestion on the Belgian 
network during this period of low demand. 

Elasticity of demand 

The simulations in this paper assume a demand elasticity of -0.2. In general, changing the elasticity 
has a relatively large impact on electricity prices, but only a small impact on quantities generated and 
consumed. In this first best case, with congestion in all periods, the network operator will reschedule 
generation and consumption in order to relieve network congestion. With inelastic demand, generation 
will be rescheduled to a larger extent than consumption. With elastic demand, the network operator 
will mainly reschedule consumption. 

5.3. Second Best 

In the second best case, the network operator is faced with a budget constraint. Congestion charges 
now need to be increased above their first best level in order to obtain sufficient revenue to cover the 
remaining 47% ( = 100%−53.%) of the network operator’s cost.  

These increased transmission prices will result in increased wholesale prices and thus reduced 
demand in all periods. Aggregate demand (and generation) decreases by 1.5% to 78,592 GWh. Prices 
are now in the range of €18 and €47 per MWh in off-peak hours and of €30 and €123 in peak hours. 

                                                      
30  Of course, this depends on the location of the base-load plants in the network. If base-load plants are not distributed 

homogenously in the network congestion is larger. 
31 In Northern Europe, peak demand is occurring in the cold winter months. 
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Second Best  Average Period 1 Period 2 Period 3 Period 4 
Length of the period  %  2,4% 20.1% 38.9 38.6% 
Welfare  (k€ per hr) 908.3 1,647.1 1,256.0 1,003.0 586.7 
Consumer surplus  (k€ per hr) 749.0 1,270.5 1,001.4 811.6 522.7 
Producer surplus  (k€ per hr) 159.3 282.6 214.1 179.1 103.3 
Profit Network operator  (k€ per hr) 0.0 94.0 40.5 12.4 -39.3 
Revenue Network operator  (k€ per hr) 74.1 168.1 114.6 86.5 34.8 
Fixed cost network operator  (k€ per hr) 74.1 74.1 74.1 74.1 74.1 
Multiplier budget constraint  (€ per k€) 17.3 17.3 17.3 17.3 17.3 
Total generation  (MWh per hr) 8,971 11,521 10,722 9,262 7,612 
Average price  (€ per MWh) 34.8 50.8 40.7 38.3 24.7 
Minimum price  (€ per MWh) 21.7 29.7 27.0 21.0 17.9 
Maximum price  (€ per MWh) 76.8 122.8 93.0 92.6 46.8 

Table 7 Second Best, results for a representative hour 

Second Best  Average Period 1 Period 2 Period 3 Period 4 
Length of the period  hrs  208 1,759 3,410 3,383 
Welfare  (M€) 7,957 342 2,209 3,421 1,985 
Consumer surplus  (M€) 6,561 264 1,761 2,768 1,768 
Producer surplus  (M€) 1,395 59 377 611 349 
Profit Network operator  (M€) 0 20 71 42 -133 
Revenue Network operator  (M€) 649 35 202 295 118 
Fixed cost network operator  (M€) 649 15 130 253 251 
Multiplier budget constraint  (€ per k€) 17.3 17.3 17.3 17.3 17.3 
Total generation  (GWh) 78,590 2,392 18,861 31,585 25,753 

Table 8 Second Best, aggregate results. 

On average, the network operator needs to collect €74,100 per hour. Table 7 shows that the network 
operator collects €168,100 per hour during the peak period, and €34,800 per hour during base load 
periods. He makes sure that marginal deadweight loss of collecting revenue is equal in all the four 
time periods. Collecting €1,000 of extra revenue creates a deadweight loss of €17.3.  

The network operator increases transmission tariffs, in order to cover his costs. The solution to this 
problem is known as Ramsey pricing. The basic idea is that prices should be increased in a way that 
minimizes distortions, which amounts to applying price increases that are inversely proportional to the 
demand elasticities.  

The use of Ramsey prices has two effects. On the one hand, the higher transmission prices will 
decrease the total demand for transmission. On the other hand, the pattern of the flows over the 
network will change. In the first best, transmission quantities depend on the price levels and the 
marginal production costs. In the second best, transmission quantities will also depend on the demand 
and supply elasticities. 

Table 9 shows the congested lines in the second best case. The results are very similar to the first 
best case. 
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Second best - Contingencies 
IF this line breaks THEN this line is at limit Shadow price 

From To From To (€ per MWh) 
  Period 1   

Aubange Moulin (FR) Aubange Brume 156.0 
Doel 2 Mercator Doel 2 Zandvliet 10.4 
Jupille Lixhe Gramme Rimiere 23.2 
Le Val Seraing Herderen Lixhe 100.8 

  Period 2   
Aubange Moulin (FR) Aubange Brume 113.4 
Doel 2 Mercator Doel 2 Zandvliet 0.5 
Jupille Lixhe Gramme Rimiere 15.9 
Le Val Seraing Herderen Lixhe 63.9 

  Period 3   
Aubange Moulin (FR) Aubange Brume 34.1 
Aubange Moulin (FR) Doel 2 Zandvliet 122.0 
Le Val Seraing Herderen Lixhe 35.2 

  Period 4   
Aubange Moulin (FR) Aubange Brume 15.7 
Aubange Moulin (FR) Doel 2 Zandvliet 46.7 

Table 9 Congested lines in the second best model 

The role of the demand elasticities 

In the case of a low elasticity of demand, demand functions will be steep and a price increase will 
result in a small deadweight loss because change in demand is relatively small. In the extreme case 
where demand is perfectly inelastic, there will be no deadweight loss because demand is insensitive to 
a price change. From a social point of view, covering the fixed cost of the network operator is less 
costly when demand functions are steeper, i.e. when demand elasticities are low. 

Having congestion on top of the budget constraint does not fundamentally change the intuition. An 
elastic demand makes it easier to solve network congestion, but makes revenue collection more 
costly. 

5.4. Strategic behavior of generators 

The following two simulations look at how imperfect competition influences the second best model. 
Now, all three imperfections are present: transmission constraints, market power in generation and the 
budget constraint. We evaluate two scenarios for the market power in the generation market: Cournot 
competition and monopoly. Table 10 presents the results for both scenarios, but only presents values 
aggregated over the four periods. The results do not come as a surprise. Ceteris paribus, increasing 
competition in generation increases welfare. 

The multiplier of the budget constraint of the network operator measures the net cost of giving one 
Euro to the network operator. The effect is about thirty times as large with monopoly as with perfect 
competition. There are two reasons for this. As total demand drops by almost 50% from perfect 
competition (= the second best) to the monopoly situation, the network operator needs to double the 
transmission tariffs in order to obtain the same amount of revenue. At the same time, transmission 
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prices create a larger deadweight loss, as there is already a deadweight loss due to the strategic 
behavior of the monopolist. 

The average price for electricity increases from €34.8 per MWh under perfect competition to €114 per 
MWh in a monopoly setting. 

S C EN A R I O   First best 
Second 

Best Cournot Monopoly 
Welfare  (M€ per yr) 7959 7957 7310 5889 
Consumer surplus  (M€ per yr) 6766 6561 3778 1827 
Producer surplus  (M€ per yr) 1496 1395 3532 4061 
Profit Network operator  (M€ per yr) -303 0 0 0 
Revenue Network operator  (M€ per yr) 346 649 649 649 
Fixed cost network operator  (M€ per yr) 649 649 649 649 
Multiplier budget constraint  (€ per k€) - 17.3 30.6 59.8 
Total generation  (GWh) 79,790 78,590 59,691 41,531 
Average price  (€ per MWh) 32.2 34.8 75.7 114.4 
Minimum price  (€ per MWh) 18.5 21.7 68.7 114.0 
Maximum price  (€ per MWh) 76.4 76.8 92.1 114.6 

Table 10: Aggregate results of the 4 scenarios 

Table 11 shows the same results as Table 10, but now expressed relative to the second best scenario. 
In an oligopoly with 3 players, welfare is about 8% lower than with perfect competition. In a monopoly 
welfare is 26% lower. Consumer surplus drops by 42 % and 72 % in the oligopoly and the monopoly 
case, respectively. 

In the Cournot model, the location of the firms in the grid might be important in determining the market 
power of the generators. If firms have geographically dispersed production capacities, the effect of 
congestion might be much smaller than when firms are geographically concentrated. 

Also the ownership structure might affect the market outcome. If all firms own a diverse portfolio with 
base load and peak load plants, then each firm will have an incentive to withhold some production 
capacity at the margin, as it will increase the price it receives for the infra-marginal plants. In the 
opposite case where one firm only owns base load plants and another firm only peak load plants, 
there are fewer incentives to reduce production. These effects of location and ownership remain a 
topic for further research. 

S C EN A R I O   First best 
Second 

Best Cournot Monopoly 
Welfare  (%) 100.03 100.00 91.87 74.01 
Consumer surplus  (%) 103.12 100.00 57.58 27.85 
Producer surplus  (%) 107.20 100.00 253.12 291.04 
Profit Network operator  (%) -   -   -   -   
Revenue Network operator  (%) 53.37 100.00 100.00 100.00 
Fixed cost network operator  (%) 100.00 100.00 100.00 100.00 
Multiplier budget constraint  (%) -   -   -   -   
Total generation  (%) 101.53 100.00 75.95 52.84 
Average price  (%) 92.42 100.00 217.38 328.57 
Minimum price  (%) 85.27 100.00 316.25 524.63 
Maximum price  (%) 99.55 100.00 119.97 149.36 

Table 11: Relative performance of the 4 scenarios (second best = 100%). 
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6. CONCLUSIONS 

This paper looks at the socially optimal transmission prices in a congested network when there is 
imperfect competition in electricity generation and when the network operator has a binding budget 
constraint. It shows that generators and consumers have to pay different transmission prices in the 
social optimum. These differences reflect the fact that the network operator needs to collect revenues 
and that the generation sector is not competitive.  

The model in this paper has imperfect competition in the generation market, but assumes that 
generators are price takers in the transmission market. The network operator is a Stackelberg leader 
and sets the transmission price before generators decide about generation and sales. The model is 
illustrated with some simulation runs. It studies 4 scenarios: a first best scenario, a second best 
scenario, a second best scenario with Cournot competition and second best scenario with a monopoly 
in generation. The parameterization of the model is inspired by the technical characteristics of the 
Belgian electricity system. It includes the Belgian high voltage transmission grid and the lines in 
France and the Netherlands which are important for the Belgian network. The network is presented as 
a linearized DC-load flow model. Transmission is limited by the thermal constraints of the lines and 
1n −  security constraints are imposed. 

The model provides an analytical framework that can help policy makers to think about transmission 
tariffs. It shows how prices should be adapted in response to changes in market power, and in which 
way revenue should be collected. The model links some of the standard regulation literature on 
Ramsey pricing with the electricity literature on optimal pricing of transmission networks. The 
qualitative results that come out of the model can be very informative, but some reservation is at place 
if one would consider implementing such a pricing scheme. There are a number of reasons for this. 

We assume that generators are price takers in the transmission market, but, in practice, generators 
might abuse their locational market power. Other types of models are needed if there is such market 
behavior. (See for example Borenstein, Bushnell et al. (2000)) 

The model neglects entry in generation, and only derives short run optimal prices. These prices might 
not give the right long run incentives for investing in new generation capacity. 

The network operator is assumed to have perfect information about generation costs and demand. In 
practice, this information is not readily available. Any mechanism to allocate transmission capacity will 
have to take into account this information asymmetry. 

It can also be the case that the network operator does not maximize welfare, but rather profits or the 
interests of some political pressure groups. This is the reason why the network operator is regulated 
and is limited in setting transmission prices. A companion paper studies the strategic behavior of the 
network operator. 

The previous list already provides a first set of possible extensions for the model, but with some other 
extensions, the model can be used to study many relevant policy issues concerning electricity 
markets. A short, but non-exhaustive survey of possible extensions and applications follows. 

Many countries (such as Belgium) are located between low price countries (France) and high price 
countries (the Netherlands) and serve as a transit country. The model in the paper could be used to 
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calculate the welfare impact of different levels of transit. For example, as most of the congestion on 
the Belgian network involves international transactions, it would be interesting to also include the 
Dutch, the German, and the French generation markets and networks, as in Day, Hobbs et al. (2002). 
The model could calculate how costs can be allocated between the different countries. 

Consumers do not resell electricity and there is no arbitrage in the model. This could be included and 
its impact could be studied. Appendix A shows how arbitrage can be introduced. 

The current paper assumes that generators are competing à la Cournot. One could consider 
generators to compete with conjectured supply functions, as shown in Day, Hobbs et al. (2002). 

The model could be used to study the impact of vertical partial ownership structures in the electricity 
sector. This is done in a companion paper which studies a profit maximizing network operator when 
there are cross-ownership relations between the network operator and one of the generators. 
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Appendix A : Arbitrage 

The model of Smeers and Wei (1997) has been extended by Metzler, Hobbs et al. (2003) and Hobbs 
(2001) to include arbitrage. This appendix shows how arbitrage can be introduced in the model 
presented in this paper. 

An arbitrageur can be modeled as an extra generator with index a F∈  who has no generation 
capacity ( )aG = ∅  and who is price taker in both the energy and the transmission market. 

The arbitrageur maximizes  

 ( )max
ai

c
i i ais i I
p sτ

∈
− ⋅∑   

Subject to 

 ( )0 p
ai a

i I
s λ

∈
=∑  (26) 

The arbitrageur’s first order conditions are 

 ( )c p
i i ap i Iτ λ− = ∀ ∈  (27) 

With arbitrage, the price difference between two nodes need to be equal to the differences in 
congestion charges for consumers. 

 ( ) ( ) 0c c
i j i jp p τ τ− − − =  (28) 

Intuition: If the price ip  is too high, arbitrageurs will buy electricity from consumers in region j  and sell 
in region i . The value of electricity for consumers in node j  is jp . Consumers reducing consumption 

with one unit in node j  will save cjτ  on their transmission bill. They will therefore sell their electricity to 

arbitrageur for a price c
j jp τ− . The arbitrageur will resell the electricity to consumers in region i  at a 

price c
i ip τ−  as consumers in region i  have to pay the congestion charge ciτ  before consuming. 

Appendix B : Optimal transmission prices 

This appendix derives the socially optimal transmission tariffs under the scenarios discussed in 2.1. 
The same notation as in the body of the paper is used, but some simplifying assumptions are made in 
order not to mess up the results. 

We assume that at each node there is exactly one generation plant, which is owned by one firm. Using 
the new assumptions we can drop the indices for generatorsg  and for plants f . The plant at node i  
produces iq  units of electricity at a cost ( )i iC q . In order to keep the network operator’s problem 
tractable, we assume that the generation constraints are not binding. 0i iµ µ= = . Thus, we assume 

that firms will not choose corner solutions. This is the case when the marginal costs are zero for zero 
output and sufficiently large at full output. In each node i  there are consumers with a inverse demand 
function ( )i ip s . 



  29

Model 1: Reference model 

We start with the reference case where there is ample transmission capacity, no generation market 
power and no budget constraint for the network operator. 

The network operator maximizes welfare  

 ( ) ( )( )
0

is
i i i

i I
W p t dt C q

∈
= −∑ ∫  (29) 

subject to the energy balance  

 ( ) 0i i
i I
s q

∈
− =∑  (30) 

Socially optimal allocation 

Using the first order conditions, one can easily derive the following condition for the social optimum 

 ( ) ( ) ' ( ) ' ( )i i j j i i j jp s p s C q C q= = =  (31) 

Consumers pay and generators receive the same price in all nodes. Equation (31) defines the socially 
optimal allocation of production and consumption. 

Transmission prices 

As there is perfect competition, arbitrage is perfect, meaning that the price difference between node i  
and the swing node equals c

iτ  (Remember that we normalized the consumers’ transmission price to 

zero at the swing node, i.e. 0i
swingτ = ). 

 c
i i swingp pτ = −  (32) 

Perfect competition also implies that the difference of marginal cost and the price at the swing bus is 
equal to p

iτ  

 '( )p
swing i ii p C qτ = −  (33) 

Given the socially optimal allocation (31), it is clear that all transmission tariffs are equal to zero: 

 0pc
i jτ τ= =  (34) 

The intuition is straight forward: any non-zero transmission price would create distortions in the market 
and would decrease welfare. 

Model 2: Congestion (Optimal nodal spot price – First Best )32 

The second model assumes scarce transmission capacity.. Setting transmission prices equal to zero 
would create a demand for transmission that outweighs available transmission capacity. In order to 
eliminate congestion, the network operator will price transmission at its opportunity cost.  

The network operator now maximizes welfare subject to the energy balance and the network 
constraints 

                                                      
32  This model is the first best described in section 5.2. 
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swing node

,
/{ }

( ) ( )a n n n a a
n I

q s Q a Aθ
∈

− ≤ ∀ ∈ Τ∑  (35) 

with ,a iθ  the Power Transmission Distribution Factors, and aΤ  the Lagrange multiplier of the 

transmission constraint, i.e. the opportunity price of using linea . 

Socially optimal allocation 

The first order conditions impose that price equals marginal cost at each node i , i.e. 

 '( ) ( )i i i iC q p s=  (36) 

and that the transmission price from the swing bus to node i  reflects the opportunity costs of the 
transmission lines, i.e. 

 ,i swing a i a
a

p p θ= − Τ∑  (37) 

The opportunity price for transmission is equal to zero 0aΤ = , as long as the line is not congested, 

i.e. a aQ Q≤ . With a congested line, the transmission price becomes positive: 

 
if then

if then

         

         

0

0

a a a

a a a

Q Q

Q Q

Τ > =

Τ = ≤
 (38) 

The equations (36) and (37) describe the socially optimal allocation and are the well known nodal spot 
prices (Schweppe, Caramanis et al. (1988)). Prices will be different in each node in the network, 
reflecting the regional differences in generation costs and demand functions and the scarcity of 
transmission capacity. 

The first equation implies that there is no intra-nodal wedge between the generator’s price and the 
consumer’s price. The intuition behind the second equation is the following: If a consumer in node i  
buys one unit of electricity from the swing bus, then the flow on line a  will increase with ,a iθ . With aΤ  

being the opportunity cost for using transmission line a , the total payment for a consumer at node i  is 
equal to ,

c
i a i a

a
τ θ= − Τ∑ . 

Transmission prices 

As there is perfect competition, equations (32) and (33) are still satisfied. Using the socially optimal 
allocation one can derive that the transmission prices satisfy the following equations: 

 
,

pc
i i

c
i a i a

a
T

τ τ

τ θ

=

= −∑  (39) 

The intuition for this was already mentioned in section 5.2. Setting a positive intra-nodal price wedge 
( )0pc
ii i iτ τ τ= + > , increases the distortion in the local market at node i , but only has an indirect 

effect on the network flows that cause the congestion. 
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Model 3: Budget constraint (Ramsey prices)33 

The third model has ample transmission capacity, perfect competition in generation, but a binding 
budget constraint for the network operator. The network operator maximizes welfare, subject to the 
energy balance and the budget constraint 

 ( )pc
i i ii

i I
s q Bτ τ

∈
+ ≥∑  (40) 

Using the energy balance and perfect competition allows to rewrite the budget constraint as 

 ( )( )' ( ) ( )i i i j j i
i I

R p s s C q q B λ
∈

≡ ⋅ − ⋅ ≥∑  (41) 

with λ  the multiplier of the budget constraint. 

Socially optimal allocation 

The first order condition of the network operator imposes for all nodes i  and j  that 

 
( )'( )i i j j

i j

p s C q
R R
s q

λ
−

− =∂ ∂−
∂ ∂

 (42) 

with 
i

R
s

∂
∂  and 

i

R
q

∂
∂  the marginal revenue functions of the network operator. These can be expressed as 

a function of demand and supply elasticities i i
i

i i

p s
s p

ε ∂=
∂
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i i
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 (43) 

Equation (42) reflects that for any trade between node i and node j the network operator needs to 
trade off his revenue with the dead weight loss that he creates by setting positive transmission prices. 
The social value of producing one unit of electricity in node j , transporting it, and consuming it in 

node i  is '
i jp C− . But in order to transport one extra unit, the network operator has to lower the total 

transmission tariffs between the two nodes, which results in a revenue loss equal to 
j i

R R
q s

∂ ∂−
∂ ∂

. 

With a nonbinding budget constraint ( )0λ = , equation (42) simplifies to (34). The condition then 

imposes that price is equal to marginal cost in each node. 

With a binding budget constraint ( )0λ > , there is a wedge between the consumer’s price and the 

generator’s price at a node i . 

Transmission prices 

                                                      
33  Note that the network is not congested, therefore it is not equal to the second best scenario in section 5.3. 
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As there is perfect competition in generation,, the arbitrage condition (32) is satisfied. Using the 
socially optimal allocation (42), this give the following transmission price for consumers: 

 
1 1swing ic

i swing i
swing i

p p
ε ετ λ
ε ε

 − − = −   
 (44) 

In the same way, we find the transmission charges for generators by using equation (33) 

 ' 1 1j swingp
j swingi

j swing
C p

ω ε
τ λ

ω ε
 + − = −   

 (45) 

With linear inverse demand functions given by i i i ip sα β= − , the consumer prices are the following 

( )c
i swing iτ λ α α= − . 

Model 4: Imperfect competition 

In the fourth model, we assume that there is ample transmission capacity, no budget constraint, but 
imperfect competition. The network operator maximizes welfare, subject to the energy balance and 
taking into account the behavior of the monopolist. The latter is described by his first order conditions, 
i.e. 

 ( )
( )i i c p

i i i i
i

p sp s s
s

τ λ∂+ − =
∂

 (46) 

 ( )' p p
i i iC q τ λ+ =  (47) 

Socially optimal allocation 

In the optimum the network operator subsidizes the monopolist such that the prices and marginal 
costs are equalized over all nodes: 

 ( )i i swingp s p=  (48) 

 ' ( )i i swingC q p=  (49) 

Equations (48) and (49) describe the socially optimal allocation. 

Transmission prices 

Because of imperfect competition in generation, the equations (32) and (33) are no longer valid. In 
order to find the optimal transmission prices, we will need to take into account the behavior of the 
monopolist as described by the equations (46) and (47). 

First, the monopolist will shift sales between the two regions until the difference in transportation costs 
is equal to the difference in marginal revenues in the two regions, i.e. 

 
11 swingic

i i swing
i swing

p p
εετ

ε ε
−−= −  (50) 

Second, the monopolist will choose his production level by setting his marginal revenue at the swing 
bus equal to the marginal production costs augmented with the transmission component.  
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1

'swingp
swing ii

swing
p C

ε
τ

ε
−

= −  (51) 

The equations (48) - (51) define the transmission tariffs. 

For linear inverse demand, the imperfect arbitrage condition (50) becomes 

 ( ) ( )2 2c
i i i i swing swing swings sτ α β α β= − − −  (52) 

and the social optimality implies 

 i i i swing swing swings sα β α β− = −  (53) 

Solving equations (52) and (53) for the transmission price gives: 

 c
i swing iτ α α= −  (54) 
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