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1 Introduction 

It is well known that ordinary least squares estimation in the linear regression model is not 

robust to outliers. A single atypical observation can in fact cause this estimator to break 

down. Moreover, the consistency of this estimator requires a moment condition on the error 

distribution. In recent decades, robust regression estimators have been introduced to overcome 

these problems, and they have become a standard tool in regression analysis. Consider the 

regression model 

for t = 1, ... , T, (1.1) 

where Yt is the dependent variable, X t is the vector of covariates and T is the number of 

observations. The error terms are often supposed to be distributed according to 

i.i.d. F 
Ut rv cr, (1.2) 

where the error distribution Fcr(u) = F(u/a") depends on a dispersion parameter a. The distri­

bution F can either be specified, e.g. F = N(O, 1), or be left unspecified. Normality of the error 

terms is in fact not needed; nor does any moment need to exist when applying robust estimators. 

The robust statistics literature takes the view that a vast majority of the data are generated 

by the above-described model, while a smaller part of the data may not follow the model. The 

fraction of outliers that an estimator can cope with is then, roughly speaking, the estimator's 

breakdown point. Most of the literature in robust regression (e.g. Rousseeuw and Leroy, 1987) 

deals with robustness with respect to outliers, and with the identification of these outliers. 

The standard approach to statistical inference based on robust regression methods is to derive 

the limiting distribution of the robust estimator from assumption (1.2), and to compute the 

standard errors of the estimated regression coefficients from the formula for the asymptotic 

variance matrix. 

In the econometric literature less attention is given to robust estimators of regression, but the 

concept of robust standard errors is well established and can be found even in introductory text­

books (see e.g. Stock and Watson, 2003, p. 504; Greene, 2003, p. 267). Here the estimator being 

used is often the ordinary least squares (OLS) estimator, but its standard errors are estimated 

without relying on assumption (1.2). As such, these so-called robust standard errors remain 

valid when the error terms are not i.i.d., but suffer from heteroskedasticity or autocorrelation. 

A robust standard error consistently estimates the true standard error even for non i.i.d. error 

terms. The most popular robust standard errors in econometrics are the White or Eicker-White 

standard errors (after Eicker, 1967, and White, 1980), which protect against heteroskedasticity, 

and the Newey-West standard errors (Newey and West, 1987), which are heteroskedasticity and 
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autocorrelation consistent (HAC) estimates of the standard error. An important property of 

robust standard errors is that the form of the heteroskedasticity and/or autocorrelation does 

not need to be specified. On the other hand, these standard errors will not be robust against 

outliers, since they are based on the OLS estimator. 

In the robustness literature the problem of reliable estimation of the standard errors is 

considered as well, but most often in the sense of their robustness against outliers. While the 

point estimator for (3 is robust against outlying observations, the expression for the standard 

errors also needs to be reliable, in the sense of not being overly biased by the presence of outliers. 

Robust estimation of the variance matrix of an estimator ~ was used in this sense by Simpson, 

Ruppert and Carroll (1992) and Croux, Van Aelst and Dehon (2003). Similarly, when using the 

bootstrap to compute the standard error of a robust estimator, the issue of protection against 

the repeated occurrence of outliers in bootstrap samples has led to the development of robust 

bootstrap procedures for robust estimators. We refer to Salibian-Barrera and Zamar (2002) 

for a review and a new proposal. Again, robust bootstrapping is mainly used in the sense of 

robustness against outliers. 

This paper considers the computation of robust standard errors for robust estimators, where 

the standard error estimates are designed to be robust against heteroskedasticity, autocorre­

lation and the presence of outliers. Explicit formulas for robust standard errors are given, so 

recourse to bootstrap techniques is not necessary. Advantage will be taken of results known from 

the Generalized Method of Moments (GMM) literature (Hansen, 1982). The standard errors 

proposed by Simpson, Ruppert and Carroll (1992), being robust only against heteroskedasticity 

for symmetric error terms, appear as a special case. 

We focus on three different classes of estimators. The first is the class of M-estimators 

(Huber, 1981). These estimators are easy to compute, but their breakdown point equals zero. 

A smooth high-breakdown estimator for the regression model is the S-estimator (Rousseeuw 

and Yohai, 1984). This estimator is fast to compute using the algorithm of Ruppert (1992), 

has a breakdown point which can be up to 50%, and is asymptotically normal. However, its 

statistical efficiency is rather low. Therefore, Yohai (1987) introduced MM-estimators, which 

are in fact M-estimators with an auxiliary scale estimate obtained from an S-estimator. MM­

estimators combine high efficiency with high breakdown and require the same computation time 

as S-estimators. They are now well established and are implemented in S-Plus. We will present 

robust standard errors for these three classes of estimators. Let us mention that in a recent 

paper of Field and Zhou (2003), HAC standard errors for M-estimators with known scale were 

studied. The hypothesis of known scale, however, is unrealistic in practice and eliminates the 
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variability of the residual scale estimator when deriving the expressions for the standard errors. 

The different estimators are defined in Section 2, and the link with GMM estimation is made 

there. A general expression for the variance matrix of ~ under general conditions is presented in 

Section 3. A detailed discussion will follow on how this expression simplifies if certain conditions 

like homoskedasticity or absence of autocorrelation are met. In Section 4 it is shown by means 

of theoretical calculations that using non-robust standard errors for robust estimators can lead 

to severe biases (even when no outliers are present). A simulation study presented in Section 5 

confirms again the necessity of using HAC standard errors. The price to be paid for using the 

robust standard errors is an increased variability of the standard error estimate. Hence in the 

absence of heteroskedasticity or autocorrelation there is a gain in using less robust standard 

errors. Motivated by this trade-off between robustness and efficiency of the estimator of the 

standard error, Section 6 outlines how a test can be carried out for testing which expression for 

the variance matrix of ~ is most appropriate. An example in Section 7 illustrates the use of this 

test. Section 8 concludes. 

2 Robust regression estimators as G MM estimators 

Let yt be the scalar dependent variable and X t the p-vector of covariates, observed for t 

1, ... , T. The observations (Xl, Yl ), ... , (XT, YT) do not need to be independent, but are sup­

posed to be generated by a stationary and ergodic process H. We shall study the form of the 

variance matrix of the M-, S-, and MM-estimators of the regression of yt on Xt, under a variety 

of assumptions regarding H. We first make clear that these estimators are first-order equivalent 

with exactly-identified GMM estimators and then take advantage of the results established for 

GMM (Hansen, 1982). 

We start recalling the definition of a GMM estimator. Suppose that we would like to estimate 

the functional O(H) that is implicitly defined by the equation 

E [mt(O(H))] = 0 (2.1) 

for t = 1, ... , T. Here mt is a known k-valued function depending on yt and Xt, and E[.] denotes 

the mathematical expectation with respect to H. If k equals the dimension of the estimand O(H), 

as will be the case in our setting, then we have an exactly-identified GMM estimation problem. 

An estimator of O(H) is then simply obtained by solving the sample analogue of (2.1), that is, 

(2.2) 
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We prefer to call estimators of the above type exactly-identified GMM estimators, instead of 

general M-estimators as discussed in Huber (1981), since we will make use of the standard nota­

tions in the GMM literature. Generalized method of moments estimators have been extensively 

studied in econometrics. Hayashi (2000) offers a synthesis of parametric estimation and testing 

from a GMM perspective. 

Let us now return to the regression problem. The regression functional (3(H) and the scale 

functional a(H) corresponding with M-estimators of regression are given by the solutions of the 

equations 

(2.3) 

(2.4) 

The functions 7jJ and p (which are chosen by the statistician) are non-constant, scalar-valued and 

a.e. differentiable. Furthermore 7jJ is odd, p is even and non-decreasing on [0,00[, with p(O) = 0, 

and b is a selected constant. The M-estimator of regression, (-;M, and the M-estimator of scale, 

&M, then solve the sample analogues of (2.3)-(2.4), that is, 

(2.5) 

(2.6) 

It is clear that the M-estimator is an exactly-identified GMM estimator for e = ((3', a)', with 

(2.7) 

S-estimators of regression and scale depend only on the chosen function p and on the constant 

b. This regression estimator is defined as minimising an M-estimator of scale computed from 

the residuals. So 

where &((3) solves 

(-;s = arg min &((3) 
(3 

1 T (Yt - X;(3) 
T ~ P &((3) - b = O. 

(2.8) 

(2.9) 

The scale estimate is then simply given as &s = &((-;s). It was shown by Rousseeuw and 
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Yohai (1984) that ~s and as satisfy the first-order conditions 

(2.10) 

(2.11) 

(Thoughout the paper, a prime on a scalar-valued function denotes its derivative, otherwise 

it denotes transposition.) Note that the above equations are of the same form as (2.5) and 

(2.6). Hence an S-estimator is first-order equivalent with an M-estimator with 'ljJ = p', and has 

the same asymptotic distribution (Rousseeuw and Yohai, 1984). As a result, S-estimators are 

first-order equivalent with GMM-estimators. Note that the function p defining the S-estimator 

needs to be bounded to get a positive breakdown point for the regression estimator. But if p 

is bounded, p' will be redescending and (2.10) may have multiple solutions. Therefore one uses 

(2.8) to compute the S-estimate, but to determine the asymptotic distribution one typically uses 

(2.10). 

We shall focus on MM-estimators of regression, because these are at once highly efficient 

and highly robust. First one needs to compute S-estimators (~s, as) for a given function p and 

a constant b. Then, for a given function 'ljJ, the MM-estimator of regression solves 

(2.12) 

In case (2.12) has multiple solutions, one takes the solution with the smallest value for a(fJ). 

For more detail on the conditions on 'ljJ and p we refer to Yohai (1987). Note that 'ljJ needs to 

be different from p' - otherwise the MM-estimator would be equivalent with an S-estimator and 

share the low efficiency of the latter. 

Let us introduce some notation that will be used throughout the paper. Define, for given fJ 

and a, and for given fJo and a, the standardised error terms 

It - XifJ 
ct = -----'-­

a 
and 

It - XifJo 
cOt = , 

a 
(2.13) 

respectively. Write 'ljJt = 'ljJ(ct), Pt = p(Ct) and POt = p(cOt). For the MM-estimator, let e = 

(fJ', fJb, a)', where the first parameter will be estimated by ~MM and the latter two by ~s and as. 

By (2.12), (2.10) and (2.11), these estimators are first-order equivalent with exactly-identified 

GMM estimators with moment function 

(2.14) 
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Here and later, we omit the functional dependency of the parameters on H, but this should be 

kept in mind. 

3 Variance matrices 

Under regularity conditions detailed in Hansen (1982), the GMM estimator B defined in (2.2) 

has a limiting normal distribution given by 

/m A d 
V T(e - e) -t N(O, V), (3.1) 

where 

V = (c/n- 1c) -1 , (3.2) 

with 
00 

and n = 2:= E[mt(e)mt_j(e)]. (3.3) 
j=-oo 

In the exactly-identified case, V = c-1nc,- 1. 

Throughout the paper, we will suppose that the M-, S-, and MM-estimators are asymptoti­

cally normal with the same limit distribution as their GMM counterpart. Asymptotic normality 

of M-estimators under i.i.d. assumptions for the error terms was already studied by Yohai and 

Maronna (1979) and for MM-estimators by Yohai (1987). Under fairly general conditions, al­

lowing also for heteroskedasticity, asymptotic normality for Sand MM-estimators was shown by 

Salibian-Barrera and Zamar (2004) in the location case. To our knowledge, exact conditions for 

the asymptotic normality of MM-estimators in the regression case with non-independent, non­

identically distributed error terms have not yet been stated in the literature. For M-estimators 

we can refer to Hansen (1982). 

For the M-estimator, in obvious notation, we have V'1\BM - eM) ~ N(O, VM), with VM = 

c-;}nMC'Ml, and similarly for the S- and MM-estimators. As a first step to compute VM, Vs 

and V M M, the matrices C and n need to be calculated. 

From (2.7) it readily follows that for the M-estimator 

For the S-estimator, 'ljJ = pi in the above formula, leading to a simplification since E(piXt ) = 0 

by (2.10). Hence 

00 (' I X X' and ns = 2:= E PtP~-j ~ t-j 
. PtPt-]'Xt-], 
)=-00 

pi Pt-jXt ) 
PtPt-j - b2 . (3.5) 
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For the MM-estimator, () = ((3', (3b, (j)' consists of 3 blocks of components, and (2.14) yields 

(3.6) 

and 
00 ('l/Jt'l/Jt-jXt X :_j 'l/JtP~,t_jXtX:_j 'l/JtPO,t-jXt ) 

nMM = 2::= E P~t'l/Jt-jXtX:_j P~tP~,t_jXtX:_j P~tPO,t-jXt . 
, .h X' 'X' b2 

J=-OO POt'f/t-j t-j POtPO,t-j t-j POtPO,t-j -

(3.7) 

Deriving VM, Vs and VMM is now straightforward, and the upper left p X P submatrices of 

these matrices are exactly the asymptotic variances Avar(~M), Avar(~s) and Avar(~MM) of 

interest. We first calculate these variance matrices under general conditions and then show 

which assumptions on H are needed to make them simplify to the expressions that are commonly 

encountered and used in practice. 

From now on our focus will be on the MM-estimator. For the S- and M-estimator we refer 

to the Appendix. Calculating the product G-;}MnMMG'M11 and applying the formula for the 

inverse of a partitioned matrix yields the asymptotic variance of (3MM as 

j=-OO j=-OO 

00 00 

- A 2::= E('l/Jtpo,t-jXt)a' + 2::= E(potpo,t-j - b2 )aa' (3.8) 
j=-OO j=-OO 

where 

and a = A E('l/J~Xtct). 
E(POtcot ) 

(3.9) 

This expression for A var(~ M M) is robust, in the sense that it has been derived without any as-

sumptions ofhomoskedasticity or absence of autocorrelation. To consistently estimate Avar(~MM) 

we simply take its empirical counterpart, A;;;;;(~M M), applying the following rules: 

2. Replace E(·) by T-1 L,;=l(·) and put any term outside the observation window (i.e. when 

t - j is smaller than 1 or larger than T) equal to zero; 

3. Replace the infinite sum L,~-oo (-) by the truncated weighted sum L,3=-Q Wj (.), using 

Bartlett weights Wj = 1 - Ijl/(q + 1) and q = q(T) ----* 00 at a slow rate in T. Newey 

and West (1987) show that these weights ensure positive semi-definiteness of the variance 

matrix estimate. 
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For example, the first term of Av;;;.(~ M M) is given by 

with 

A = 0- (~ t ?j;tXtX~) -1 , 

t=l 

and where ?j;t and ?j;i are 'l/Jt and 'l/Ji with ((3, (J) = (~MM' 0-8). Using standard asymptotic 

arguments, it can be shown that following these rules indeed yields a consistent estimate of 

Avar(~MM). From Av;;;.(~MM)' standard errors for the regression coefficients are obtained in 

the usual way: 

forj=1, ... ,p. 

Note that if there are observations with large residuals with respect to the robust MM-fit, 

then ?j;t has a small value when 'l/J is a redescending function. The usual choices for 'l/J in MM­

estimation have the property that they are zero for large arguments. Hence, if we have bad 

leverage points in the sample, then their Xt-value will be large, but at the same time ?j;t will 

be zero. It is easy to verify that bad leverage points and vertical outliers make only a limited 

contribution to the estimate of the asymptotic variance, and so the resulting standard errors 

can be called robust with respect to these types of outliers. 

We will call Av;;;.(~) a HAC estimator, since it is consistent under heteroskedasticity and au­

tocorrelation. Now we introduce restrictions on H that simplify the expressions for the variance 

matrix. 

Absence of autocorrelation. It is obvious that the infinite sums in the expression for the 

asymptotic variance matrix (3.8) disappear when H is an independent process. 

Condition C1 : the observations (Xt, yt), t = 1, ... ,T, are independent. 

If C1 holds, A var(~ M M) simplifies to 

Avar1(~MM) = AE('l/J;XtXDA - aE(pot'l/JtXDA - AE(pot'l/JtXt)a' 

+ E(P6t - b2 )aa'. 

This simpler expression is then estimated by its empirical counterpart Av;;;.l(~MM)' by applying 

the rules (1) and (2) given earlier. Salibian-Barrera (2000, p. 164-165) also considered the 

asymptotic variance of MM-estimators under C1 and obtained a similar formula. 
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Absence of heteroskedasticity. A further simplification occurs when there is no heteroskedas­

ticity. 

Condition C2: the processes X t and (ct, COt) are independent. 

Imposing C2 without C 1 admits only a marginal simplification of the variance, which we omit. 

If C 1 and C2 hold, then Avar(/3MM) becomes 

A 2 I I 
Avar2(f3MM) = E('ljJt)A2E(XtX t )A2 - E(pOt'IjJt)a2 E (Xt )A2 

- E(pOt'IjJt)A2E(Xt )a; + E(P6t - b2)a2a; 

where 

Taking the empirical counterpart yields -;r:;;;;;2 (/3 M M ). We do, however, advise against the use 

of this variance matrix estimator in practice, even when C1 and C2 hold. The reason is that 

this estimator will not be robust with respect to outliers. If a bad leverage point is present in 

the sample, then it will have a huge impact on the standard error estimate. For example, ..42 is 

proportional to the inverse of an empirical second moment matrix of the observations Xt. Bad 

leverage points are outlying in the covariate space, and will have a strong influence on ..42. This 

can even lead -;r:;;;;;2(/3MM) to break down, where breakdown of a variance matrix estimator 

means that the latter has a determinant close to zero or enormously large. We refer to Simpson, 

Ruppert and Carroll (1992) who consider standard error breakdown. When using the bootstrap, 

standard error breakdown was studied by Singh (1998). 

Symmetric error terms. A condition that is often imposed in the literature is symmetry of 

the error distribution. If this condition is met, the different expressions simplify considerably. In 

fact, this condition implies that the regression parameter estimator and the estimator of residual 

scale are asymptotically independent. Under the symmetry assumption, the expressions for the 

M-, S- (with 'IjJ = P'), and the MM-estimator all have the same form. 

Condition Cs : the distribution of Ct, given X t , is symmetric. 

The simplification comes from the fact that a = 0 under Cs, where a was defined in (3.9). If 

only Cs holds, /3MM has aymptotic variance 

00 

Avars (/3MM) = A L E('ljJt'IjJt_jXtX~_j)A 
j=-oo 

00 

= CT2[E('IjJ~XtX~)l-1 L E('ljJt'IjJt_jXtX~_j)[E('IjJ~XtXDl-1. 
j=-oo 
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Under GI and Gs , the asymptotic variance becomes 

A 2, 
Avarls(!3MM) = AE('ljJt XtXt)A 

= 0"2[E('IjJ~XtXDl-I E('IjJ; XtXD[E('IjJ~XtXDl-l. (3.11) 

The empirical counterpart of the latter expression, ~ls, was used in Simpson, Ruppert and 

Carroll (1992) (in fact, they used it for the one-step GM estimator). It is also used for estimating 

the standard errors of an MM-estimator (Marazzi, Joss and Randriamiharisoa, 1993) in the 

statistical software packages S-Plus and R. The estimate ~ls(i3M M) is robust against outliers 

and heteroskedasticity, but not against autocorrelation. Moreover, it relies on symmetry, which 

we believe to be too strong a condition. 

When all of GI, G2 and Gs hold, then i3MM has asymptotic variance 

(3.12) 

since a2 = O. This is the expression for the variance of the robust regression estimator that 

was derived in Yohai (1987) for the MM-estimator, in Rousseeuw and Yohai (1984) for the S­

estimator and in Huber (1981) for the M-estimator. However, for the same reason as for ~2' 

we cannot recommend its use in practice, since on top of not being HAC it lacks robustness with 

respect to outliers. 

Specified error distribution. A final simplification occurs when the distribution of the stan­

dardised error term, F(s), is known or assumed. The estimate can then be improved upon 

because E( 'ljJl) and other terms can be calculated analytically rather than estimated. Assuming 

GI and G2 hold, we can rewrite Avar2(i3MM) as 

where 

and 

C2 = E('IjJ~st) [E('lj;~St)E(P; - b2) _ 2E( 'IjJ)] 
[E( 'IjJ~)J2 E(p~tsot) E(p~tsot) POt t 

are constants that only depend on F. A common practice is to take the distribution of St as 

the standard normal distribution, for which C2 = 0, in view of the symmetry of the normal 

distribution. The resulting expression for the asymptotic variance of i3MM is then 
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This simple expression resembles the formula for the variance matrix of the OLS estimator 

(under Gauss-Markov conditions), but it lacks any form of robustness. 

Let us summarise the above findings. First of all, most of the above formulas are robust with 

respect to outliers. If a bounded 'ljJ is used, then hal-, hal-1, hal-2 (and their versions under 

symmetry) are robust with respect to vertical outliers. If a redescending 'ljJ is used, then hal- and 

hal-1 are robust with respect to bad leverage points, but hal-2 is not. In a time-series setting 

we advocate using hal-, since it gives full protection against autocorrelation, heteroskedasticity 

and outliers. In the absence of serial dependence between observations, hal-1 is appropriate. 

The simplified expression hal-1s relies on symmetry of the errors, an assumption we feel is too 

strong. It can be found in Simpson, Ruppert and Carroll (1992) and is currently being used. 

Therefore, it will be included in our simulation and example section, for reasons of comparison. 

It will turn out from the simulation study that, even when symmetry is present, there is no gain 

in using hal-1s compared to hal-1, so why not use hal-1 in any case. We do not recommend 

using ~2 nor its symmetric counterpart, since these estimators are not robust with respect to 

-----bad leverage points. However, since Avar2s has been considered before in the literature, we will 

include it in the Monte Carlo study. The same remark applies to hal-3 . We do not recommend 

it in practice, but we include it as a point of reference. 

4 Large-sample bias 

In this section the following question is addressed: "Do we make a big mistake by using one of the 

simplified formulas for the standard errors instead of the heteroskedasticity and autocorrelation 

consistent ones?" In simple settings it is possible to carry out theoretical calculations to answer 

this question. Throughout the examples, we assume that the symmetry condition Cs holds. 

Let j3 be a scalar estimate (or redefine /3 to be the element of interest from a vector of 

estimates), which can be an M, S, or MM-estimator. Consider standard error estimates of /3 

based on ~ls(/3) and hr2s (/3) as alternative, more simple standard errors than those based 

on ~(/3). We know that hrjs (/3) is consistent for Avarjs(/3), for j = 1,2. The (asymptotic) 

proportional bias of any standard error estimate, say se2s (/3), is then defined as 

Abias se2s({3) = -log A' ( ~ A) 1 (Avar2s (/3)) 
2 Avar(,6) 

(4.1) 

A consistent estimate of the true asymptotic variance thus delivers a standard error which has 

zero proportional bias. We show in two stylised cases where heteroskedasticity or autocorre­

lation is present that the proportional bias of se2s(/3) and sels(/3) may become infinite. These 

examples are illustrative of the fact that the validity of the assumptions on which standard error 
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estimates are based does matter for the validity of the inference conducted. So it deserves careful 

consideration in any serious application. 

4.1 Heteroskedasticity 

Let H be an independent process, with yt = Xtf3 + (JEt, X t univariate and symmetric around 

a zero mean, and ct, given Xt, symmetrically distributed around zero. The presence of het­

eroskedasticity is not excluded, and we would like to compute the proportional bias when 

using the estimate ~2s, based on assumption C2 . Since Cs and C1 hold in this example, 

Avarls = Avar and from (3.11) and (3.12) it readily follows that 

Abias (se2S(~)) = ~ log ( ~2) , (4.2) 

where 

and 
E(1/;; Xl) 

L = E(1/;l)E(Xl)' ( 4.3) 

Neither K nor L are bounded above by any constant, and the proportional bias may become 

infinite. To make this more clear, consider for example error terms given by Ct = ±IXtl, each 

with probability ~, and take a redescending 1/;. Then, while K and L are finite, one still has 

0::::: ~2 ::::: M [E(Xl)]-l, 

for some M > O. Hence, for a covariate with an infinite variance, the proportional bias will be 

minus infinity. Note that if 1/;(u) = u, then the M-estimator equals the OLS estimator, and (4.2) 

returns ~ 10g(kurtosisXt). 

To develop a sense for the likely sign of the bias, we will make use of the relations 

K < 1 {:} Cov( 1/;~, Xl) > 0 and L > 1 {:} Cov( 1/;;, Xl) > O. 

Take 1/; concave on [0,00), such that 1/;' is non-increasing and 1/;2 is non-decreasing on [0,00). Let 

us model the heteroskedasticity as act = 'Y(IXt l)7]t with 7]t an i.i.d. N(O, 1) sequence independent 

of Xt. So 'Y(x) is nothing else but the conditional variance function. If 'Y is increasing in IXtl, 

then it is not difficult to see that 1/;; will be positively correlated with Xl and 1/;' negatively 

correlated with X;. From the relations stated earlier, it then follows that the proportional bias 

will be negative. So ignoring the existence of an increasing conditional variance function 'Y(lXtl) 

when computing standard errors will yield an underestimation of the standard errors. The 

consequence is that confidence intervals will be too short, as will be confirmed in the simulation 

study in Section 5. If, instead, 'Y(IXtl) is decreasing in IXtl (an assumption that is much less 

likely to hold), this conclusion is reversed. 
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4.2 Autocorrelation 

Let yt = Xtf3 + Et, with X t a univariate stationary process with zero mean. Now {Xt} and 

{ Et} are supposed to be independent, but there is serial correlation in {Et}. Suppose, for the 

sake of simplicity again, that {Et} follows an ARMA process with symmetrically distributed 

innovations. Then Cs holds and, in view of the independence between {Xt} and {Et}, it follows 

from (3.10) and (3.11) that 

where 

with 

Abias (selS(~)) = ~ log (±) , 

and 
E(XtXt- j ) 

E(X'f) 

(4.4) 

(4.5) 

( 4.6) 

So it can be seen that the proportional bias depends only on the autocorrelation coefficients of 

the processes X t and Et. 

Clearly, L is only bounded by 0 < L < 00, and the bias of se2s (~) can go beyond all limits. 

To illustrate this, suppose that X t follows an AR(l) process with parameter pX and Et follows 

another AR(l) process with parameter p'l/J. Then the proportional bias equals 10g((1-p)/(1+p)) 

with p = p'l/J pX. If this parameter p approaches one, then the proportional bias becomes minus 

infinity, leading to severe underestimation of the standard errors. 

An interesting observation is that when all auto correlations of X t are zero, L reduces to 1 

and there is no proportional bias anymore. Under the assumptions being made, correcting the 

standard errors for autocorrelation is only necessary when both the errors and the covariates 

are correlated over time. 

5 Simulations 

Here we present Monte Carlo evidence of the fact that (i) non-robust standard errors of robust 

regression estimates can be highly misleading (thereby confirming the large-sample analysis of 

Section 4); (ii) robust standard errors perform well, notwithstanding their higher degree of 

complexity. Monte Carlo results are, of course, design-specific, but in all the cases that we 

studied, the non-robust standard errors were misleading, while the robust standard errors were 

acceptable. 

We investigated the properties of the standard errors of the slope estimate ~1 in the simple 

regression model yt = (30 + (31Xt + (JEt (t = 1, ... , 1000). Since the regression and scale estimates 
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are equivariant, the results are invariant with respect to (30, (31, and (J. So we set yt = ct without 

loss of generality. We generated {Xt} and {ct} under five different designs: 

1. i.i.d. errors: {ct} and {Xt} and independent, i.i.d. N(O, 1) processes; 

2. heteroskedastic errors: ct = IXtlut, where {Xt} and {Ut} are independent, i.i.d. N(O, 1) 

processes; 

3. auto correlated errors (AR): X t = .7Xt-1 + Vt and Ct = .7Ct-1 + Ut, where {Vt} and {Ut} 

are independent, i.i.d. N(O, 1) processes; 

4. auto correlated errors (MA): X t = .9Xt-1 + Vt and ct = Ut + .9Ut-l, where {Vt} and {Ut} 

are independent, i.i.d. N(O, 1) processes; 

5. heteroskedastic and auto correlated errors: X t = .7Xt- 1 + Vt and Ct = IXtIUt, where 

Ut = .7Ut-1 + Wt, and {Vt}, and {Wt} are independent, i.i.d. N(O,l) processes. 

The covariate values were not held fixed, but were randomly redrawn for each new Monte Carlo 

run. For the designs with serial correlation in the error terms, the covariate was also correlated 

over time, first of all because we think this is a realistic situation in many applications, and 

second because it was shown in the previous section that no correction for the standard error 

is needed (at least asymptotically) when serial correlation is present only in the error term and 

not in the covariates. 

We considered the following robust estimators of regression: 

1. An M-estimator using Huber's 'l,b-function, 'l,b{! (u) = min(b, max(u, -b)) and PI! (u) = 

('l,bI! (u))2. We choose b = 1.35 and c = 2.38 to attain 95% efficiency at i.i.d. normal 

errors, both for the regression and for the scale estimator. 

2. The S-estimator defined by Tukey's biweight function, 

{ 

u2 u 4 u 6 ·f I I ""2 - 2c2 + 6c4' 1 U ::; c; 
p~(u) = 

c: ' if lui> c. 

(5.1) 

Here we put c = 2.94, so that that the estimator has a 25% breakdown point. 

3. An MM-estimator using an initial residual scale estimate based on a robust S-estimator 

defined by p~ with c = 1.55 (yielding a 50% breakdown point). Then take 'l,b(u) = p~(u), 

where c = 4.69 to have an efficiency of 95% at the Gaussian model. 
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The above choices of p and 'lj.; are standard. For all the estimators considered we calculate 

the standard errors using the methods described in Section 3, namely: se, se1, se1s, se2s and 

se3. Recall that se is the HAC estimate of the standard error, and se1 the one we advocate to 

use for non time-series problems. The other estimators for the standard errors are included for 

comparison and have already been considered in the literature: se1s requires symmetry of the 

errors and absence of autocorrelation and heteroskedasticity; for se2s one also needs independence 

of the error terms and the covariates, and se3s is valid for i.i.d. normal errors, independent of 

the covariates. 

When implementing se, a truncation lag q for the infinite sums needs to selected. The choice 

of q in ~ is, in itself, a research domain. We keep a low profile in this debate and choose q 

equal to the integer part of 4(T /100)2/9, as suggested by Newey and West (1994), and as used 

in the popular econometric software package EViews. 

The simulation study was carried out with R = 10000 Monte Carlo runs. We focus on three 

distinct aspects of standard errors: 

1. The quality of the standard error as an estimate of the standard deviation of the regression 

estimate, as measured by the proportional bias. We define the finite-sample proportional 

bias of a standard error estimate, say se(,S) = [T- 1 ~(~W/2, as 

PB (se(~)) = E log (se(,~)) , 
sd((3) 

where sd(~) = [E(~ - E(~))2l1/2 is the "true" standard error, which we approximate by 

the Monte Carlo simulations as 

R 

sd(~) = R ~ 1 2)~r - fj)(~r - fj)', 
r=l 

2. The quality of the standard error as an estimate of the standard deviation of the regression 

estimate, as measured by the mean squared error of the estimate of the true standard 

error. Indeed, among consistent estimates of sd(~) one preferably chooses the most precise 

one. The simulation study can give insight into efficiency issues. The root-mean-squared 

proportional error is defined as 

[ ( 

~ A ) ]1/2 
RMSE ( se(~)) = E log2 ::~~~ [

A A 2] 1/2 
E (log(se((3)) - log (sd(fJ) )) 
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3. The rejection probability of a 5%-level t-test of Ha : (31 = 0 (recall that (31 is the slope 

parameter). When, say, se is used, the test rejects if [,61 [ / se(,61) exceeds the 0.975-quantile 

of the tT-2 distribution. This rejection probability is obtained by computing the number 

of times that the null hypothesis was rejected. Since we will simulate samples under Ha, 

we expect this value to be close to 5%. 

For each robust regression estimate and each method for calculating the standard error we 

report the bias, RMSE, and rejection probability, all estimated from 10000 Monte Carlo runs. 

The expected values in the formula for RMSE and PB are approximated by the Monte Carlo 

average. 

Table 1 provides a comparison of the different standard error estimates for the MM-estimator 

under different sampling schemes. The results for the M- and S-estimators can be found in 

Tables 5 and 6 in the Appendix. First consider the ideal setting where we have i.i.d. Gaussian 

error terms. As measured by the proportional bias and rejection probability, all estimators work 

fine here: no significant bias is present and the associated tests have an almost exact 5% level. To 

distinguish between the different estimators, we need to look at their precision, measured by the 

RMSE. Here we can clearly rank the estimators: se3 and se2s outperform the other standard error 

estimates in terms of RMSE. The price paid for robustness against heteroskedasticity or/and 

autocorrelation is an efficiency loss in the Gaussian model. The HAC estimate se exhibits the 

greatest loss of precision. Note that we are not speaking about the efficiency of,6, but about the 

efficiency of se as an estimator of the true standard error. When using the OLS estimator, the 

loss of efficiency of se1 with respect to se2 under i.i.d. error terms was discussed in Kauermann 

and Carroll (2001). Also notice that explicitly using the normality assumption, as in se3, offers 

no significant advantage over the similar formula se2s, Furthermore the results for se1s and se1 

are virtually identical, and this is true for all sampling schemes that are considered here. There 

seems to be no efficiency gain in using se1s over se1, even when the error distribution is truly 

symmetric. The message from this is to always use the formulas that allow for asymmetry, even 

if they are more complicated. 

For the M- and S- estimator similar conclusions can be drawn. From Table 6, in the i.i.d. 

normal case it can be seen that some finite-sample bias is present for the S-estimator, together 

with a size distortion for the test procedure. Here the Gaussian efficiency of the S-estimator 

of regression is equal to 75.9%, much less than the 95% efficiency for both the M- and MM­

procedures. It is no surprise that a more precise inference can be derived from more efficient 

regression estimators. 

Once heteroskedasticity is introduced, the situation changes. Both se3 and se2s have a severe 

17 



Table 1: Performance of alternative estimates of standard errors of MM-estimates 
(1000 observations) 

se3 se2s sels sel se 

i. i. d. normal 
PB 0.0005 0.0023 0.0022 0.0029 -0.0031 
RMSE 0.0374 0.0327 0.0495 0.0495 0.0657 
RP 0.0521 0.0511 0.0503 0.0503 0.0521 

heteroscedasticity 
PB 1.1543 -0.9974 -0.0092 -0.0048 -0.0105 
RMSE 1.1552 0.9985 0.1164 0.1168 0.1249 
RP 0.5346 0.4678 0.0545 0.0531 0.0567 

autocorrelation: AR (1) 
PB -0.5184 -0.5162 -0.5184 -0.5173 -0.1034 
RMSE 0.5217 0.5192 0.5235 0.5224 0.1414 
RP 0.2418 0.2405 0.2423 0.2423 0.0775 

autocorrelation: MA(l) 
PB -0.3091 -0.3072 -0.3091 -0.3082 -0.0456 
RMSE 0.3183 0.3160 0.3208 0.3199 0.1168 
RP 0.1445 0.1445 0.1472 0.1468 0.0630 

heteroscedasticity and autocorrelation 
PB -1.4642 -1.3075 -0.3236 -0.3186 -0.0662 
RMSE 1.4654 1.3088 0.3474 0.3430 0.1619 
RP 0.6545 0.5977 0.1590 0.1572 0.0747 

Results are based on 10000 Monte Carlo runs. Data are generated by 
Yt = ,60+,61Xt+aet (t = 1, ... , 1000) under 5 different sampling schemes, 
described in the main text. 
PB: Proportional Bias. 
RMSE: Root-Mean-Squared Proportional Error. 
RP: Rejection Probability of 5%-level t-test on slope parameter. 
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downward bias and strongly overreject the null hypothesis. We cannot rely on them anymore, 

even when there are no outliers but only heteroskedastic error terms. The estimators shs and 

se1 are doing their work; they indeed remain robust when condition C2 is violated. The HAC 

estimator se, too, still has the right size and no bias, and the loss in RMSE relative to se1 is 

rather small. This holds as well for the M- and S-estimators. Note that the RMSE of se1 and se 
for the M-estimator are smaller than for the MM procedure. The reason is that while the M- and 

MM-regression estimators were calibrated to have equal efficiencies in a Gaussian homoskedastic 

model, the M-estimator will have a greater efficiency in this heteroskedastic model. Intuitively 

this is clear since the M-estimator uses a non-decreasing 7.f;, while MM is based on a redescending 

7.f;. The heteroskedasticity generated by this model will generate observations resembling outliers, 

and these are downweighted too much by the S- and MM-estimators. 

By introducing autocorrelation into the error terms, and in the last, worst-case sampling 

scheme even combined with heteroskedasticity, all standard error estimators have huge negative 

biases; hence they severely underestimate the true sampling variance and the tests reject the null 

far too often. The only exception is the HAC estimate se, which continues to have a moderate 

bias and acceptable rejection probabilities. Although the results for the HAC estimator are 

not perfect, they are far better than those of methods that don't correct for the presence of 

autocorrelation. 

When computing the HAC estimator for the variance matrix an infinite sum is replaced by 

a finite weighted sum, where auto correlations of higher orders receive less weight. In this way, 

an approximation error is made, which is small if there is not much persistence in the residual 

process. We see that the PB, RMSE and RP are better for the MA(l) than for AR(l) errors, 

the latter being more persistent. Moreover, this approximation also improves when the sample 

size increases. Here the sample size is already quite large (T = 1000), and hence we decided 

to repeat the simulation experiment with a smaller sample size, T = 200. From Table 7 in the 

Appendix, one sees that the performance of se indeed deteriorates due to the smaller sample 

size, but it still outperforms all other estimates of the standard error, which all break down in 

the presence of autocorrelation. Now the difference in RMSE between se and se1 when C1 holds 

is slightly increased. This confirms the intuition that when only heteroskedasticity is present, for 

example in non time-series problems, robust standard errors of the type se1 are to be preferred. 

So far, only robustness of the standard errors under heteroskedasticity and autocorrelation 

has been investigated, but not yet with respect to outliers. Two different sampling schemes are 

considered, and the results are reported in Table 2. For the first sampling scheme the error terms 

were generated as i.i.d Cauchy, instead of i.i.d normal. Due to the heavy tails of the Cauchy 

19 



distribution, this will generate vertical outliers. We see that the PB and RP remain very good, 

confirming that se, sel and se2s are robust with respect to vertical outliers and that we do not 

need normality at all. There is a larger bias for se3, since the latter uses normality. The RMSE 

increases compared to the case of normal errors, due to the fat tails of the Cauchy distribution. 

In a second sampling scheme bad leverage points have been generated. The same data 

generating processes as for i.i.d. normal errors were taken, but now bad leverage points are 

added by putting 10% of the data (Xt, Yt) equal to (10,18). For the MM-estimator the results 

remain very good for se and sel, but se2s and se3 completely break down in the presence of 

the bad leverage points, as expected. The MM-estimator itself, of course, does not break down. 

For the M-estimator the results are very bad, because here the regression estimator itself breaks 

down, resulting in a 100% rejection probability. In addition, here the bad leverage points 

inflate the estimate of scale, and, in turn, the standard error estimates. Hence, using robust 

estimators of the standard errors combined with non-robust regression estimators yields a non­

robust procedure. 

Table 2: Performance of alternative estimates of standard errors of MM- and M­
estimates in the presence of outliers (1000 observations) 

se3 se2s sels sel se 

i.i.d. Cauchy; MM-estimator 
PB -0.0623 -0.0117 -0.0116 -0.0092 -0.0143 
RMSE 0.0812 0.0553 0.0756 0.0755 0.0879 
RP 0.0622 0.0505 0.0497 0.0493 0.0509 

bad leverage points; MM-estimator 
PB -1.0497 -1.1472 -0.0004 0.0002 -0.0059 
RMSE 1.0502 1.1475 0.0502 0.0502 0.0679 
RP 0.4825 0.5222 0.0507 0.0507 0.0538 

bad leverage points; M-estimator 
PB 0.7647 0.7500 0.4741 0.5162 1.3018 
RMSE 0.7650 0.7505 0.4762 0.5180 1.3027 
RP 1.0000 1.0000 1.0000 1.0000 1.0000 

Results are based on 10000 Monte Carlo runs. Data are generated by 
Yt = (30 + (31Xt + (J"ct (t = 1, ... , 1000) with LLd. Cauchy errors or with 
Li.d. normal errors with 10% bad leverage points. 
PB: Proportional Bias. 
RMSE: Root-Mean-Squared Proportional Error. 
RP: Rejection Probability of 5%-level t-test on slope parameter. 

6 Testing the difference between variance estimates 

In this section we propose a procedure for testing whether a variance estimate of ~ is significantly 

different from the HAC estimator. To fix ideas, suppose we would like to know whether it is 
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appropriate to use Av;r2s instead of the HAC estimator. If this is indeed appropriate, then it is 

preferable to use Av;r2s, since it gives some efficiency gains. A test statistic will then be based 

on the difference 

Av;r2S - Av;r. 

If the difference is small, then one could use Av;r2s, but one could also test whether Av;r3 is 

perhaps appropriate as well. This leads to tests of the type 

H6 : Avarj = Avar, 

where in our case j = 2s. Denote the difference between the estimates as 

(6.1) 

where vech(A) is the vectorised lower triangular part of A. To compute the limit distribution of 

the quadratic form associated with D j , we shall in fact employ the stronger conditions stated 

earlier that led up to Avarj. 

One can expect (deriving the exact conditions would lead us too far here) that Dj is asymp­

totically normal with mean zero and asymptotic variance matrix Vj. The associated quadratic 

form statistic is then 

(recall that T is the number of observations) and has an asymptotic X~ distribution with q 

degrees of freedom, where q is the rank of Vj, here at most q = p(p + 1) /2. To put the above 

formula into practice, one needs an estimate of the variance matrix Vj. For this we resort to a 

bootstrapping procedure, since analytic computation of Vj seems too tough here. The bootstrap 

samples are to be generated under the corresponding null hypothesis. This leads us to consider 

different kinds of bootstrap sampling schemes, depending on the conditions that are invoked: 

• C l : non-parametric bootstrap of pairs (Xt, Yt). For testing HJ one resamples with re­

placement from the set {(Xt, Yt) : t = 1, ... , T}, which is the standard non-parametric 

bootstrap in regression; 

• Cl and Cs: a version ofthe wild bootstrap ofLiu (1988). We first compute the standardised 

residuals St = (Yt - X~~) / Cr. Then we generate independent drawings Zt,b, for t = 1, ... , T 

and b = 1, ... , B, with B the number of bootstrap samples such that Zt,b equals 1 with 

probability ~ and -1 with probability ~. The wild bootstrap samples are then obtained 

as Yt,b = Xt~ + Cr Zt,bSt. The covariates are not being resampled here; 
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• G1 and G2: residual bootstrap. A bootstrap observation is formed as Yt,b = x;/3 + eret,b, 

where et,b is sampled with replacement from the collection {Et : t = 1, ... , T}. This is the 

standard residual bootstrap; 

• G1 , C2 and Gs : randomly signed residual bootstrap. Here the bootstrap observations are 

generated as Yt,b = x;/3 + eret,b, where et,b is sampled with replacement from {±St : t = 

1, ... ,T}; 

• G1 , C2 and normality: parametric bootstrap. If one assumes i.i.d. normal errors, indepen­

dent of the covariates, then a bootstrap sample is generated as Yt,b = x;/3 + eret,b, where 

et,b is drawn from the N(O, 1) distribution. This is a fully parametric bootstrap method. 

A bootstrap estimate of the variance matrix Vj is obtained as follows: 

1. For b = 1, ... , B generate a bootstrap sample under the appropriate sampling scheme. 

Compute for each bootstrap sample Dj,b as in (6.1); 

2. Estimate Vj by a robust variance matrix estimator computed from {Dj,bI1 ::; b::; B}. Call 

this estimate Vj,B. 

It is necessary to use a robust variance matrix, since by bootstrapping it is possible that the 

number of outliers gets multiplied, which can cause breakdown of the regression MM-estimator 

and hence also of its variance matrix estimate. So some of the Dj,b might be contaminated, and 

could strongly bias a sample variance matrix computed from them. As robust variance matrix 

estimator we use a Multivariate S-estimator (Rousseeuw and Leroy, 1987), but other choices are 

possible. The following step is to construct a quadratic form statistic 

The asymptotic distribution of Tj,B, as T -+ 00 and B -+ 00, is again X~. 

7 Application 

We apply some of the standard error estimators proposed in Section 3 to the salinity data set 

(Rousseeuw and Leroy, 1987, p. 82). This data set has been used by many authors to illustrate 

the robustness of the regression estimator, but the associated standard errors were almost never 

discussed. The dependent variable here is water salinity (salt concentration) in Pamlico Sound, 

and the explanatory variables include a constant, lagged salinity (Xl)' a trend (X2) and the 

volume of river discharge into the sound (X3). The regression model is estimated by the MM­

estimator with a 50% breakdown point and 95% efficiency, and a plot of the standardised 
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Figure 1: Robust residual plot of salinity data 

residuals is given in Figure 1. The residuals are robust, since they are residuals from an MM­

fit and scaled by the robust estimator of residual scale. In most textbooks one discusses the 

presence of the outliers. One of them, observation 16, is known to be a bad leverage point. 

However, a closer inspection of the residual plot against time also reveals that autocorrelation 

is likely to be present. 

Table 3 contains the estimated coefficients and their associated standard errors, estimated 

using five different methods: ~, ~1' ~ls, ~2s and ~3. From Table 3 it is clear 

that se3 and se2s differ substantially from the other 3 estimated standard errors. This difference 

is explained by the presence of outliers and the fact that se2 and se2s are not outlier-robust. 

The robust standard errors obtained by the other methods are quite comparable. Assuming 

symmetry or not makes no difference for se1, while the standard errors se are somewhat bigger 

for most coefficients. Given the appearance of serial correlation, we have most confidence in the 

HAC standard errors. 

Table 3: Salinity data: MM estimates and standard errors 

Xl X2 X3 constant 

i3MM 0.7271 -0.2116 -0.6191 18.2110 

se3 0.0433 0.0809 0.0537 1.5704 
se2s 0.0604 0.1128 0.0748 2.1894 
~ 0.0428 0.1613 0.2196 5.3837 se1s 
se1 0.0418 0.1612 0.2198 5.3762 
se 0.0492 0.1547 0.2333 5.7289 

The MM estimator has a 50% breakdown point and 95% efficiency in 
the Gaussian model. Variables: lagged salinity (Xl), a trend (X2) and 
the volume of river discharge into the sound (X3). 

Using the procedure from the previous section, we would like to know whether the variance 

matrices obtained by the different methods are statistically different from the baseline HAC 

23 



estimator~. More precisely, we will perform a sequence of tests, based on Tj,B with j = 

3, 2s, Is, 1, for the sequence of hypotheses H6. The number of bootstrap samples was taken 

as B = 1000. Results are reported in Table 4, giving the values of the statistics for the MM­

estimator. These values can be compared with the 1% critical value from the XIo distribution, 

equal to 23.209. Since the sample size is rather small here, the critical value should not be taken 

too literally. 

First we test the null hypothesis that there is no serial correlation nor heteroskedasticity 

and that the error term is normally distributed, meaning that we could use ~3 to estimate 

the variance of the estimated regression parameters. Testing H8, using T3,B, results in a strong 

rejection of this hypothesis. Similarly for H'6s . So one can conclude that the use of ~3 or 

~2s is not appropriate here. Testing HJ, which amounts to the absence of autocorrelation 

and hence implies the consistency of ~l' results in a clear rejection as well. This seems to be 

a bit surprising, since the standard errors computed under C1 are close to the HAC ones in table 

6. But let us not forget that the test statistic computes the difference between two estimates of 

asymptotic variance matrices, and not only of their diagonal elements. For instance, we see in 

this example that ~1,14 = -0.04275 while ~14 = -0.10592, a difference which is already 

greater. To conclude, the tests confirm that the HAC estimator is to be preferred here. 

Table 4: Salinity data: testing alternative variance formulas for the MM-estimator 

j Tj,B 

3 3423.6 
2s 542.36 
Is 92.186 
1 38.072 

xio test statistics for Hg : A var j = A var. 

8 Conclusion 

In this paper the problem of the estimation of the standard errors of robust estimators is studied. 

A general expression for the asymptotic variance matrix of the regression estimator is presented, 

which is consistent under both heteroskedasticity and autocorrelation. Moreover, it can cope 

with regression outliers. Some theoretical calculations in Section 4 and the simulation study 

in Section 5 clearly showed the necessity for using such an estimator in order to avoid biased 

estimation of the limiting variance matrix. Incorrectly estimated standard errors bias the whole 

inference procedure. All expressions were obtained supposing that the regularity conditions 

for asymptotic normality were fulfilled. The formulas presented for estimating the variance 
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matrices of M-, S-, and MM-estimators can be directly used by practitioners and programmers 

of statistical software. 

The three estimators of regression considered have an unbounded influence function with 

respect to good leverage points. To achieve a bounded influence a weighted version of the MM­

estimator can be computed, where the weights measure the leverage of each observation. One of 

the first papers to consider robust leverage weights was Coackley and Hettmansperger (1993), 

for a (one-step) M-estimator. It can be shown that all formulas for the standard errors remain 

valid in this case, after inserting the weights for the leverages in all sums. 

Simplifications of the asymptotic variance matrix arise when extra conditions are imposed 

on the error term. For example, when the data are collected in such a way that serial correlation 

can be excluded, a more simple estimator should be used, thereby yielding an efficiency gain. 

The simplest expression is obtained under the assumption that the errors are Li.d. normal. 

When normality really holds, using the corresponding estimator decreases the variance of the 

estimate of the standard error (as shown by the simulations). To check whether the more simple 

expressions for the standard errors may be used, the testing procedure outlined in Section 6 can 

be used. We do not suggest such tests should be applied systematically, but in case of doubt 

between different expressions for the standard errors, the proposed test statistics provide guid­

ance in selecting the most appropriate one. These tests are similar in spirit to the information 

matrix test, proposed by White (1982). White proposed a test for testing the equality of the 

variance matrices of a maximum likelihood and a quasi-maximum likelihood estimator. 

The heteroskedasticity and autocorrelation consistent (HAC) estimator of the standard error 

does not require any functional specification of the heteroskedasticity nor any modelling of the 

correlation structure in the error terms. In Bianco, Boente and Di Rienzo (2000) robust esti­

mation of regression models was discussed for a specified conditional variance function. Robust 

estimation of ARM A models has been considered, e.g. by Bustos and Yohai (1986). 

The contributions of this paper are that (i) it gives an overview of different estimates of the 

standard errors of M-, S-, and MM-estimators and recommends the use of ~ or ~l; (ii) it 

studies the bias and the efficiency loss of the different estimates through large sample calcula­

tions and simulations; (iii) it proposes a test procedure for testing the equality of two different 

expressions for the standard errors. Robust estimation of standard errors, in the HAC sense, 

has been the topic of numerous papers in econometrics. Also in generalised linear modelling one 

is aware of the problem, and so-called sandwich estimators of the standard errors are advocated 

. Strangely enough, robust standard errors for robust estimators have never been thoroughly 

studied. This paper tries to fill this gap. 
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Appendix 

Asymptotic variance of the S-estimator 

The most general expression is 

j=-oo j=-oo 
00 00 

- As L E(p~Pt_jXt)a~ + as L E(ptpt-j - b2)a~, 
j=-oo j=-oo 

where 

and 

If condition C1 holds, then 

Avar1(,Bs) = AsE(p? XtXDAs - asE(ptP~XDAs - AsE(ptP~Xt)a~ 

+ E(p; - b2)asa~. 

If in addition C2 holds, then 

Under Cs the expressions are the same as those for the MM-estimator, listed in Section 3, with 

'I/J=p'. 

Asymptotic variance of the M-estimator 

Here the expressions are less explicit. The asymptotic variance AVarj(,BM) (j = 1 when C1 

holds; j = 2 when C1 and C2 hold) are given by the upper left p x p block of G"t0j(Gj1)'. If 

C1 holds, then 

0 1 = E ( 'I/J; XtX,: Pt'I/JtXt) 
Pt'I/JtXt pi - b2 

and G1 is as in (3.4). If in addition C2 holds, then 

and 

Under Cs the expressions are the same as those for the MM-estimator, listed in Section 3. 
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Table 5: Performance of alternative estimates of standard errors of M-estimates 
(1000 observations) 

se3 se2s sels Bel se 

i. i. d. normal 
PB 0.0024 0.0024 0.0026 0.0029 -0.0031 
RMSE 0.0321 0.0345 0.0517 0.0517 0.0671 
RP 0.0499 0.0494 0.0503 0.0504 0.0518 

heteroskedasticity 
PB -0.5669 -0.6778 0.0002 0.0011 -0.0047 
RMSE 0.5679 0.6787 0.0627 0.0627 0.0761 
RP 0.2660 0.3179 0.0509 0.0508 0.0536 

autocorrelation: AR(l) 
PB -0.5169 -0.5160 -0.5185 -0.5179 -0.1041 
RMSE 0.5198 0.5191 0.5238 0.5232 0.1426 
RP 0.2412 0.2403 0.2438 0.2435 0.0791 

autocorrelation: MA (1) 
PB -0.3074 -0.3071 -0.3090 -0.3086 -0.0460 
RMSE 0.3160 0.3160 0.3211 0.3206 0.1177 
RP 0.1452 0.1447 0.1477 0.1476 0.0621 

heteroskedasticity and autocorrelation 
PB -1.0443 -1.1548 -0.4804 -0.4792 -0.0947 
RMSE 1.0455 1.1559 0.4864 0.4852 0.1425 
RP 0.4947 0.5413 0.2208 0.2205 0.0769 

Results are based on 10000 Monte Carlo runs. Data are generated by 
Yt = ,60 +,61Xt +l7ft (t = 1, ... , 1000) under 5 different sampling schemes, 
described in the main text. 
PB: Proportional Bias. 
RMSE: Root-Mean-Squared Proportional Error. 
RP: Rejection Probability of 5%-level t-test on slope parameter. 
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Table 6: Performance of alternative estimates of standard errors of S-estimates 
(1000 observations) 

se3 se2s sels sel se 

i. i. d. normal 
PB -0.0491 -0.0499 -0.0482 -0.0473 -0.0529 
RMSE 0.0589 0.0628 0.0838 0.0833 0.0966 
RP 0.0616 0.0620 0.0624 0.0620 0.0630 

heteroskedasticity 
PB -0.8231 -1.1183 -0.0197 -0.0168 -0.0224 
RMSE 0.8238 1.1193 0.1415 0.1412 0.1482 
RP 0.3842 0.5213 0.0614 0.0604 0.0627 

autocorrelation: AR(l) 
PB -0.4907 -0.4913 -0.4913 -0.4901 -0.1133 
RMSE 0.4937 0.4950 0.4999 0.4988 0.1623 
RP 0.2301 0.2306 0.2310 0.2303 0.0799 

autocorrelation: MA (1) 
PB -0.3034 -0.3040 -0.3042 -0.3032 -0.0739 
RMSE 0.3122 0.3135 0.3204 0.3195 0.1430 
RP 0.1454 0.1457 0.1462 0.1456 0.0691 

heteroskedasticity and autocorrelation 
PB -1.0877 -1.3817 -0.2863 -0.2833 -0.0650 
RMSE 1.0888 1.3830 0.3227 0.3201 0.1809 
RP 0.5095 0.6234 0.1434 0.1422 0.0754 

Results are based on 10000 Monte Carlo runs. Data are generated by 
yt = ,BO+,BIXt+crct (t = 1, ... , 1000) under 5 different sampling schemes, 
described in the main text. 
PB: Proportional Bias. 
RMSE: Root-Mean-Squared Proportional Error. 
RP: Rejection Probability of 5%-level t-test on slope parameter. 
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Table 7: Performance of alternative estimates of standard errors of MM-estimates 
(200 observations) 

se3 se2s sels sel Se 
i. i. d. normal 

PB -0.0203 -0.0081 -0.0120 -0.0079 -0.0254 
RMSE 0.0889 0.0754 0.1138 0.1139 0.1406 
RP 0.0546 0.0497 0.0528 0.0510 0.0572 

heteroskedasticity 
PB -1.1864 -1.0215 -0.0510 -0.0290 -0.0475 
RMSE 1.1905 1.0268 0.2710 0.2735 0.2862 
RP 0.5435 0.4782 0.0782 0.0731 0.0794 

autocorrelation: AR(l) 
PB -0.5451 -0.5319 -0.5439 -0.5382 -0.1979 
RMSE 0.5609 0.5459 0.5668 0.5616 0.2806 
RP 0.2549 0.2499 0.2541 0.2511 0.1133 

autocorrelation: MA(l) 
PB -0.3492 -0.3374 -0.3450 -0.3403 -0.1223 
RMSE 0.3876 0.3745 0.3924 0.3885 0.2497 
RP 0.1550 0.1496 0.1560 0.1541 0.0816 

heteroskedasticity and autocorrelation 
PB -1.4821 -1.3171 -0.3648 -0.3414 -0.1375 
RMSE 1.4876 1.3239 0.4646 0.4503 0.3556 
RP 0.6524 0.5963 0.1813 0.1738 0.1048 

Results are based on 10000 Monte Carlo runs. Data are generated by 
yt = ,60 + ,6lXt + O"E"t (t = 1, ... , 200) under 5 different sampling schemes, 
described in the main text. 
PB: Proportional Bias. 
RMSE: Root-Mean-Squared Proportional Error. 
RP: Rejection Probability of 5%-level t-test on slope parameter. 
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