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Abstract 

In two-stage experimentation, it is recommended that a block effect is included in 

the model to capture a possible shift in the mean response between the stages. In 

this paper, it is investigated how the inclusion of a block effect in the model affects 

the design and analysis of the experiment. 
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1 Introduction 

In a two-stage design strategy, the first stage design is obtained using some optimality 

criterion and then conditional on information provided by the first stage data, the second 

stage design is chosen to create certain desirable conditions in the combined design. In 

the literature, the two-stage design procedures have been developed within the non-linear 

framework as the classical alphabetic optimality criteria require prior knowledge of the 

model parameters due to the non-linearity of the problem. For example Myers, Myers, 

Carter and \tVhite (1996) propose a two-stage design procedure for the logistic regression 

that uses D-optimality in the first stage followed by Q-optimality in the second. The 

development of two-stage designs for linear models has been limited in the literature. 

Neff (1996) developed Bayesian two-stage designs under model uncertainty for mean es

timation models. Montepiedra and Yeh (1998) also developed a two-stage strategy for 

the construction of D-optimal approximate designs for the linear model. Lin, Myers and 
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Ye (2000) obtained Bayesian two-stage D-D optimal designs for mixture models. Ruggoo 

and Vandebroek (2003a) reviewed and extended work by Neff (1996). Essentially, in a 

two-stage design approach, it is possible to efficiently design experiments when initial 

knowledge of the regressors is poor. 

Two-stage model-robust and model-sensitive designs have recently been developed by 

Ruggoo and Vandebroek (2003b) (henceforth referred to as RUVA) for linear models. 

They assume that the model that shall be fitted comprises p primary or important terms. 

In addition to these primary terms there are q potential terms that are possibly important 

but not in the assumed model. In the first stage they use a criterion that facilitates the 

improvement of the proposed primary model by detecting lack of fit in the direction of 

the potential terms. The design in the second stage is then based on model information 

from the first stage and minimizes bias with respect to the potential terms. Briefly the 

two-stage approach of RUVA is as follows: the linear model that will be fitted by the 

experimenter is of the form 

.Y = X~Ti(3PTi + c, 

with XpTi being a p-dimensional vector of powers and products of the experimental factors 

and (3PTi the p-dimensional vector of unknown parameters attached to the primary terms. 

The product X~ot(3pot contains the terms that one wishes to protect against in designing 

the experiment, where Xpot is the q-dimensional vector containing powers and products 

of the factors and (3pot is the q-dimensional vector associated with the potential terms. 

The model is reparametrized in terms of the orthonormal polynomials with respect to 

a measure p on the design region. Also, the prior distribution of (3pot is assumed to be 

N(O, T2(}2Iq) where T2 is the common prior variance of the potential terms' coefficients, 

measured in units of the random error variance (}2 of the error terms. 

Assume that Yil(3 rv N(X i (3, (}2 InJ for each stage i (i = 1,2) and that the first and sec

ond stage comprise nl and n2 runs respectively so that the total number of design points 

in the combined design is n = nl + n2. X is the extended design matrix of dimension 

n x (p + q) for the combined stages, so that XI = [ X ll X;]. Xl = [ XpTi(l) Xpot(l) ] 

is of dimension nl x (p + q) and X 2 = [ X pTi (2) X pot (2) 1 is of dimension n'2 x (p + q). 

These matrices represent respectively the first and second stage designs expanded to full 
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model space. Xpri(i) and Xpot(i) correspond to the primary and potential terms respec

tively for each stage i (i = 1,2). Finally X~ri = [ X;ri(l) X~i(2) 1 is of dimension n x p 

and X~ot = [ X;ot(l) X;ot(2) 1 is of dimension n x q. These matrices are respectively 

the combined first and second stage design matrices for the primary and potential terms 

models only. 

Before observing the first stage data, the experimenter has specified a set of (p + q) 

regressors defining the full model. The true relationship between the response and the 

input variables is believed to contain all primary terms and a subset qi (0 ::; qi ::; q) of 

the potential terms. Consequently the total number of possible models is m = 2Q • The 

first stage design is obtained by minimizing 

m 

~ ( (k) D P Nh) GD l , 

k=1 

where 

GD(k) = ~ 100' IX(k)'. X(k) 1-1 + aL 100' L(k) + I~ . [ 
k) -1] 

1 P b pn(l) pn(l) qk 0 T2 
(1 ) 

and p(Nh)'s are prior probabilities for each of the competing 2Q models computed using 

the effect inheritance assumptions in screening experiments (See RUVA and Bingham and 

Chipman (2002)). X~~~(1)' L(k) and I~k) are the matrices corresponding to X pri (1), Land 

IQ expanded to model space i'vlk and 

is the dispersion matrix encountered in the literature on model-sensitive designs and which 

gives us an idea of the lack of fit in the direction of the potential terms (see, e.g., Atkinson 

and Donev (1992) for further details). 

The objective of the second stage is to use model information from the first stage to 

minimize bias with respect to potential terms. The second stage design points are then 

obtained by minimizing 

m 

k=l 

., 
oJ 



where 

GD(k) = [~lOU iX(k)' X(k)i- 1 + Cl'.B 100' iA(k)'A(k) + I(k)i] 
2 b pn pn b q' P qk 

(2) 

x~~~, A(k) and I~k) are the matrices corresponding to X pri , A and Iq expanded to model 

space Jvh where 

is the alias matrix in the combined stage, The posterior probabilities p(Nfklyd, reflect 

model importance and are computed from first stage data using the approach proposed 

by Box and Meyer (1993) and also used by Neff (1996), Finally Cl'.L and Cl'.B are weights 

that attach more or less importance on the different properties, The expression on the 

right hand side of (2) essentially comprises of two components: a variance and the squared 

bias and is akin to the integrated mean squared error criterion of Box and Draper (1959), 

except for the weight, Cl'.B attached to the squared bias component (See RUVA for further 

details), RUVA refers to their approach as the MGD-MGD two-stage procedure (MGD 

- Model Generalized D-optimality) and the approach produces designs with significantly 

smaller bias errors compared to standard unique stage designs used in the literature, They 

also improve coverage over the factor space and possess good variance properties for the 

assumed primary model. 

As can be seen in the development above, RUVA do not assume any block effect in the 

design and analysis of their experiments, However we note that each stage is randomized 

separately which, from the point of view of randomization analysis, implies that the ex

periment consists of separate blocks of sizes nl and n2 respectively, Further justification 

for blocking the experiment with respect to the two stages is the fact that the second 

stage will be conducted at a later time period so that there may have been a shift in the 

mean response between the two stages, The first stage design is not affected by the block 

structure but we can expect the second stage design to be different if the blocked nature 

of the experiment is taken into account, 

The overall objective of this paper is to investigate whether a more efficient combined 

design is obtained if the experiment is designed and analyzed assuming the first and sec

ond stages to be respectively the first and second blocks of the experiment, [t is also 



investigated whether a block effect in the model leads to more efficient estimates of the 

parameters of the primary terms. 

The two-stage procedure incorporating a block effect in the model is developed in Sections 

2 and 3. vVe then illustrate the new procedure in Section 4 followed by an evaluation 

and comparison of the blocked experiment with RUVA's unblocked two-stage designs in 

Section.s. Section 6 contains a short discussion. 

2 Blocking the two-stage designs 

There are several situations in which it may not be possible to perform all the runs of an 

experiment under homogeneous conditions. In such cases, experiments are often blocked 

such that experimental units within the blocks are more homogeneous than those from 

different blocks. In essence, the primary gain with blocking is that the effects of the exper

imental variables can be estimated more precisely. Atkinson and Donev (1989), Goos and 

Vandebroek (2001) and more recently Goos (2002) and references therein give excellent 

discussions on designs for blocked response surface experiments in general. 

In practice the first and second stage of the two-stage designs would be randomized 

separately and say, performed over different time periods, by different operators or with 

different batches of materials, and consequently can be thought of as in two separate 

blocks. Recall that the experimenter will fit the primary model using the combined 

design at the end of the experiment so that an extension of the model to include a fixed 

block effect would be 

(3) 

where 

Xpci ~ [~:::::l and I ~ [~::l. 
and <5 is an additive block effect corresponding to the second stage of the experiment. 

Onl and In3 are respectively n'!, x 1 vectors of zeroes and ones (See, e.g., Goos (2002) 



for details on fixed block effects analysis). If a block effect is included in the model, we 

shall need to find new expressions for the variance of the primary terms and also for the 

squared bias component in (2) to be able to develop our second stage design criterion. 

From (3), the parameter estimates under the usual ordinary least squares can be obtained 

by solving 

( (3r::~) (X~nXpn X~r2i) -1 ( X~n) . 
s: "X ", " Y u 1 pn 11 1 

Using Harville's (1997) Theorem 8.5.11 on the inverse of a partitioned matrix, we obtain 

(x' X X' '("')-l"X )-l X' {3pri pri pri - prill 1 1 pri priY 

(X' X X' ,(",)-l"X ) -lX' ,(",)-1" 
- pri pri - pri 1 1 1 1 pri pri 1 1 1 1 Y 

(X' X X' 1 ( )-11' X )-lX' pri pri - pri(2) n2 n2 n2 pri(2) priY 

(X' X X' ()-1 , X ) -lX' '( )-1 " - pri pri - pri(2) ln2 n2 1n2 pri(2) pri 1 n2 1 Y 

(X' X -lX' , X )-lX' (I -1"') pri pri- n2 pri(2)ln2 1n2 pri(2) pri n-n2 11 y. (4) 

~ 

Also the variance-covariance of the least squares estimators {3pri and 6 is 

[ ' , ,]-1 
(?i -:-) _ 2 XpriXpri X pri l 

var fJpr' , 0 - cr , "X ,', 
1 pri 1 1 

(5) 

The variance-covariance matrix of {3pri will thus be given by the upper left hand submatrix 

of (5). Again using Harville's (1997) Theorem 8.5.11 on the inverse of a partitioned matrix, 

we find that 

(6) 

Considering the first term on the right hand side of (2) implies that, on inclusion of a 

block effect in our model, the measure of efficiency of the coefficients of the primary terms 

will become 
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To obtain the new alias matrix A B , with the block structure we now derive the new 

expression for the bias. Since the experimenter will eventually fit the primary terms, 

the squared bias component (SBC) with respect to the measure /-L on the design region 

becomes 

Now from (4) 

where 

B (Xl X -1 Xl I X ) -1 
pri pri - n'2 pri('2) 1n31 n2 pri('2) 

{X' X -lxl ··,X }-l 
pri pri - n'2 Wi 11 pri . 

Therefore (7) becomes 

E { ' f3 I f3 I BXI (I -1· .1) }'2 J1, Xpri pri + X pot pot - X pri pri n - n'2 11 y 

= EJ1, {X~rif3pri + X~otf3pot - x~riBX~.ri (In - n;-liil) (Xpri f3 pri + X pot f3 pot)}'2 

= E J1, { X~rif3 pri + X~otf3 pot - X~ri B B -1 f3 pri - X~ri B X~ri (In - n;-l ii') X pot f3 pot f.l 
= EJ1,{x~otf3pot - x~riBX~ri(In - n;-liil)Xpotf3pot}'2 

= f3~otEJ1,{(x~ot - x~riAB)'(X~ot - x~riAB)}f3pot 

= f3~ot {A'B~LllAB - A 'BV1'2 - ~L'21AB + /-L'2'2 }f3pot, 

where 

A BXI (I -l .. I)X 
B prin - n'2 11 pot 

(X l X -1 Xl I X ) -1 
pri pri - n'2 p·ri(2) 1n21n3 pri('2) 

(7) 

(8) 

is the alias matrix which essentially transcribes bias errors to parameter estimates, f3 pri. 

As we have assumed orthonormal polynomials, we have that ~Ll1 = Ip, /-L12 = Opxq, ~L21 = 

Oqxp and ~L'22 = Iq . As a consequence, 

(9) 

RUVA uses the expected value of the SBC over the potential parameters for use in their 

second stage criterion. 

7 



3 Development of the two-stage procedure with block 

effect 

The first stage design is not affected by the block structure and can be obtained in a 

fashion similar to that of RUVA described in Section 1. To obtain the second stage 

design, we consider a generalization of the second stage design criterion of RUVA in 

(2) and incorporate our variance term and SBC obtained respectively in (6) and (9). 

Consequently, the second stage design incorporating the blocked nature of the experiment 

is obtained by minimizing 

LP(Nlklyd GD~~, 
k=l 

where 

GD(k) _ [1 ,I (k)' (k) . -1 (k)' I (k) 1-1 
2B - P log X pri X pri - n?, X pri (2) In21n2 X pri (2) 

+ etB 100 ,1 A (k)' A (k) + r(k) I] 
b B B q 

qk 
(10) 

and A~) is obtained for model space Nlk from (8) above. 

4 Illustration of the procedure 

Consider the three-dimensional problem where the primary model consists of p = 5 terms, 

x(pri) = {1, Xl, X?" X:3, xi} and q = :3 potential terms, x(pot) = {XlX?" x§, xU. The 

design region is the ·5 x 5 x .5 grid on [-1, + 1]3. Since the second stage design is dependent 

on the first stage data, response data from the first stage experiment are needed for the 

computation of the posterior probabilities used as weights in the second stage criterion. 

Suppose we have resources for 20 runs and the true model from which data will be 

simulated is 

u = 42.0 + 1l.5 Xl + 12.8 x?, + 10 .. 5 X3 + 14.6 xi - 7A x~ + c. (ll) 

The true model comprises all the primary terms and one potential term, namely the 

quadratic term in ~L?,. \;Ve assume c rv N(O, 1) and the illustration will be for one simula

tion only. \;Ve assume an equal partition in the two stages so that nl = 10 and n?, = 10 
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and also the following default values: CY.L = 20 in the first stage, CY.B = 10 in the second 

stage, and T = 5 in both stages. 

The first stage design, being independent of the block effect, can be obtained in a fashion 

similar to that of RUVA and is shown in Table 1. 

Table 1: First stage design with 10 runs 

run First stage design 

Xl X2 X3 

1 -1 -1 -1 

2 -1 -1 1 

:3 -1 0 0 

4 -1 1 0 

·5 -1 1 1 

6 0 -1 -1 

7 0.5 0 0 

8 1 -1 0 

9 1 -1 1 

10 1 1 -1 

Using this design, response data can be simulated from the true model (ll) to compute 

the posterior model probabilities and also in the numerical construction of the second 

stage design. The corresponding prior and posterior probabilities are in shown Table 2. 

It can be seen that the primary terms model has the highest prior probability as this is 

the model which the experimenter had belief on before conducting the experiment. But 

once first stage data is obtained, the true model (ll) has the highest posterior probability 

indicating that it will be given the largest weight in the second stage criterion. 

The second stage design (SSD) of RUVA and the one we developed including the block ef

fect can then be obtained following Section 3. The resulting designs are shown in Table :3. 

The SSD's are different when the block effect is taken into account. It would be interest

ing to see whether blocking the two-stage experiment affects the orthogonality structure 

of the experiment. As argued by Trinca and Gilmour (1998), the efficiency in estimating 
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Table 2: Prior and posterior model probabilities of different competing models 

Terms in J\!Ii p(N1i) p(J\!IiIYd 
..., 

1 Xl X2 X:3 Xi (Primary model) 0.5787037 0 

1 Xl X2 X3 xi XIX2 0.1157407 0 
..., ..., 

1 Xl X2 X:3 Xi X 2 (True model) 0.1157407 0.9584726 
'J ..., 

1 Xl X2 X:3 Xi X3 0.1157407 0 
..., ..., 

1 Xl X2 X:3 Xi XIX2 X 2 0.0231481 0.025106 
1 ...,..., 

Xl X2 X3 Xi XIX2 X3 0.0231481 0 
..., ..., 'J 

1 Xl X2 X3 Xi X 2 X3 0.0231481 0.01:38377 
..., ...,..., 

1 Xl X2 X3 Xi XIX2 X 2 X3 0.0046296 0.0025825 

Table 3: Second stage designs (SSD's) with and without the block effect 

run SSD - No blocks SSD - 'With blocks 

Xl X2 X3 Xl X2 X3 
1 -1 -0.5 0.5 -1 -1 1 

2 -1 -0.5 0.5 -1 0 0 

3 -1 0 0 -1 0 0 

4 -1 0 0 -1 0.5 -1 

5 -0.5 -0.5 -1 0 -0.5 1 

6 1 -0.5 -1 0 0 -1 

7 1 -0.5 0 0 0 1 

8 1 -0 .. 5 0 1 -0.,5 -1 

9 1 -0.5 0.5 1 0 -0.5 

10 1 0 -0.5 1 0 0 
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parameters is preserved completely in designs that block orthogonally. To investigate this 

property we use the idea of the weighted mean efficiency factor (vVMEF) suggested by 

John and Williams (1995) but adapted by Trinca and Gilmour (2000) for the parameters 

of a response surface model. vVe shall compare the vVMEF for our combined first and 

second stage designs with and without a block effect. 

vVe first define the efficiency factor (EF) for the estimate of a parameter, ,Gi , 

V*(bi) and (J; are the variance of /3i and the error variance respectively obtained from an 

unblocked analysis. V(bi) and (J2 are the variance of ,ei and the error variance respectively 

obtained from an analysis with block effect. If any parameter is estimated orthogonally 

to block differences then it has 100% efficiency. The vVMEF is then given by 

where we are considering our p primary terms and Wi represents the weights given to 

the parameter ,Gi . The intercept is usually given weight zero. For further details on the 

vVMEF and weight structures, see Trinca and Gilmour (2000). 

vVe shall be using unit weights, except for the intercept which is given weight zero, in our 

calculations for the vVMEF and consider regressors present in the primary model only. All 

computations are carried out using the orthonormalized values of the design points. If we 

assume that the combined experiment designed without taking blocking into account will 

be analyzed with a block effect then the vVMEF is 97.:3%. If the experiment was designed 

taking into account the block effect, the WMEF increases to 99.3%. Recalling that an 

orthogonally blocked response surface design will have a vVMEF of 100%, suggests that 

blocking the two-stage design, attempts to construct an orthogonally blocked experiment 

in the primary terms. 
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5 Some further evaluation and comparison of designs 

The values of the different determinants in (10) will now be used as measures of efficiency 

of the precision and bias components when a block effect is included in the design and 

analysis of the experiment. A measure of precision of the primary terms is given by 

(12) 

and 

I
' 1

1
/
q 

D~ias = A'kA'k + Iq (13) 

represents the degree of bias. Note that A'k comprise the design points for the primary 

and potential terms expanded to contain regressors in the true model only. Also these 

quantities have been defined such that the smaller the value obtained, the better the 

design performs with respect to that criterion. Since we have a simulation procedure, the 

performance of the two-stage procedures is measured by the average of DXpri and Dbias 

over 200 simulations, i.e. 

200 200 

I:: DXpriU) I:: Dbias(j) 
AD* = _j=_·_L __ _ 

Xpri 200 
* j=l 

AD bias = 200 

To have an idea of the effect of including a block component in the two-stage procedure, 

we shall evaluate and compare our blocked combined experiment with the combined un

blocked design of RUVA under different models using (12) and (1:3), i.e. assuming as if 

RUVA's designs would be analyzed with a block effect. 

\lVe consider two cases discussed in RUVA for our evaluation purposes. The design region 

is the;j x .5 x ;j grid on [-1, +1]3, s is simulated from a rv N(O, 1) distribution, QL = 20 

in the first stage and Q8 = 10 in the second stage and T = .5 in both stages. 

Case I: 

\lVe again consider the example used in the illustration, i.e. we have p = ;j terms, x(pri) = 

{I, :el, X2, X:], :en and q =:3 potential terms, x(pot) = {X1X2' x§, xD. First stage data 

is simulated as before from (11). 
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Case II: 

vVe examine data simulated from 

a model comprising five primary terms, namely {l, Xl, X2, X3, xi} and an additional five 

potential terms, {X1X2, X1X3, X2X3, X§, x5}. 

Tables 4 and 5 show the results of the different evaluations. Values in brackets in columns 

two and three, are the standard deviations over the 200 simulated data sets. In general 

incorporating a block effect in the design and analysis of the two-stage procedures leads to 

an improvement in the design properties. In Case I, inclusion of the block effect leads to a 

good reduction in variance as opposed to the bias which does not change much. Including 

the block effect in Case II, leads to a good reduction in bias but with a slight increase 

in variance compared to the unblocked experiment. These results corroborate with the 

fact that there will always be a trade-off between bias and variance when searching for 

designs incorporating a composite design criterion. However, by varying the weights (};B 

in the second stage criterion, it is possible to obtain a reduction in both the variance and 

bias component for the blocked experiment. In Case I, by increasing (};B to 20, we have 

a reduction in the bias at the expense of the variance component that increases, but it 

is still smaller than the variance of the unblocked experiment. In Case II, by decreasing 

(};B to 5, we note an improvement in both properties for the blocked experiment. The 

experimenter is thus free to vary the weights according to the importance he/she wants 

to place on the different components. 

6 Discussion 

It is well known that any design strategy that involves minimum variance will work counter 

to a strategy involving protection against bias. These two aspects of a design, namely 

variance and bias can be thought of as the two arms of a weighing scale: a reduction in 

bias will lead to an increase in variance and vice-versa. The experimenter has a difficult 

choice to make: he/she may be willing to have a minimum variance design but it may turn 

out to be for the wrong assumed model. Therefore it is imperative for a design criterion 
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Table 4: Comparison of the two-stage MGD-MGD procedure without and with a block 

effect. 

Case I y = 42.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi - 7.4 x§ + c. 

Two-Stage Approach AD* Xpri 
ADbias 

(nl = n2 = 10) 

MGD-MGD ("Without block effect) 0.065394 1.3330.55 

(etB = 10) (0.0028702) (0.022730) 

MGD-MGD (vVith block effect) 0.0.54926 1.334051 

(etB = 10) (0.0013657) (0.0058856) 

MGD-MGD (vVith block effect) 0.060231 1.:322489 

(etB = 20) (0.0022352) (0.0054652) 

Table .5: Comparison of the two-stage MGD-MGD procedure without and with a block 

effect. 

Case II y = 40.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi + 9.8 XIX2 

- 7.4 XIX:3 - 8.7 x~ + c. 

Two-Stage Approach AD* X pri 
ADbias 

(nl = n2 = 12) 

MGD-MGD (vVithout block effect) 0.04:317:36 1.114668 

(etB = 10) (0.000.5729) (0.0094607) 

MGD-MGD (vVith block effect) 0.0447:30 1.05021:3 

(etB = 10) (0.0010592) (0.0006742) 

MGD-MGD (vVith block effect) 0.0429:37 1.054506 

(etB = 5) (0.00058:33 ) (0.002967:3) 
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to make explicit provision for departures from the assumed model. It is exactly in this 

direction that RUVA developed their two-stage procedure. Their design strategy takes 

into account several design criteria simultaneously, and with the flexibility about a model 

in mind too. 

In this paper, we have extended the approach of RUVA by including a block effect in their 

two-stage procedure. It can be seen that blocking generally leads to an improvement in 

the design properties. Other simulations carried out with different models indicate that 

the size of the improvements are in general case dependent. The general recommendation 

is that the experimenter should always account for the block effect both in the design 

and analysis of the two-stage experiments. This will ensure more precise estimation of 

parameters of the primary model and also to less bias in the direction of the potential 

terms. Furthermore the parameter estimates will not be affected by any possible shift in 

the mean response between the two stages of the experiment. 
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