
OEPARTEMENT TOEGEPASTE
ECONOMISCHE. WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9802

A BROWSING PARADIGM AND APPLICATION MODEL FOR

IMPROVED HYPERMEDIA NAVIGATION

by

W. LEMAHIEU

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9802

A BROWSING PARADIGM AND APPLICATION MODEL FOR

IMPROVED HYPERMEDIA NAVIGATION

by

W. LEMAHIEU

0/1998/2376/02

A browsing paradigm and application model for

improved hypermedia navigation

Wilfried Lemahieu

January 1998

Abstract

The advantages of hypermedia systems are often depicted in comparison to the rigid
linear structure of a book. In this paper, both a hypermedia application model and a
browsing method are presented that combine the best of both worlds; while holding on
to the modelling richness and navigational freedom of hypertext, the use of a (partially)
linear browsing strategy like in books greatly helps to reduce user disorientation. First
we situate hypermedia within the general context of data storage and retrieval systems.
We then address shortcomings of current hypermedia applications and suggest how
imposing a linear path upon the data results into a new navigational paradigm that
improves orientation and ease of navigation in a hypermedia environment. After that, we
deploy a hyperbase model that supports this new view of browsing and describe the
frameworkfor an accessory application. As a conclusion, an overview is provided of the
advantages this methodology offers, both for the application developer and for the end
user.

- 1 -

1. Preliminary remarks

1.1. Aims of the application model

The hypermedia system and application models that will be developed throughout this

paper, are primarily intended to benefit the end user, by providing a means to easily take

his bearings and navigate fluently through the information space. However, we believe

that our approach also facilitates application development and maintenance. These will

be tackled sideways, while our main focus remains upon the end user.

The target of our immediate research is an "empty" application shell that can be filled

with any multimedia data in order to return a read-only, stand-alone hypermedia

application. Furthermore, we believe that future work will prove the model's potential to

be expanded to a distributed hypermedia environment that allows extremely easy

maintenance of its hypermedia link structure, with the added bonus of improved

navigation. The absence of almost any session information makes a WWW server

application an obvious field to explore.

1.2. Compliance with the Dexter hypertext reference model

Although it was not our specific concern, it will appear throughout the text that the

hypermedia system model we developed fits rather well within the Dexter framework.

This model is certainly not meant as a substitute for the Dexter model, rather as a

complement; where Dexter mainly focuses on low-level hypermedia system modelling,

our model aims at application development, particularly in combination with a relational

database environment.

- 2-

1.3. Terminology

As the same concepts more often than not are rather vaguely defined or plainly cover

different charges in the database and hypermedia worlds, we will first provide a list of

expressions used throughout this paper and the meaning we have attributed to them .

• Data unit: we will call a data unit any object that is directly addressable and referable

in an information system model. This means that a data unit should always be

associated with a unique identifier. Depending upon the environment, a data unit will

be an entity in an E.R. model, a tuple in a relational database, a node in a hypermedia

system, a page in a book, an object in an 0.0. model, ... A data unit will always be

the representation in a data model of a 'thing' from the real world. In some

environments, like 0.0., data units may be composite, in which case they contain

other data units, each of which is also equipped with a unique OID .

• Node: a node is a data unit in the specific context of a hypermedia environment. Each

node has a unique ID within the hyperbase. Some hypermedia models allow nodes to

be composite objects, so they may contain other nodes. For reasons that will become

clear in section 6.1, the model proposed in this paper does not allow for nodes to

contain other nodes. A node may very well be a complex object, in that it consists of

several components, but these components cannot be data units. Le. the components

of a node cannot be individually referred to from outside the node. It may be possible

that the node presents different components when accessed, depending upon why and

from where it was accessed, but it is the responsibility of the node to decide what

information will be shown: it is impossible to directly refer to the internal contents of

a node, much like information hiding in the 0.0. paradigm.

• Current node: this is the node most recently accessed and currently presented on

screen. Although many nodes may be present in the internal memory cache of a

hypermedia application, there will always be only one current node at a given time.

This node determines which nodes are accessible for the next navigational step, since

navigation is only possible to nodes that are linked to the current node.

- 3 -

• Relationship versus relation: we use the term relation in the broadest possible

meaning: one data unit is related to another if both 'have something to do' with each

other. If this relation can be modelled into an E.R. model, we will call it

"relationship". A relationship type denotes the relation between two entity types in an

E.R. model and the term is only used in this strict E.R. context, whereas the word

relation retains its meaning from real life.

• Link: while the term 'relation' is used in a semantic context: a relation expresses the

fact that one data unit 'has something to do' with another data unit, the term 'link' is

used in a navigational context: one is able to travel from one node (the link source) to

another (the link destination) along a link. A link might be uni- or bi-directional and

will always be the consequence of a relation: it is only useful to link two data units if

these are in some way related to one another.

• System versus application: We will distinguish between on the one hand a database

system or hypermedia system: the software that manages the data (respectively stored

in a database or hyperbase) and on the other hand a database or hypermedia

application: a software component that manipulates the data and presents them to the

end user and that receives services from the aforementioned system.

-4-

2. Hypermedia systems as data storage and retrieval systems

Throughout this text, a hypermedia model will often be compared to an entity

relationship or relational model. We will use similarities to explain various concepts,

and we will indicate differences between them to advocate the use of a proprietary

development methodology for hypermedia applications. Since hypermedia systems are

essentially data storage and retrieval systems, we will put them in this perspective and

compare them to the main representative of the class: database systems. It will appear

that hypermedia systems have a number of particular problems and opportunities that

will make traditional (database) application development methods inappropriate for

hypermedia development, although we can certainly learn from the comparison between

both types of systems.

Hypermedia and database systems have in common that they are both meant to store and

retrieve data units in one form or another along with the relations (in the broadest

possible meaning) between these data units. However, it is useful to mention some

particular properties of hypermedia systems, that will prove to be important later on in

this text:

• Storage of navigational information

• Storage of presentation specifications

• A very narrow coupling between system and application

• Storage of unstructured (in the database meaning of the word) data

• Distinction between data and access criteria

II Explicitly defined relations between data units

• Relations on instance level

• Tailored to end-users with little or no experience

- 5 -

2.1. Storage of navigational information

Databases essentially contain data and the relationships between these data. These

relationships model the semantics of mutual dependencies between data units. A

hypermedia system not only stores data and relations, but these relations also take the

explicit interpretation of navigational information. A hyperbase stores the relations

between data in the form of links, and these links not only have a semantic meaning, but

they also model the potential of navigation between the data units.

While each data unit stored in a database system is accessible at any time (not counting

locks or other DBMS controlled factors), this is not true for hypermedia systems. The set

of data units that is available for access at a given time depends upon two factors. The

first one is a variable whose value continually changes at runtime: it is the current node,

the node most recently accessed. The second factor consists of navigational information

stored within the hyperbase. Only nodes that are linked to the current node are accessible

at a certain moment in time. Thus, by storing links into the hyperbase, the developer can

influence the paths that are open for navigation to the end user.

2.2. Storage of presentation specifications

Not only navigational information is stored into a hyperbase, also presentation

specifications, information about how the data should be displayed upon the screen

might be stored along with the data. This might be information about fonts, on screen

positions of objects, colours, the size of drawings, ... Thus the hyperbase contents

influence the on screen presentation of the data units to a certain extent.

This is not the case in a database environment, where it is solely the database

application's responsibility to present the data on screen. The data units in a database do

not contain information about how presentation should be carried out.

- 6 -

2.3. A very narrow coupling between system and application

In the database world, DBMS and application are only loosely connected in most cases.

The application feeds the DBMS the criteria of the data to retrieve. The data that satisfy

the search criteria are passed back to the application. It's the application's responsibility

to present the data to the user.

Even the most rudimentary hypermedia environments like HTML documents, contain

both navigational information and presentation specifications like described in sections

2.1 and 2.2. This has as a result that hypermedia system and application need to be much

more interwoven than their database counterparts. The hypermedia system retrieves and

passes presentation specifications that have to be interpreted by the application.

Furthermore, the application can only access data units that are approved of by the

hypermedia system, as one of the factors that influence navigation are the links stored

within the hyperbase.

Attempts have been made to uncouple hypermedia systems and applications, but in

practice most existing systems and applications are integrated into one piece of software.

2.4. Storage of unstructured data

Databases store only data 'structured' in attribute/value form. Hyperbases, like real

multimedia systems, should be able to store data in different formats and belonging to

different media like text, graphics, bitmaps, MIDI data, sound samples and video. These

data may well have an internal structure, (e.g. a text document might be structured into

chapters and paragraphs) but they don't necessarily dispose of the attribute/value

structure required in a database environment.

- 7 -

2.5. Distinction between data and access criteria

Attributes in an E.R. (or relational) model serve three purposes: First they are used to

describe the data unit they belong to. Second, they may be used as an access criterion to

select the corresponding data unit. The third purpose is to relate data units to each other:

when attributes are used as a foreign keys.

PAINTING

E.g.: The entity type PAINTING with P-ID as primary key and the attribute PAINTER

as a foreign key referring to the entity type ARTIST. This attribute PAINTER serves

three distinct purposes in a relational model:

• Describe an aspect of the painting, in other words: be part of the information content

of a data unit of the type PAINTING

• Serve as an access criterion to select instances of the type PAINTING

• Relate a data unit of the type PAINTING to a data unit of the type PAINTER

All values in a relational database fulfil any of these three purposes, depending on the

query, thus on the desired information. In a hypermedia system, these three functions are

separated. Information content and access criterion are tackled in this section, the third

one is tackled in section 2.6.

- 8 -

As a consequence of the diversity of formats and the lack of the attribute/value structure

of hypermedia data, hyperbases win need to have a means of selecting data units,

without using the data itself as access criteria. There will be a clean separation between

the information content of a unit of data (which is an intra-node property) on the one

hand and the means to access this unit of data, the link structure of the hyperbase, on the

other hand. The latter is an inter-node property. We will return to the discrepancy

between information content and access criterion in section 6.6, when we deploy a

formal hyperbase model.

2.6. Explicitly defined relations between data units

The third function of an attribute in E.R. is to relate one entity type to another. Both

database and hypermedia models allow data units to be related to each other. In a

relational database, a foreign key is included within a tuple to relate this tuple to another

one. However, the relation between both mainly concerns semantic constraints for

update and delete actions, its influence during consultation is marginal. Indeed: an

attribute does not need to be a foreign key to define a join between tables, leaving the

possibility to the user to relate data units to each other that were not meant to be related

by the developer, even if these relations are completely absurd. E.g. a possible query

could be: 'select all employees whose age equals the shoe-size of their manager' .

In a hypermedia environment, a relation between data units also causes these units to be

linked, hence relations also have navigational consequences. Since the explicit definition

of navigation paths is a key concept for hypermedia, links are only allowed to be derived

from relations that are explicitly defined by the developer. The user doesn't have the

freedom of relating anything to anything like in the age - shoe-size example above.

2.7. Relations on instance level

In the E.R. (and relational) model, relationships are always defined between entity types:

one could define the relationship type 'is painted by' between respectively the entity

- 9-

types 'PAINTING' and 'ARTIST'. It is not possible to relate two instances to each

other, unless as an instantiation of a relationship type that has been defined between the

respective entity types to which the instances belong.

In hypermedia systems, the notion of such a thing as a type hasn't always been present.

The first systems consisted of untyped nodes and links. Nowadays, many models support

the notion of node types and link types to a certain degree - the advantages of which will

become apparent later on in this text. Nevertheless, the need remains for the ability to

define a relation between node-types, similar to a relationship type in E.R., but also

between node instances, where the particular meaning of the relation does not allow it to

be defined on node-type level. For example: in a hyperbase that contains nodes of the

types PAINTING and ARTIST, a relation (and consequently a link) 'is painted by' could

be defined between these types, similar to a relationship type between the entity types

PAINTING and ARTIST in an E.R. model.

~ __ P_A~I_N_TI_N_G~. ~~~~ __ ~A_R_T_IS_T~ __ ~

This means that every painting is created by exactly one artist, and every artist can be the

author of several paintings. We can structure this information into an E.R. or 0.0.

model. The relationship 'is painted by' is a relationship between the two entity types

PAINTING and ARTIST, since every painting is painted by someone, it is a property of

being a painting. We call this structured information, since this is the kind of

information we can model into a database.

Now, suppose the textual description that is included in the data unit 'artist X' of a

hyperbase mentions that seeing a picture of painting Y (by artist Z) was his immediate

stimulus to take up the brushes. This also kind of relates artist X to painting Y, but it's

not a property of the types ARTIST and PAINTING, it's a relation between two well

defined instances of these types, impossible to model on type level.

L-___ p_ain_ti_ng_X ____ ~r_-----~L _____ Ar_ti_st_Y ____ ~

- IO-

This is unstructured information, we cannot model it into a database model. In the

hyperbase, however, if the information content of the data unit 'artist X' indudes this

information, it is useful to model a link between the two nodes. Such a link will only

exist between these two node instances, not between other instances of the same type.

This second example shows a very different kind of link: where the first one is a

consequence of the data structure of the underlying model, hence the term structural

link, the second is just the expression of an ad-hoc relationship between two node

instances, hence the term ad-hoc link. We will come back to this issue in section 6.4.

2.8. Tailored to end-users with little or no experience

The property of hypermedia systems that navigation can already be designed during the

data modelling phase, makes them a perfect choice to 'guide' end users through a large

information system. The developer has much more control over end user browsing than

in the case of database applications. The target user for such applications will often be

someone unfamiliar with the application, possibly with little or no computer experience,

often (but not necessarily) with read-only access to the hyperbase.

While this may seem a rather futile remark, it most certainly is not. Obviously, it

requires the user interface of a hypermedia application to be as intuitively clear as

possible. But the impact is much larger than the user interface alone, it will also put

certain demands upon the data model. The problem with hypermedia applications is user

disorientation, and since the model also stores navigational information, the quality of

the data model will have a very important influence upon how well the end user is able

to attain the information he desires. Whereas the underlying model in database

applications remains more or less transparent to anyone but the development team, a

hypermedia model should be sufficiently comprehensible to the end user, as well as offer

the (navigational) support necessary to make orientation and browsing as efficient and as

satisfactory as possible.

- 1 1 -

As a conclusion, we can state that a hypermedia model has a number of particularities

that call for an apt approach: in many ways it is more elaborate than a database model, in

that it incorporates presentation and navigation aspects.

3. Where current hypermedia applications fall short

3.1. Hypermedia navigation compared to linear browsing

To highlight the advantages of hypermedia applications, comparisons are often made to

books. Books are said to be linear information systems: their data units (pages) are

organised in a fixed order, one after the other. Hypertext offers the possibility to break

through this linear constraint and organise data in more complex structures. This allows

the data to be accessed following different possible paths, depending on the user's

preferences and interests. One should be able to 'freely navigate through the

hyperspace'. Unfortunately, 'freely navigate' comes down to 'wander without a clue' in

many a case. User disorientation is the Achilles tendon of all hypermedia applications.

Two questions sum up the problems related to hypermedia navigation: "Where am I?"

and "Where can I go from here?". These questions represent the difficulty to locate the

current node within the whole hypertext structure and to determine the navigational

options that are open from the current node. To accommodate user orientation, most

hypermedia tools include maps, graphs and overviews which relax the problem to a

certain extent, but we believe the main cause for disorientation is exactly this absence of

a linear structure.

3.2. Linearity and user (dis)orientation

Indeed, the linearity of a book constrains navigational freedom, but also prevents the

reader from 'loosing the thread'. Reading a book never causes the navigational

difficulties one experiences with hypermedia applications. Linearity allows one to

determine one's position within the collection of data units: the fact that a data unit (a

page) only contains two links, one to the previous data unit and one to the next one,

- 12-

transforms this collection into a one-dimensional space. It allows a 'linear' reader to

always ascertain his position: which data units he has already visited and which ones he

has not. Also the second question 'where can I go from here?' becomes trivial, since the

options are restricted to only two links for each data unit: forward or backward, of course

at the cost of navigational freedom.

This is not the case in hypermedia applications. After only a few browsing steps, the user

looses track of things and is condemned to wandering haphazardly. A hypermedia

application seems to be fit for 'casual' browsing through nodes, following a few links

and picking up a bit of information here and there. But it doesn't really allow for a

thorough study of a certain topic, where it is necessary to exhaustively read everything

there is to read that is related to this topic. In that case, a linear structure is by far the

better. The linear structure is the leading thread that prevents the reader from getting lost.

Breaking through the linear structure of a book by tearing out all the pages and allowing

them to be ranked in random order will certainly not improve reading comfort.

3.3. Poor navigation and guided tours

A second shortcoming of many contemporary hypermedia applications is their poor

navigational structure, resulting in unnecessary browsing steps, at the risk of

disorientation. Let's return to our PAINTING - ARTIST example. Suppose we would

like to visit all nodes describing a painting by Van Gogh. Most applications would

present the following link structure:

As a result, visiting all paintings comes down to selecting a painting, returning to the

node 'Van Gogh', selecting another painting, returning to 'Van Gogh' etc. Navigation is

- 13 -

only possible in a tree-like fashion. If the information required is more than two levels

deep, browsing becomes very tiresome and unsatisfactory.

More advanced applications add the facility of so-called 'guided tours', where all nodes

pertaining to a common subject are chained together (thus in a linear structure!),

allowing them to be browsed one after the other.

This certainly improves navigational comfort, but at the cost of a considerable overhead

(links have to be added for each tour in which the node participates) and, even more

important, poor maintainability. Indeed, suppose additional tours exist linking together

paintings with a common theme, from the same era, belonging to the same museum, ...

Adding or removing one painting implies updating the 'linked list' structure of each

guided tour, which becomes an impossible task for even a medium-sized hyperbase,

resulting in inconsistency, dangling links, etc.

We can conclude that it is next to impossible to solve this navigation problem on

hyperbase contents (the links stored within the hyperbase) level. It should be the

hypermedia environment that is flexible enough to allow for the necessary navigational

freedom. Besides, the structure of a guided tour introduces redundancy into the

hyperbase, since linking nodes into a guided tour implies they have some property in

common. However, in the example above, the common property of 'being painted by the

same artist' is already established within the respective links from each PAINTING to its

ARTIST. Thus, it would be possible for an intelligent hypermedia system to infer this

knowledge and generate guided tours at runtime, without burdening hyperbase

maintainability.

In our opmlOn, the key to more user friendly hypermedia applications consists of a

combination of both navigational freedom and the ease of linear navigation. Hereby, the

- 14 -

concept of at runtime generated guided tours both improves ease of navigation and

offers a linear path throughout (part of) the hyperbase to reduce user disorientation. One

could compare this approach to an "intelligent book", that always maintains its linear

structure, but constantly rearranges its pages according to the user's interests. To

generate these guided tours, the relations between the nodes stored within the hyperbase

are of utter importance. We will elaborate upon these interrelations in the next section.

4. Relations and links

4.1. Direct and indirect relations

One could look at a hyperbase as a collection of data units that are interrelated. The

relations in a hypermedia environment not only carry a semantic meaning like in the

E.R. model, but also a navigational one: they are represented as links within the

hyperbase. So a link provides a path between two nodes that are, in some way, related to

one another. As we see it, these relations/links between nodes always fall into one of two

categories, each with its own specific properties. Acknowledging the semantic

distinction between direct relations and indirect relations, as we will call them, entails a

new look upon their navigational interpretation, which results in easier orientation and

improved navigation.

4.1.1. Direct relations

If there exists a direct relation between two data units, the two units contain additional

information about one another. We can compare this to an instance of a relationship type

in an E.R. model. E.g. the relationship type 'is-painted-by' between entity types

PAINTING and ARTIST:

L--__ PA_I_N_T_IN_G_--'K>-1L--__ A_R_T_IS_T __ -'

- 15 -

One of the instances of this relationship type relates the data unit 'Sunflowers' to the

data unit 'Van Gogh':

~ ___ s_un_fl_ow_e_rs __ ~r--------i~~~v_an_G_O_g_h __ ~

Both of these data units provide additional information about one another: there exists a

direct relation between them. In a hypermedia environment, the semantic aspect of this

relation will also have a navigational counterpart: there will be a link between the nodes

'Sunflowers' and 'Van Gogh'.

4.1.2. Indirect relations

An indirect relation between two data units indicates that they both have a direct relation

with a third unit in common. They both contain additional information about this third

data unit. We call this last unit the context of the indirect relation. We will illustrate this

again starting from the E.R. model consisting of the relationship types 'is-painted-by'

between PAINTING and ARTIST and 'lives-in' between ARTIST and CITY.

PAINTING ARTIST

CITY

Instantiation could deliver the following data units and relationship instances:

Sunflowers Van Gogh

Arles

- 16-

'Sunflowers' and 'Van Gogh' respectively 'Van Gogh' and 'Aries' are directly related.

This results into an indirect relation between 'Sunflowers' and 'Aries' with 'Van Gogh'

as the context.

Sunflowers

Context: 'Van Gogh'
~'-,

Aries

It would be useful for our hypermedia application to provide a link between

'Sunflowers' and 'Aries', but only in the case where we are exploring information about

'Van Gogh': such a link is only required in this particular context.

4.2. Link properties

Since a link is the navigational reflection of a relation between two data units, the

distinction between direct and indirect relations is carried over to the links derived: we

discriminate direct links from indirect links and demonstrate how both link types have

different properties satisfying different navigational requirements.

Direct links:

• Result from a direct relation between two nodes

• The two linked nodes describe each other

• This kind of link always exists and is independent of the context

• Direct links are static and are stored explicitly into the hyperbase

- [7 -

Indirect links:

• Result from an indirect relation between two nodes

• The two linked nodes each describe a third node (the context)

• This kind of link only exists within and depends upon a certain context

• Direct links are dynamic, they are generated at runtime according to the current

context

Note that, although many data modelling techniques allow for ternary and higher-order

relations, we will restrict ourselves to binary relations and links. The semantics of

higher-order relations might be easily comprehensible in a data model, but the

implications of ternary links become blurred in terms of navigation, making them

unsuited for hypermedia modelling. We will now elaborate upon the properties of both

link types.

4.2.1. Direct links

A direct link results from a direct relation between two nodes. Providing a means of

navigation between these nodes is useful, since (part of) the content of the one node is

also relevant to the other. Direct links have a permanent character as they are a

consequence of the conceptual data model behind the hyperbase. Whenever anyone of

two directly linked nodes is the current node, the other one is accessible regardless of the

context at that time (we will provide a formal description of the notion 'context' in

section 7). Direct links are present in any hypermedia application. They are stored

explicitly into the hyperbase, as they represent lasting relations between data units.

4.2.2. Indirect links

This type of link results from an indirect relation between two nodes, which also implies

the presence of two direct relations/links to a common third node. Navigation between

the two indirectly linked nodes is only useful within the context of this third node. If this

- 18 -

third node is the focus of attention, the two other nodes both supply an additional portion

of information about it and can be browsed sequentially.

Indirect links not only depend upon the data model behind the hyperbase but also upon a

run-time variable: the current context. Thus, indirect links cannot be stored within the

hyperbase, they are to be created dynamically upon change of the current context. When

this context changes, indirect links are destroyed and new ones are created according to

the new context.

5. Towards a navigational paradigm

5.1. An improved browsing strategy

As previously stated, we believe that the ideal browsing environment would be a

combination of the best of both worlds: it should allow the user the navigational freedom

he experiences with conventional hypermedia applications, but also offer a linear path

throughout (part of) the information space to fall back to. This path should depend upon

the user's interest and change dynamically with his focus of attention. Thus, the links

that are open for navigation at a certain time should not only be influenced by the user's

current position within the hyperbase (the current node), but also by the broader

backdrop (the current context) against which he is browsing for information. The current

context is the variable that should allow the system to suggest such a guided tour that

takes the user's focus into account.

This brings us to the idea of a set of nodes, that all have a certain topic in common and

that can be browsed sequentially, always clicking a "next" button to select the next node

in line. Apart from that, one should be able to explore each node visited, randomly

follow links to other nodes that are connected to the current node without loosing one's

position within the tour, and always with the possibility to resume the linear path one

was following in the first place. If browsing the hyperbase results in a new topic of

interest, the application should provide a new tour, with all nodes related to this new

topic included. This allows the user to follow a dedicated path with the possibility of

- [9-

exploring extra information around a certain topic, without loosing a sense of

orientation: one is able to digress without loosing the thread of the discussion.

5.2. A guided tour depending upon the current context

In conventional hypermedia applications, the current node is the only variable that

determines which nodes are accessible at a given time. One can only navigate to nodes

that are linked to this current node. These (direct) links are all static and are stored

within the hyperbase. Introduction of a second variable, the current context allows for

dynamic link creation: a guided tour is defined by generating indirect links between all

nodes related to the current context.

We will define this current context as one single node that is selected by the user as his

current focus of attention. As a data unit, this node represents an object from real life.

Hyperbase navigation concentrates upon searching all information related to this object.

This definition will be refined in section 7, after we examined node and link typing.

A guided tour results from the current context as follows: when a node is selected as the

new context, all nodes directly related to it are collected and ordered alphabetically

according to a 'node descriptor' field (see section 8.2) or some other criterion. Indirect

links are run-time generated between all successive nodes, defining a chain of nodes

directly linked to the current context and indirectly linked to each other. Throughout the

rest of this paper, we will represent a direct link/relation by an arrow and an indirect

link/relation by a dotted line.

. .•. ,"'"
•

""'" •. ,
...................

- 20-

5.3. Navigation

Our navigational paradigm combines linear browsing along a guided tour with

completely free navigation along direct links. The user determines the context of the

guided tour: whenever he decides to focus his attention on the current node and to

explore all things related to it, he can select the current node to become the current

context. The previous context is deleted and navigation is centred around the new

context. Although each subsequent navigational step causes another node to become the

current node, the current context is preserved until it is explicitly changed by the user.

Where the current node is a short-term factor that changes with each step, the current

context can be seen as a long-term factor that 'glues' the various visited nodes together

and provides a background about which common topic of these nodes is being explored.

At any time during a session, the hyperbase consists of both the direct links that are

always present and the indirect links between subsequent nodes under the current

context. The user has the choice between three navigational options:

• Follow a direct link to a node directly related to the current node

• Follow an indirect link that leads to the next node related to the current context

• Select the current node to become the new context

Schematically, we can depict a navigation situation as follows:

..•. ; •. ,

- 21 -

The current tour is represented by the circle. All nodes upon the circle are directly linked

to the current context and indirectly to their predecessor and successor. The current node

mayor may not be part of the current tour. The current node has its own direct links, as

well as indirect links leading back to the current tour.

5.3.1. Following a direct link

This comes down to exploring information that is directly related to the current node. It

is similar to conventional hypermedia navigation. Here, the current context is of no

importance, since direct links are context-independent. When a direct link is followed,

the newly accessed node becomes the current node. The current context is not affected,

nor is the current position within the guided tour.

....... ..,
....•..............

Following a direct link is represented as a movement independent of the circle. Note that

the indirect links remain unchanged.

5.3.2. Following an indirect link

This means moving forward or backward within the guided tour that is generated by the

current context. Following an indirect link implies accessing another node in a string of

nodes directly related to the current context. This node may or may not be directly

-22-

related to the current node. When accessed, this node becomes the new current node, In

practice, an indirect link will be selected by pressing a "next" or "previous" button,

where the system calculates the correct destination at runtime .

.-/ ..•.
•

"""""'.,"",•..
Following an indirect link causes a movement along the circle that represents the guided

tour.

5.3.3. Selecting a new context

A context change causes the current node to become the current context. This reflects the

user's decision to concentrate upon the current node as a new topic of interest. All

indirect links are destroyed and redefined around this new context.

//.

•

/i/··························

• " : Current Node =
•. ,.-: \......... New Context

".. ~

' •............. '.:.:," .. ~

: ',.'." --............... .

. '.... ..,•. --

- 23-

Changing the current context is represented by moving the circle so that the current

node, which is also the new context, becomes the centre.

5.4. Conclusion

The at runtime generation of indirect links resulting into guided tours sensitive to the

current context, allows for different possible linear paths throughout the same

information space. Along with this additional linear aspect, the user retains all

navigational freedom from conventional hypermedia systems. Obviously, the

methodology just described only offers a very basic means of defining guided tours.

Only constructions along the lines of 'all nodes that have something to do with Van

Gogh' are possible. More complex expressions like 'All museums that contain paintings

by Van Gogh' require additional complexity within the data model. We will first address

some data modelling issues including node and link typing, after which we extend the

strength of our navigational model.

6. The data model

Until now, the only information mentioned to be stored into the hyperbase were the

nodes and (direct) links. In this section, we elaborate upon their definition and develop a

formal data model that should allow for the design of hypermedia systems that support

the navigational paradigm from section 5.3. In the first place, the model is aimed at ease

of navigation and intuitive clarity for end users, but also design and maintenance should

benefit. The following aspects will be treated:

• Nodes

• Links

• Node typing

• Links on node type level

• Link typing

- 24-

• Incorporation of attributes

• Link directionality

• Minimum and maximum cardinality

• Inheritance

• A schematic representation

6.1. Nodes

The nodes are the data containers of the hypermedia model. Each node is a data unit that

is treated as an atomic entity and represents a real world object. Although a node may

(and probably will) have a complex internal structure, this structure is beyond the scope

of our model. A node may contain heterogeneous components, connected by internal

links. However, external references to the node are always made to the node as a whole.

Internally, a node may contain the intelligence to react differently to different types of

links (see section 8.1), but from the outside, a node is seen as an indivisible data unit to

which links can be attached.

A consequence is that nodes are not allowed to be composite objects in the 0.0. sense of

the word, in that they are not allowed to contain other nodes. Relations of the type 'is

part of' have to be defined as links just like any other relation. We won't argue that such

aggregations may be very useful for conceptual data modelling. However, the data model

visible to the end user becomes less comprehensible. Indeed, the use of composite

objects defines an additional structure of relations between the data units, apart from the

ordinary link structure. Since hypermedia systems have the particularity that navigation

depends upon the interrelations of their data units, it is important to keep these

interrelations as uniform as possible.

6.2. Links

A link is a one to one association between two nodes. As already explained in section

4.2, only binary links are allowed. Upon definition of a link, an inverse link is

- 25 -

automatically defined. A link and its inverse consist an indissoluble pair. Each link has a

direction and offers an access path from its source node to its destination node. Source

and destination are reversed for the inverse link. Link directionality will be treated in

section 6.7. First, we will introduce the concepts of node and link typing.

6.3. Node typing

The definition of classes of nodes can be very useful, as well for development purposes

as to the end user. The general procedure to define this kind of abstraction between data

units is to look for one or more common properties and to define a generic type that

explicitly incorporates these common properties. In the case of hypermedia data units,

the only possible properties of nodes that allow them to be classified into respective

types, are the links to other nodes. Thus, definition of a node type comes down to

specifying what links are to be associated with its instances. Therefore, we will also have

to define link types, which we will tackle in the next two sections. For now, we will

suffice with defining a class of nodes as a collection of nodes pertaining to the 'same

kind of real world objects', e.g. ARTIST, MUSEUM, PAINTING, ...

Node typing combined with link typing is advantageous to the hyperbase developer,

since it allows for system-based referential integrity and completeness checking in the

same way as in a database environment (e.g. 'is every PAINTING linked to an

ARTIST?'). Also hyperbase maintainability improves, as the system is able to suggest

the appropriate link types upon definition of a node instance. Also the design of a node is

facilitated, since the use of a template for similar nodes speeds up node design and link

definition. Moreover, the resulting uniform layout for similar nodes enhances user

comprehension of the underlying model, which in turn greatly improves ease of

orientation.

- 26-

6.4. Links on node type level

Thus far, links have always been defined on node instance level, this was said to be one

of the properties that distinguish hypermedia models from database models (see section

2.7). However, the definition of node types allows for the definition of links on node

type level, next to links between node instances whose definition is not valid on a higher

level. Therefore, we will distinguish between structural links and ad-hoc links, which

are defined respectively among node types and among single node instances.

6.4.1. Structural links

These are links that represent a relation between two well-defined node types, e.g.:

between PAINTING and ARTIST. A structural link is always an instance of a link type,

which we will define in section 6.5. All nodes of the same node type share the same set

of structural link types. Structural links match relationship instances in an E.R. model,

thus are the result of structured information within the hyperbase. They make out the

backbone of the hyperbase structure, hence the name structural link.

6.4.2. Ad-hoc links

Ad-hoc links are defined between two node instances, while their respective node types

are irrelevant. If a link is defined that is only meaningful to two specific nodes and not to

other nodes of the same type, an ad-hoc link is defined on node instance level. Links like

these will often be anchored within text fragments embedded within one of the linked

nodes. This information is not structured in the database sense of the word, like it is the

case with structural links.

- 27-

6.5. Link typing

Where structural links are the equivalent of relationship instances in an E.R. model, we

will define a (structural) link type as the equivalent of a relationship type. However, the

equivalence is not complete, since a link type is not defined between node types (like a

relationship type is defined between entity types). Contrary to an E.R. relationship type,

the same link type can exist between different pairs of node types.

Rather, a link type can be seen as a label that is attached to all similar structural links

(not necessarily between nodes of the same types). A link type can be attributed to one

or more node types, which means that the source node of each link instance should

belong to any of these node types. The destination node types are defined by attributing

the inverse link type.

An example: the link type "property of' can be attributed to the node type PAINTING as

well as to the node type MUSEUM. Its inverse, "is owner of' can be attributed to the

node types PERSON, CITY and MUSEUM. The reason for this approach is that it

allows node types to be defined and link types to be attributed to them, without

knowledge of other node types. The link type becomes the interface between node types,

where these can be modelled separately without knowledge of each other. When new

node types are defined, link types can be attributed to them without redefining the rest of

the hyperbase. An additional advantage is that nodes of different node types can be

linked to a node using the same link type, the relevance of which will be explained in

section 7.

Thus, an instance of a link type links two nodes of types to which respectively the link

type and the inverse link type are attributed. The equivalent of a binary E.R. relationship

type would constitute the triplet (node type A, link type, node type B). If a link type is

attributed to a node type, all nodes of this type can or must (depending upon cardinality,

which will be tackled in section 6.8) participate in an instance of such a link. Link types

are attributed to node types, so only structural links can be typed. We can illustrate the

discrepancy between structural and ad-hoc links respectively direct and indirect links in

the following table:

- 28 -

~d{~i:ill[s~alnclesjjil Structural link (instance) Indirectlink instance

A link type is attributed to node types. The link type 'indirect' is attributed to all existing

node types. Links between nodes are either structural links, in which case they are

instances of link types, or ad-hoc links, in which case they are typeless. An indirect link

has 'indirect' as its link type. Links of the type 'indirect' are generated at runtime.

Note that link typing and node typing are completely independent of each other; there

may exist different link types between two node types and the same link type may exist

between different pairs of node types. Section 7 shows how link types playa key role in

the definition of more complex guided tours.

6.6. Attribute versus entity

As already stated in section 2.5, in the database world, attributes are information

containers as well as access criteria for data units. The access criteria and the data

themselves are one and the same. Since the data in hypermedia systems cannot be

captured in such an attribute/value framework, information content of a data unit and

access criteria are two different matters.

What happens upon translation of an E.R. model into a hypermedia model? An

attribute/value pair can be treated in two possible ways, depending upon its use as either

information content or access criterion. If the attribute/value pair is purely descriptive,

i.e. it contains information about a certain data unit like a video clip or a text fragment

does, it is incorporated into the node like any other component of the node. If, on the

other hand, it is useful to treat the attribute as a selection criterion for the data unit it

describes, an access structure in the proper hypermedia fashion has to be constructed: as

- 29-

a link between nodes. Therefore, the attribute has to be transformed into a node type,

with as many node instances as the attribute had different possible values. Each of these

instances is to be linked to all nodes that represent E.R. entities with the corresponding

attribute value.

As an illustration, let's return to the PAINTING - ARTIST example. Suppose the E.R.

model contains the entity type PAINTING, with "artist" as one of its attributes.

PAINTING

If the name of the artist will only be presented in a field along with other information

about a certain painting, it can be incorporated into the internal contents of the node. If,

on the other hand, "artist" is to be used as an access criterion to select nodes of the type

PAINTING, the attribute type has to turn into a node type. As many instances of the type

ARTIST have to be defined, as there are different attribute values in the E.R. model.

Nodes of the type PAINTING are then to be linked to a proper instance of the type

ARTIST. This way of thinking clearly adheres to the 0.0. 'identity based' concept,

rather than to the E.R. 'value based' concept.

The hypermedia model doesn't distinguish between E.R. attributes-turned-into-nodes

and E.R. entities-turned-into-nodes. Note that, in the E.R. model itself, the difference

between attribute and entity mostly depends upon the scope of the model: if extra

information pertaining to an artist is added to the model, the attribute type "artist"

becomes an entity type itself.

- 30-

6.7. Definition of link direction

In most hypermedia models, a link has a source and a destination. Directionality is

useful for two reasons: first there is a semantic aspect, the same reason why association

types are defined within an E.R. model: because the exact meaning of a relation might

otherwise be confusing, e.g. for the relation 'is a parent of. Second, because of the

navigational aspect, where a source and a destination are inherent to each navigational

step.

In our model, definition of a link (type) automatically effects into the definition of an

inverse link (type). Only the source node of a link is defined, the destination is defined as

the source of its inverse. So if a link is added to a node, the destination node type can be

any node type to which the inverse link type is attributed.

6.8. Attributing minimum and maximum cardinality

Link cardinalities are attributed to the combination (source node type, link type).

Cardinalities can vary for the same link type, depending upon node type. So the same

link type can be optional for one node type and mandatory for another. Minimum

cardinalities can be either 0 or 1, maximum cardinalities either 1 or n (note that a link

instance is always one to one). Cardinality is only attributed at the source node. Instead

of defining a "destination cardinality", cardinality of the inverse link type is used. Ad

hoc links are untyped and therefore don't have cardinalities defined. They are always one

to one. A table with examples of each possible combination looks as follows:

Painting is-painted-by 1 1

Painting is-exhibited-in 0 1

All-round artist has-painted 0 n

Museum exhibits 1 n

Painter has-painted 1 n

- 31 -

The link types 'is-painted-by' and 'is-exhibited-in' are the inverses of 'has-painted' and

'exhibits' respectively.

6.9. Inheritance

In our model, node and link types have been defined, without the possibility of defining

subtypes/supertypes with potentially (multiple) inheritance of both link types and

presentation properties. We think that this option is very valuable in the hypermedia

modelling stage and for application development, but doesn't contribute much to the

user's perception of the model. We preserve this topic for future work, when application

development will be tackled.

6.10. Schematic representation of the model

It is impossible to capture this model within a graphic representation like the E.R.

model, due to the fact that link types can be attributed to various node types, and are not

defined between a pair of entity types like in E.R. Schematically, we can represent the

type-level aspects of our model as follows, where a table with attributed link types is

created for each node type:

Node Type X

Attributed Link Types Inverse Link Types Minimum Cardinality Maximum cardinality

Link type A k l (0 or 1) (l or n)

Link type B B- 1 (0 or 1) (l or n)

Link type C C l (0 or 1) (1 or n)

.,.

Note that such a scheme can be defined for each node type independently. Only

knowledge of the available link types is needed, not of other node types. So internal

node design can be carried out for each node separately, without knowledge of other

- 32 -

node types. We will see in section 8.1 that node instances can be created using different

media and formats, where the link database interfaces between these different node

types.

7. Navigation revisited

So far, the context has been defined as one single node around which guided tours

evolved. This only allowed for tours to be defined like: "all nodes related to Van Gogh".

We will now expand the definition of context to allow for tours to be fine-tuned around

certain types of links, and tours that represent the composition of multiple links, allowing

for transitive relations between nodes. We will be able to define tours like 'all paintings

by Van Gogh', excluding nodes that are in any other way related to Van Gogh than by a

'painted by' link type. Also possible will be the following kind of tour definition: 'all

museums that exhibit at least one painting by Van Gogh', without a direct link between

the node types MUSEUM and ARTIST, but making use of the composition of link types

between MUSEUM and PAINTING respectively PAINTING and ARTIST.

Link typing will play a crucial role in the definition of guided tours. Therefore, we

associate each link type with a unique identifier, a link label that is shared by all links of

the same type. This link label will be used to refer to a link type, like a link ID is used to

refer to a link instance. With the knowledge of link types and link labels, we extend the

definition of 'current context' as follows:

The current context consists of a single node ID, followed by an ordered list of one or

more link labels. We call the single node the context node. The link type represented by

the first link label should include the type of the context node as one of the node types it

is attributed to. Each consecutive link type should have at least one source node type

that is a destination node type of the preceding link type.

- 33 -

A tour is generated as follows during a browsing session: first (like described in section

5_3.3) the user selects the current node, say node A, as the new current context.

CUlTent node: A

Current context: A

The context only consists of the context node. The user now has the choice between all

labels corresponding to link types that are attributed to node A. Selection of label q,

generates a tour of all nodes that are linked to node A by links labelled q. So the tour

may consist of differently typed nodes, but they are all connected to the current node by

links of the same link type. The first of the resulting set of nodes becomes the current

node.

·------------------·ill
/_.-/- \.

• •
q

...... ..,•.. _---------_.

Current node: B

Current context: A 1\ q

After one or more browsing steps (possibly following both direct and indirect links), a

node C belonging to the current tour might be reached. From such a node (being part of

the current tour), the context can be changed by selecting a link label, say label r,

associated with a link type that has been attributed to the current node. The context node

remains the same, but the tour now consists of all nodes that were connected by a link

with label r to one of the nodes belonging to the previous tour. The resulting tour is a

tour of all nodes that are related to the context node by links whose type is the

composition of all link types involved in the current context, in this case q and r. The

graphical result is a circle that is concentric to the previous one.

- 34 -

.... -. ..
--

--•.
r d

.. ~
-.. -. -" --.--............... .

Current node: D

Current context: A " q " r

So each tour is generated by the context and consists of a set of nodes, that is the result

of the following operations: first, a list is created of all nodes that are connected by a

direct link of the first link type to the context node. Then, a second list is created of all

nodes that are linked by a link of the second type to one or more nodes from the first list.

This action is continued until the last link type has been processed. The last resulting list

contains the nodes that participate in the guided tour. A few examples will clarify this:

'Flowers' 1\ has-as-theme

The result is a tour of all paintings with 'flowers' as the main theme.

'Louvre' 1\ exhibits 1\ is-painted-by

This tour shows all artists that have one or more paintings exhibited in the

Louvre museum.

'Paris' 1\ museums 1\ exhibits

This is a tour of all paintings that are exhibited in Paris.

'World War II' 1\ *

This tour shows everything related to World War II.

- 35 -

Note that node types are not incorporated within context definitions. A user always

selects link types, unaware of the types of the resulting nodes. This allows for more

flexibility during data modelling: when the link type 'owner' is attributed to the node

type PAINTING, the destination nodes might be of different types: MUSEUM,

PERSON, CITY, ... A node is not selected because of its data type, but because of the

type of its relation to the current node. It is the hyperbase developer's duty to construct a

hyperbase where the link type definitions are adequate for efficient navigation.

We can now refine the classification of navigational options that was carried out in

section 5.3 and where three categories were singled out. Following a direct link means

either selecting a structural link (instance) or an ad-hoc link. Following an indirect link

was already aptly described in section 5.3.2. A context change can now be initiated either

by selecting the current node as the new context node, in which case the whole context

changes. Or, a link label can be selected from a node belonging to the current tour, in

which case the context changes, but the context node remains the same. The next section

describes a rough framework for an application that implements this navigational

paradigm and exploits a relational database to store the hyperbase model described in

section 6.

8. An application model

The goal of this application model is twofold: first, it should incorporate all features

necessary to support the navigational paradigm explained in sections 5 and 7, second, it

should allow for easy hyperbase development and maintainability.

The navigational paradigm calls for a hyperbase that is searchable for its link structure:

to generate the necessary indirect links at runtime, the application needs to be able to

query the hyperbase for all nodes directly related to the current context. Thus, all direct

links have to be stored within a searchable database. We discern two possible

alternatives to accomplish this: the first one is to encapsulate all links within the body of

the nodes (like it is the case in most hypermedia environments, like the WWW).

However, unlike these other environments, ours should allow all nodes to be searched

- 36-

for their link information. This calls for an 0.0. database where each node is an object

and where all links are represented as symbolic pointers to other objects. An 0.0. query

language allows the nodes to be searched for their direct links, such that indirect links

can be generated. Where this option might be very valuable in the future, at present it

shows two major drawbacks: the instability of current 0.0. database technology and the

lack of openness that results from forcing all nodes with their (possibly very distinct data

formats) into one proprietary 0.0. database model. Such an approach might still fit our

present stand-alone application model, but it would be prohibitive towards a future

implementation into a distributed environment.

We opted for a second alternative, where the information content and navigation

structure of the nodes are separated and stored distinctly. A (relational) database is used

to capture the link structure of the hypermedia system, along with references to the

physical addresses of the corresponding nodes. This option leaves much more freedom

to implement the contents of a node. The only requirement imposed upon a node is that

it can be referred to. Thus the nodes aspect of the hyperbase can be a very heterogeneous

collection, ranging from flat files to objects in an 0.0. database, as long as each node is

associated with a filename or any other unique ID. Since a node is not specified as a

necessarily searchable object, linkage information cannot be embedded within each

node. A linkbase is used to link all these nodes of different types together and to manage

their interrelations. This whole link structure is captured within the semantics of a

relational model. Only the tables of the linkbase are to be searched for any link

information, not the nodes themselves. The resulting system consists of three aspects:

the nodes, a linkbase and a hyperbase engine.

8.1. The nodes

We define a node as a collection of data, possibly along with procedural code, that share

one common physical and/or symbolic address for references from outside the node. An

external object is not allowed to refer to an internal component of a node even though

the node itself may take the initiative to present different aspects of its contents,

depending upon the link type by which it is accessed. How this is accomplished is left to

- 37 -

the internal design of the node. As already said, the application treats each node as an

atomic entity. Nodes are very loosely specified, so that the hyperbase may contain an

amalgam of objects of varying complexity. The basic property of a node is that it has to

be referable. Nodes can be simple documents like MS Word, HTML or PowerPoint files,

as long as the necessary code is provided for on screen presentation. They can be any

OLE object, as long as an appropriate viewer is configured. More complex nodes can be

real programs to be executed, or objects in an 0.0. database.

As already stated, a node mayor may not be equipped with intelligence to react

differently to different link types. Upon activation, a node is provided with the label of

the link by which it was accessed. The procedural code associated with a node may be

designed to respond to this label. This approach replaces the anchor concept in the

Dexter model. The node does not react to by whom it is accessed, but to the reason why

it is activated.

Where the above dealt with incoming links, we now address the possibility to embed

references to outgoing links within the body of a node. Both concepts are optional, since

all necessary facilities for navigation are offered by the hyperbase engine (see section

8.3). However it might be useful to allow for a link or a link label to be selected by

clicking a hot spot within the visible part of a node and not on a separate panel. It is,

again, left to the internal design of a node to provide the application logic to map a

keyword, a hot spot, part of a clickable map, a button, ... to a link ID or a link label. The

hyperbase engine accepts the link ID or label from the node and queries the linkbase for

the appropriate link(s). It is a trade-off between maintainability and user friendliness to

decide how many references to link ill's and labels will be included within the node

itself. A possible strategy could be to include all link labels, which are associated with a

link type and can be designed on node type level, and to include references to only a few

important link ID' s within each node instance. Note that the destination of each link is

unknown to the node, it has only knowledge of its embedded link ID's and link labels.

An embedded link ID is only to be adapted when the link itself is destroyed, not when its

destination is altered. An embedded link label only needs adjustment when the

accompanying link type ceases to exist, not when a link is added or deleted.

- 38 -

8.2. The linkbase

Although additional tables may be useful, the linkbase consists mainly of two important

tables: one where each tuple represents a single node and one where each tuple

represents a single link. The node table carries a unique node ID as a primary key, along

with a node type attribute, a description of the node and a pointer to the physical node

address. The description is the identifier the user will be confronted with for node listing

and selection purposes, in addition it might be used as a criterion to order the nodes

taking part in a guided tour alphabetically (other criteria could be used as well). The

node ID is unique and location independent: it remains the same during the whole life

cycle of the node. The pointer to the physical address is unique also, but it is location

dependent and changes when the node is moved to another location.

Note that all nodes, regardless of their node type, are stored within only one table,

contrary to conventional relational database models, where there is a table for each entity

type. Since strict object typing is of less importance in a hypermedia environment, the

loss of modelling richness is more than compensated by the querying advantages: it

allows selection of all nodes of any type related to a certain node, something that is

impossible in a database with multiple tables. Semantic constraints are not enforced by

node typing, but by link typing and by attributing links to node types. Another advantage

of this single node table approach is maintenance: if the physical location of a node is

altered, only one entry in the database has to be updated. No nodes have to be searched

for references to the node that has been moved. No links have to be adjusted.

The link table consists of all direct (structural and ad-hoc) links. Information about a link

and its inverse are represented in a single tuple. Primary key is the link ID, other

attributes include the source and destination node, which both refer to the node ID in the

node table and the link label (which has a null value for ad-hoc links). It now becomes

possible to edit the link structure of the hyperbase without having to access each node

involved: only the link table is to be edited. Other advantages include the practice of lazy

updating: dangling links can be created with a null value for the reference to their source

or destination node. This leads to disaster in systems where links are embedded within

the node body, since each node has to be accessed and searched for dangling links. In our

- 39-

approach, only the link table has to be queried for null values. All kinds of updates can

be carried out easily, which is particularly useful in an environment where link

destinations are highly volatile.

8.3. The hyperbase engine

This is the software that negotiates between the linkbase and the heterogeneously typed

nodes. Its tasks include the following:

• Accept a selected link ID or link label from the current node

• Query the linkbase for the correct link destination

• Map a node ID to its physical location

• Make a call to the selected node

• Keep track of the current context

• Generate the correct indirect links

• Possibly generate a panel for user interaction, as much as the necessary

controls are not embedded within the nodes themselves

Link label +
source node ID

or

Link ID

Link label +
pointer to destination node

- 40-

User input is received by either clicking a control embedded within the nodes or upon a

separate panel, generated by the hyperbase engine. There are three possible types of

input: selection of a link [D, selection of a link label, or selection of a context change.

8.3.1. Selection of a link ID

Link ID 7 Pointer to destination node + Link label

One particular link to one specific node is selected. The ID of the selected link is served

to the engine. The link table is queried for the node ID of the link destination, using the

link ID as search key. Exactly one result is returned. The corresponding physical address

is retrieved from the node table and this node becomes the new current node. Also, the

link label of the selected link is retrieved. This label can be used by the destination node

to adapt its reaction to the type of link by which it is called.

If the selected link pertains to an indirect link, the destination node ID is generated by

selecting the correct adjacent node within the current tour. The pointer to the

corresponding physical address is looked up in the node table. As link label, the label

last added to the current context is used. A direct link of this type will always exist for

the new current node, since it was used to include the node within the tour in the first

place.

8.3.2. Selection of a link label

Link label + Current node ID 7 Selected node ID's 7 Pointer to one node or

context change

The link label is passed to the hyperbase engine. The link table is searched for all links

that match the combination (Current node ID, Link label). If this combination is unique,

the same events as with the selection of a single link instance follow: the node table is

used to map the destination node ID to a physical address and the node is accessed.

- 41 -

If multiple links satisfy the query, the user can choose a single node from an index of all

destination nodes involved or he can start a new tour by changing the context. If a node

from the index is chosen, the system proceeds as above with a pointer to a single node as

result. A context change generates a new tour that includes all destinations of links that

satisfied the query. This case is described in the next section.

8.3.3. A context change

If the user opts for a context change, there are two possibilities. Either, the current node

is selected as the new context node, in which case the whole focus of the guided tour

changes. Selection of a link label generates a new guided tour, consisting of all nodes

connected to the current node by a link with the correct label. The link table is queried

for the combination (Current node, Selected link label).

If a link label is selected to be added to the current context, the focus of the tour remains

the same, but the direct relation between the nodes included within the tour and the

context node now consists of the composition of the previous relation and the relation

associated with the link label selected. The resulting tour consists of link destinations

matching the combination (Node belonging to previous tour, Selected link label).

As a conclusion, we suggest that not only a history of 'visited nodes' is kept, like it is the

case with conventional hypermedia applications, but also a context history. This much

shorter list allows the reconstruction of all tours followed during a session, and offers the

possibility of returning to a previous focus of attention.

- 42-

9. Evaluation

9.1. Comparison to CGI-like systems

Our application model is not to be confused with hypermedia applications where one or

more nodes retrieve their data from a database (e.g. HTML pages with CGI-access to a

database server). In such a case, each node separately retrieves its information content

from a database, not the navigational structure: the links between these nodes are still

embedded within the body of the nodes. In our system, it's exactly the navigational

structure that is stored within a database, which is used to manage the interrelations of

all nodes. The information content of a node is considered internal to the node, it mayor

may not be the result of a database query.

Besides, like real database applications, such systems are bound by the relational

database model, where each data type is stored within a different table. So their

properties are different, as explained in section 2.1 through 2.8. The data in our system

are not bound by the relational model, infonnation about all nodes is stored within one

and the same table. The relational model is only used to store links, not the data.

9.2. Advantages of the proposed model

9.2.1. Advantages to the end user

The primary goal of the model was to improve the navigation facilities towards the end

user. By offering a dynamic linear path throughout the information space, the risk of

disorientation is diminished, whereas the task of exhaustively exploring a certain topic

becomes much easier.

A second advantage is that the definition of abstractions like node and link types helps

the user to grasp the underlying data model, which is described by many as a key

condition for easy orientation. The use of templates for nodes of the same type will

support this idea even further, by providing a similar layout for similar nodes. Along

- 43 -

with node typing, link typing may also assist the user in the orientation process: not only

the destination of a link is indicated, but also why the source node is related to the

destination node, by what kind of relation.

Storing link information within a database offers the additional advantage that a simple

query reveals all nodes that are accessible from the current node, which supplies an

answer to the question "where can I go from here?".

9.2.2. Advantages for data modelling and application development

The very loose definition of the node concept allows for an open system where

documents of almost any type can be used as nodes and be seamlessly integrated into the

system, while retaining full navigational flexibility: the hypermedia engine generates a

palette containing all necessary controls. The way link types are defined as an interface

between node types, allows for different classes of nodes to be developed separately

from each other. Furthermore, nodes can be designed without having to worry about

destinations of links (lazy updating), dangling links can be completed within the

linkbase, without even having to revisit the node implementation. Besides, incomplete

links can be very easily detected by a simple query, since they are stored in a database.

Nodes can be designed to react to different types of links, without knowledge of all

nodes they are linked to. Only the various link types have to be taken into consideration,

not every separate link. This replaces the concept of an anchor in Dexter, which had to

be defined for each individual link. Our approach seems to be more natural: a node does

not react to from which node it is selected, but to the reason why it is selected.

9.2.3. Advantages for application maintenance

Link maintenance can be carried out almost entirely upon the linkbase, without having to

alter the internals of the nodes involved. Links can be created or adjusted without

accessing the data units, just using the linkbase. Addition of a link of an existing type

- 44-

doesn't affect other nodes or links. Creation of a new node only affects the node and link

tables in the hyperbase. Nodes can be linked to it (with existing link types) without

having to be edited.

The practice of attributing link types to node types, rather than just attributing links to

individual nodes, allows for checking on consistency. Upon creation of a node instance,

the system is able to ask for obligatory links, as it is able to check referential integrity.

Deletion of a node that is the destination of an obligatory link, forces the developer to

either delete the source node or to reconnect it to another destination node. In order to

move a node to another location, the node ID in the node table is selected and the

corresponding pointer is adjusted. No links have to be altered at all.

9.3. Future research

Refinement of the data model with the emphasis upon the application developer, rather

than the end user will unquestionably be a primary target of future effort. The inclusion

of such concepts as superlsubtyping for both node and link types and the inheritance of

attributed link types is certainly worth considering. Furthermore, to take full advantage

of the data model, the specification of a proper development methodology is in order,

preferably supported by an accessory development environment.

Although the model described was initially designed for a stand-alone system, future

research topics are likely to include the implementation of the concept into a WWW

environment. An additional difficulty will be that in such a case, no session information

is allowed to be stored at the server side.

- 45 -

References

[1] F. Halasz and M. Schwartz, The Dexter hypertext reference model, Commun.

ACM 37,2 (Feb. 1994)

[2] M. Hammer and D. McLeod, Database description with SDM: A Semantic

Database Model, A CM Trans. Database Systems 6, 3 (Sept. 1981)

[3] H. Maurer and N. Scherbakov, The HM Data Model, IIG Report,

Graz (1992)

[4] H. Maurer, N. Scherbakov and A. Nedoumov, HM-CARD: A Second Generation

Hypermedia Authoring Tool, IAIR-MIPRO '95 Proceedings

[5] J. Nanard and M. Nanard, Hypertext Design Environments and the Hypertext

Design Process, Commun. ACM 38,8 (Aug. 1995)

[6] P. Srinivasan, Incorporating Intelligent Navigational Techniques to Hypermedia,

LAIR-MIPRO '95 Proceedings

- 46-

