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STUDIA MATHEMATICA
BULGARICA

DIMENSION REDUCTION OF THE EXPLANATORY
VARIABLES IN MULTIPLE LINEAR REGRESSION

P. Filzmoser and C. Croux

ABSTRACT. In classical multiple linear regression analysis problems will
occur if the regressors are either multicollinear or if the number of regressors
is larger than the number of observations. In this note a new method is
introduced which constructs orthogonal predictor variables in a way to have
a maximal correlation with the dependent variable. The predictor variables
are linear combinations of the original regressors. This method allows a
major reduction of the number of predictors in the model, compared to other
standard methods like principal component regression. Its computation is
simple and quite fast. Moreover, it can easily be robustified using a robust
regression technique and a robust measure of correlation.

1. Introduction

Let us consider a problem where a certain phenomenon is depending on a series of
other influential factors. For example, lung cancer could be influenced by different
other health factors, but also on factors like smoking or even on environmental or
psychological factors. In order to explain the phenomenon “lung cancer”, we may
consider a linear relationship to the other factors and ask for the contribution of
these factors to the explanation of lung cancer. In practice we have to collect
data in order to find an answer using a statistical analysis. The response variable
(e.g. the percentage of lung cancer in different regions) is expressed by predictor
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or explanatory variables (the other factors measured in the same regions) by a
multiple linear regression model

(1) Yi = 0o+ xiafr+ ...+ xiplp te& 1=1,...,n.

n is the number of observations (regions), @; = (1,%1,..., %)  are collected
as Tows in a matrix X containing the predictor variables, y = (y1,...,yn) ' is
the response variable, 8 = (0o, f1, - - - ,ﬁp)T are the regression coefficients which
are to be estimated, and € = (e1,...,5,)" is the error term. The differences
Yi — Bo — i1 51 — . . . — TipPp express the deviation of the fit to the observed values
and are called residuals. Traditionally, the regression coefficients are estimated
by minimizing the sum of squared residuals

n

> (i — Bo— Brwir — ... — Bwig)® = (y — XB) ' (y — XP).

i=1

This criterion is called least squares (LS) criterion, and the coefficient minimizing
the criterion turns out to be

(2) Brs=(X"X)"'XTy

(see, e.g., Johnson and Wichern, 1998[8]).

Since the inverse of X ' X is needed in Equation (2), problems will occur if
the rank of X is lower than p + 1. This happens if the predictor variables are
highly correlated or if there are linear relationships among the variables. This
situation is called multicollinearity, and often a generalized inverse is then taken
for estimating the regression coefficients. The inverse of X' X also appears
when computing the standard errors and the correlation matrix of the regression
coefficients coefficients estimator 3 rg- In a near-singular case the standard errors
can be inflated considerably and cause doubt on the interpretability of these
coefficients. Also note that the rank of X is always lower than p+ 1 if the number
of observations is less or equal than the number of variables (n < p). This is a
frequent problem which occurs in many applications e.g. in social sciences or in
technical applications like in chemometrics, where the number of observations is
much lower than the number of predictor variables.

The idea is to construct a limited set of k components z1, ..., z; which are
linear combinations of the original variables. So there are existing vectors b; such
that z; = Xb; for 1 < j < k. Let Z = (21,...,2;) be the n x k matrix having
the components in its columns. For ease of notation, we ask these components
to be centered, so 1,) Z, with 1,, a column vector with all n components equal to
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1. Moreover, we also ask these components to be uncorrelated and to have unit
variances:

(3) A

n—1
where I stands for an identity matrix of rank k. These components will then
serve as new predictor variables in i the regression model. Note that, due to (3)
the multicollinearity problem has completely vanished when using a regression
model with z1,..., z; as predictor variables. Moreover, when k is small relative
to p, one has significantly reduced the number of predictor variables, leading to
a more parsimoneous regression model.

The classical way to obtain z1,..., 2 is to use the first k£ principal principal
components (PCs) of the predictors X. This approach is called principal compo-
nent regression (PCR) (see, e.g., Basilevsky, 1994[2]). If all PCs are used in the
regression model, the response variable will be predicted with the same precision
as with the LS approach. However, one goal is to simplify the regression model
by taking a reduced number of variables in the prediction set. While PCR can
deal with multicollinearity, it is not a method which directly maximizes the cor-
relation between the original predictors and the response variable. In fact, when
constructing the components using PCR, the values of the response variables do
not play a role at all. It was noted by Hadi and Ling (1998)[6] that in some situ-
ations PCR can give quite low values for the squared multiple correlation (SMC)
between the response variable and the predictors. The SMC is also called the
R2-coefficient, and the SMC between y and Z = (2z1,...,2;) can be defined as

Ika

(4) SMC(y, Z) = max |Corr(y, Xb)|,

where Corr stands for the usual bivariate correlation coefficient.

In Section 2 we prove two propositions which are suggesting a sequential
approach in order to maximize the measure of determination of the response
variable. The algorithms for constructing the components z4, ..., z; is outlined
in Section 3. The advantage of the proposed method will be that it can allow for a
larger reduction of the number of predictor variables in the regression model. This
is illustrated by means of a simulation study in Section 4. Section 5 concludes.

2. Sequential construction of the components

PCR is a two-step procedure: in the first step one computes PCs which are lin-
ear combinations of the predictor variables, and in the second step the response
variable is regressed on the (selected) PCs. For maximizing the relation to the
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response variable we could combine both steps in a single method. This method
will find k£ < p new predictor variables z; (j = 1,..., k) which are linear combina-
tions of the original variables and have high values of the SMC with the response
variable. As before, we require that these predictor variables are centered, have
unit variance, and are uncorrelated to each other. These components will be
determined sequentially, as motivated by the next proposition.

Proposition 1. Suppose that matrix Z = (z1,...,2x) consists of the first k
components. The (k + 1)th component needs to be of the form zy11 = Xb for
a certain coefficient vector b. The problem of finding b such that the squared
multiple correlation between y and (21, ..., 2k, Zk+1),

(5) b — SMC(b) := SMC(y, (z1,..., 2k zk+1)) = SMC(y, (Z, X)),
is maximized is equivalent to finding b such that
(6) b — |Corr(y*, X"b)|

is mazimized. In (6), X stands for the residual matriz of regressing X on Z,
and y* is the residual vector of regressing y on Z.

Proof. Regression of each column of X on Z leads to a matrix of fitted
values

X=2(2"27'2"Xx,
and the residuals we obtain are gathered in the matrix
(7) Xt =X-X=X-2(2"27'2"X.
Since the components were assumed to verify (3), Equation (7) can be written as

1
n—1

(8) Xk = (In — ZZT> X.

Now we want to find b such that z;; = Xb maximizes (5).
A property of the squared multiple correlation coefficient, (see, e.g., Ryan,
1997[9], p. 177) gives

9) SMC(b) = SMC(y, Z) + (1 - SMC(y, Z)) 1, xp,7-

where 7 XbZ is the partial correlation coefficient between y and Xb, con-
trolling %or Z. This partial correlation coefficient is nothing else but the usual
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correlation coefficient between the residual vectors resulting from regressions of
y on Z and from Xb on Z, respectively. Similar to Equation (8), the residual
vector of regressing y on Z is given by

1
v = (1.- 227 v
n—1

and the residual vector of regressing z;,1 = Xb on Z equals

1

(In - ZZT) Xb=X"b,
n—1

using Equation (8)). Therefore the partial correlation coefficient used in (9) can

be rewritten as

T;,Xblz = Corr2(yk, Xkb)

Since SMC(y, Z) in (9) does not depend on b, maximizing SMC(d) is equivalent
to maximizing

|Corr(y*, X*b)|
which proofs the proposition. O

Proposition 1 has an important practical aspect. Suppose that the first k
components have already been obtained. Finding the (k + 1)th component to
maximize a squared multiple correlation coefficient can be reduced to a problem
of maximizing a bivariate correlation coefficient. This advantage will be used in
Section 3 where we introduce an algorithm for finding components having a high
value for the SMC with the response variable. Now this (kK + 1)th component
also needs to be uncorrelated with the previous ones and to have unit variance.
So we require b to satisfy

(10) Z'2,01=Z"Xb=0
and
(11) 212k =b' X" Xb=n—1.

The next proposition is helpful here.

Proposition 2. Let b be a non zero p-dimensional vector. Let B be the
matrix containing the coefficients for the components in Z = (z1,...2g), i.e.
Z = X B. Consider now

R - 1 -
(12) b=c <b - BZTXb>
n—1
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with the scalar

/ —1
(13) c= ~Tni~7
b X" XFp

and with X* as in Proposition 1. Then b verifies the side restrictions (10)
and (11). Furthermore, the two vectors b and b yield the same value in the
mazximization problem (5):

SMC(b) = SMC(b).

Proof. First note that, using XB = Z and Z'Z = (n — 1)1,

C

Z'Xb=cZ"Xb— Z'XBZ'Xb=cZ"Xb—-cZ"Xb=0

n—1
For the second side restriction (11) we use some simple algebra to get
2

b'XTXh = b XTXb— %ETXTZZTXB
n J—

- 1 - . -
— 2b'xT <I _ 1ZZT) Xb=c2 X" X*b=n—1
n J—

using (13), which corresponds indeed to (11).

Finally, we have to show that b and b yield the same value in (6). We see
that

Xbp = ¢ XFp— %X’“BZTXB.
n _

Using (8) we have
k 1 T L 7
X'B=\I1,—-——27Z | XB=Z-Z——Z7 Z =0,
n—1 n—1

and thus
X*b=c X"b.
The proof is complete with

Corr(y*, X*b) = Corr(y*, ¢ X*b) = Corr(y*, X*b),

and using the result of Proposition 1. O



Dimension Reduction of the Explanatory Variables 7

Due to the fact that the predictor variables are orthogonal to each other, it
is not difficult to check that (7) can be rewritten, for £ > 1, as

.
Rhk—1%k—1

XF = (I, -
(In n—1

)Xk’—l )
The residuals in X* can thus be obtained as simple bivariate regression of the
columns of X*~! on zj,_;. Similarly, y* is given by the residuals of regressing

y*~! on z;,_1. Again, no multiple regressions are needed here.

In the next section we will outline a sequential algorithm for finding predictor
variables having a high SMC with the response variable. We stress again that
the linear combination of the original explicative variables giving the theoretical
maximal value of correlation with the dependent variable would be determined
by the coefficients of the LS estimator. But due to the multicollinearity problem
or the case that p > n mentioned before, we will not aim at a direct computation
of this LS estimator.

3. Algorithm

For finding the first predictor variable z; we have to find a vector b such that
(14) b — |Corr(y, Xb)|

is maximized under the condition z{ z; = n — 1. Rather than looking for the
global maximum we approximate the solution by restricting to the set of candi-
date solutions to

(15) Bn,lz{i)j;zilf'ju:l,...,n}.

The set By, 1 is the collection of vectors pointing at the data, and can be thought
of as a collection of potentially interesting directions. This kind of approximate
algorithm was used by Croux and Ruiz-Gazen (1996)[4] for principal component
analysis, and it requires O(n?) computation time. For very large values of n, one
could pass to a subset of B, 1, whereas for very small n additional directions can
be simulated.

We will transform every candidate solutions in order to fulfill the restriction
of a unit variance for the first component. In analogy to (12) we just need to set

bj1=cbj1

n—1 [ n-1
i);:lXTXIN)jJ w;—XTij’

with
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to have z{ z; = (Xb;1)" (Xb;1) = n — 1. Then we simply take the maximal

value of (14) over the candidates b; 1, i.e.

(16) b; = argmax |Corr(y, Xb;1)|,

j=1,...n
and the first predictor variable is constructed as z; = X by. Note that the mul-
ticollinearity problem is avoided, since no least squares estimator on the original
predictor variables is computed here.

For finding the second component zs, we want to to maximize the SMC
between y and (z1,z2). Following Proposition 1, we first regress all variables
Y,T1,..., T, on the first component z1, just by means of a sequence of p + 1
simple bivariate regressions. We will continue then to work with the residual
vectors y! and X! = (af,... ,x}) and try to find b such that

(17) b — |Corr(y', X'b)|

is maximized under z{ zo = 0 and zJ zo = n — 1. Similar as before we consider
the set of candidate directions

(18) Bmg = {i)jg = 212]1,] = 1, .o .,Tl}

for an approximative solution. B, 2 is a collection of vectors pointing at the data
in the residual space X'. To ensure that the new component will be uncorrelated
with the previous one and have unit variance, we use Proposition 2 and transform
the vectors of B, » into

7 on-1

n—1
c= | ————.
w}TXTXla:Jl

Now the function (17) is evaluated over the candidates bz, for 1 < j < n and
with

(19) by = argmax |Corr(y!, X'bj)|,
]: 7"'777/

. 1
bj2=c (ml - blleXaz}>

with

we obtain the second predictor variable zo = X bo.

In a similar way, the other components z3, ..., z; are sequentially obtained.
Note that, according to (7) the computation of the residuals in y* and X* do
not require any matrix inversion.
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4. Simulation

In this section we want to compare the proposed method with the regression
method and with PCR. It should be demonstrated that for our method the num-
ber of selected predictor variables in the model is indeed lower than for the other
classical methods. Therefore, we generate a data set X1 with n = 500 sam-
ples in dimension p; = 50 from a specified N (0, X) distribution. For obtaining
collinearity we generate Xo = X1 + A, and the columns of the noise matrix A
are independently distributed according to N(0,0.001). Both matrices X; and
X5 are combined in the matrix of independent variables X = (X 1|X32). Further-
more, we generate a dependent variable as y = Xa + 6. The first 25 elements of
the vector a are generated from a uniform distribution in the interval [—1, 1], and
the remaining elements of a are 0. The variable & comes from the distribution
N(0,0.8). So, y is a linear combination of the first 25 columns of X; plus an
error term.

As an output of the simulation study we choose the SMC coefficient between
y and the predictor variables, and this coefficient can be compared over the
different methods. First of all, we compare the proposed method with a stepwise
variable procedure which selects the predictor variables out of the columns of
X. Furthermore, we compare with two different approaches to PCR: once the
predictor variables (which are the PCs) are selected according to the magnitude
of their variances (sequential selection), and once the predictors are selected due
to the largest increase of the SMC coefficient (stepwise selection).

We computed m = 1000 replications and a maximum number [ = 20 of
predictor variables. The results are summarized by computing the average SMC
over all m replications. Denote R%S(t, j) the resulting SMC coefficient of the ¢-th
replication if j regressors are considered in the model. Then

. 1 « .
(20) Ris(j) = =Y Ris(t,j),
miz
for each number of regressors j = 1,...,[. Figure 1 shows the mean SMC values

R%S(j) for each considered number j of regressors. We find that the proposed
method gives a higher mean coefficient of determination especially for a low num-
ber of predictor variables which is most desirable. PCR with sequential selection
gives the worst results: for obtaining the same mean coefficient of determination,
one would have to take considerably more predictor variables in the model than
for our proposed method.
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Figure 1: Comparison of (1) PCR with sequential selection of PCs, (2) PCR with
stepwise selection of PCs, (3) the proposed method, and (4) stepwise variable
selection. The mean coefficient of determination is drawn against the number of
predictor variables.

5. Conclusions

Multiple linear regression is a standard method in statistics which is frequently
used. However, for many applications the number of observation is even smaller
than the number of variables in the z-part which makes the usage of this simple
method impossible. Also, problems can occur if the regressor variables are highly
correlated. A simple solution to these problems is to take PCR because this
method constructs uses PCs as regressors. But they are not optimized with
respect to the prediction of the dependent variable since the PCs do not take any
information of y into account.

Like PCR, the proposed method constructs uncorrelated predictor variables
which are, however, selected to have high values for the SMC with the response
variable. We propose a simple and fast method for selecting the predictors which
are linear combinations of X. The simulation study has demonstrated that the
proposed method allows a major reduction of the predictor variables compared
to PCR and multiple regression. This is an important advantage because in most
applications the regression model should be kept as simple as possible.
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The proposed method can easily be robustified. Recall that the outlined al-
gorithm only uses computations of bivariate correlation measures and bivariate
regressions. These could be replaced by robust counterparts. A popular ro-
bust regression estimator is the Least Trimmed Squares estimator (Rousseeuw
and Leroy, 1987[10]), becoming much faster to compute in the simple regression
model. Robust correlation measures have been considered for example in Croux
and Dehon (2002)[3]. This robust version of the proposed method is preferable to
robust PCR (Filzmoser, 2001[5]) because in general a lower number of predictors
can be used in the model.

Often it is important to find a simple interpretation of the regression model.
Since PCR as well as our proposed method are searching for linear combinations
of the x-variables, the resulting predictor variables will in general not be easy to
interpret. In practice it is not always necessary to find an interpretation of the
predictors, only the functional relation between y and X is important. However,
if an interpretation is desired, one has to switch to other methods which can deal
with collinear data, like ridge regression (Hoerl and Kennard, 1970[7]). There are
also interesting developments of methods in the chemometrics literature. Aratjo
et al. (2001)[1] introduced a projection algorithm for sequential selection of z-
variables in problems with collinearity and with very large numbers of z-variables.
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