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Abstract 

Exact V-optimal designs are derived for an optometry experiment for the 
estimation of a quadratic polynomial in one explanatory variable. Two obser­
vations are made for each subject participating in the experiment, such that 
each subject serves as a block of two possibly correlated observations. The 
exact V-optimal designs are compared to the best possible three-level designs 
and to the continuous V-optimal designs. 

Keywords: correlated observations, V-optimality, optometry experiment, poly­
nomial regression, random block effects 

1 Introduction 

The purpose of this paper is twofold. Firstly, it provides the reader with a series 
of exact V-optimal designs for an optometry experiment with blocks of size two 
for the estimation of a quadratic model in one explanatory variable. It turns out 
that the designs presented here are substantially more efficient than the -three level 
designs proposed by Chasalow (1992). Secondly, the paper provides the reader with 
a couple of interesting insights in the optimal design of experiments with correlated 
observations. It does not only demonstrate how the optimal designs depend on 
the extent to which the observations are correlated, but it also illustrates how the 
exact V-optimal designs evolve towards the continuous V-optimal designs derived by 
Cheng (1995) and Atkins and Cheng (1999) when the number of subjects available 
becomes large. In the next section, we give a concise description of the optometry 
experiment. The statistical model is introduced and the design criterion is derived 
in Section 3. The continuous V-optimal designs are described in Section 4. In Sec­
tion 5.1, we examine the V-optimal three level designs for the optometry experiment 
obtained by Chasalow (1992). Finally, we derive exact V-optimal designs for several 
numbers of subjects in Section 5.2. 
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2 Optometry experiment 

Chasalow (1992) describes an optometry experiment to investigate the health impact 
of wearing contact lenses. One consequence of wearing contact lenses is that the 
corneas, which are the clear structures that cover the front parts of the eyes including 
the irises and the pupils (see Figure 1), are exposed to a decreased level of O2. T)J.e 
decrease in O2 leads to the production of a weak acid and an increased flow of 
water into the cornea. The cornea has active mechanisms for regulating the in­
and outflow of water in order to counteract the effect of the decreased O2 level and 
to avoid damage from excess swelling or dessication. The eye's ability to regulate 
the water content of the cornea is usually referred to as corneal hydration control 
and naturally tends to decrease with age. However, it turns out that people who 
have worn contact lenses for some time tend to have corneas that look like much 
older people, at least with respect to corneal hydration control. In the optometry 
experiment, the effect of wearing contact lenses was imitated by exposing the human 
subject's eyes to a CO2 treatment. Once it has passed the tear film, CO 2 mixes with 
the aqueous component of the tears to form a weak acid and activates the water 
regulating mechanism of the cornea. The CO2 treatments were applied through a 
goggle covering the subject's eyes. 

cornea 

Figure 1: Anatomy of the eye. 

The purpose of the experiment is to estimate a quadratic model in the CO2 level 
that explains the variations in corneal hydration control. Every human subject in 
the study receives two treatments, one for each eye, yielding two observations per 
subject. The two treatments are allowed to be different. If we denote the number 
of subjects involved in the study by b, then the total number of observations in the 
study is equal to n = 2b. Of course, the two observations made for one subject are 
likely to be correlated, such that each subject serves as a block of two correlated 
observations. Typically, the number of subjects available lies between 30 and 60. 
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3 Model 

Let us now denote by y a measure of the corneal hydration control and by x the 
level of the CO2 treatment applied. The model of interest can then be written as 

(1) 

where (30, (31 and (32 represent the intercept, the linear effect and the quadratic 
effect respectively. The statistical model corresponding to the experiment takes into 
account the random variation in each observation and the fact that each subject in 
the study is different. Therefore, the statistical model contains a random block effect 
for each subject in the study and an error term reflecting the random variation in 
each observation. The response of the jth observation for the ith subject can then 
be written as 

(2) 

where Xij is the jth CO2 level applied to the ith subject, 1i is the random effect cor­
responding to the ith subject and Cij is the random error. Since two measurements 
are made for each subject, the block size of the experiment is equal to two and the 
index j can only take the values 1 or 2. In matrix notation, the model becomes 

y = X,a + Z, + e, (3) 

where y is a vector of n observations on the corneal hydration control, the vector 
,a contains the three unknown fixed parameters, the vector, = [ 11 /2 ... /b l' 
contains the b random block effects and e is an n-dimensional random error vector. 
The matrices X and Z are known and have dimension n X 3 and n x b respectively. 
The n rows of X contain a one corresponding to the intercept, the CO2 level for each 
observation and its square. The matrix Z assigns the treatments to the subjects. 
When the observations are grouped per subject, Z is of the form 

where 12 is a 2-dimensional vector of ones. It is assumed that 

E(e) = On and Cov(e) = u;In 

E( ,) = Ob and Cov(./) = u;Ib 

Covb,e) = 0bxn. 

(4) 

(5) 
(6) 

(7) 

Under these assumptions, the variance-covariance matrix of the observations Cov(y) 
can be written as 

v = diag[V, V, ... , V], (8) 
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where 

(9) 

and 'f) = (7~/ (7; is a measure for the extent to which observations within the same 
group are correlated. The larger 'f), the more the observations within one group are 
correlated. In the optometry experiment, it is expected that (T~ will be substantially 
larger than (7;, or, equivalently, that 'f) will be substantially larger than one. 

When the random error terms as well as the block effects are normally distributed, 
the maximum likelihood estimate of the unknown model parameter f3 in (3) is the 
generalized least squares (G LS) estimator 

(10) 

and the variance-covariance matrix of the estimators is given by 

(11) 

The information matrix is given by the inverse of the variance-covariance matrix 
and is denoted by 

M=X'V-1X. (12) 

Using Theorem 18.2.8 of Harville (1997), we have that 

(13) 

where c = 'f)/(1 + 2'f)), and since V is block diagonal, 

b 

M= LX:V-1X; 
;=1 

b 

= ~ L X:(I2 - c121~)X;, 
(7. ;=1 

b 

= :2 {L(X:Xi - cX:121~Xi)}' 
e ,=1 

(14) 

b 

= ~{X'X - L c(X:12)(X:12)'}, 
(7. ;=1 

where Xi is the part of X corresponding to the ith subject. 
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The problem of designing the optometry experiment consists of choosing the CO 2 

levels to be applied to the b subjects. In other words, the matrices X and Z have to be 
determined. In this paper, the V-optimality criterion is used to compare alternative 
design options. The V-optimal design maximizes the determinant of the information 
matrix (12) or (14). The problem of finding 'V-optimal designs for the optometry 
experiment has already received attention by Chasalow (1992), Cheng (1995) and 
Atkins and Cheng (1999). Chasalow (1992) used complete enumeration to find the 
best possible exact designs with the levels -1, 0 and +1 for several numbers of 
subjects b. Cheng (1995) and Atkins and Cheng (1999) use an approximate theory 
to derive optimal continuous designs for the optometry experiment. We examine 
these results in some more detail in Section 4 and 5.1. In Section 5.2, we derive 
exact 'V-optimal designs with b blocks of two observations for the estimation of 
the quadratic model (3). The resulting designs are much more efficient than the 
three level designs derived by Chasalow (1992). In the sequel of the paper, we 
denote the two treatments given to the ith subject by (XiI; Xi2). The CO 2 level X 

is represented in coded form: its minimal and maximal value will be denoted by -1 
and 1 respectively, hence Xij E [-1,1] (i = 1,2, ... ,b; j = 1,2). 

4 Continuous V-optimal designs 

Cheng (1995) and Atkins and Cheng (1999) derive continuous 'V-optimal designs 
for the optometry experiment. They show that the continuous 'V-optimal design is 
supported on the blocksl (1; -0'1)' (-1; 0'1) and (-1; 1), where 0'1 ;::: 0, with weights 
w'I' WT/ and 1 - 2w1] respectively. Both 0'1 and w'I/ are increasing functions of Tf. 
Cheng (1995) shows that 0'1/ -t 0 and w'I/ -+ 1/3 when Tf approaches zero. As an 
illustration, optimal values of 0'1/ and W'I/ for several values of Tf are given in Table 1. 

The continuous optimal designs for the optometry experiment possess four different 
factor levels: -1, -0'1/' 01] and 1. This is different from the continuous 'V-optimal 
design for a model without block effects, which is supported on the levels -1, 0 
and 1. It also turns out that the three blocks of the experiment do not receive 
equal weights when Tf is strictly positive. The blocks (1; -01]) and (-1; 01]) both 
receive more weight than the block (-1; 1). This is increasingly so when Tf increases. 
Finally, note that the pace with which 0'1/ and W'I/ increase becomes very small for 
large values of Tf. 

For the computation of continuous designs, it is assumed that an infinitely large 
number of blocks is available. In practice, however, this is not the case. In the 
next section, we compute exact 'V-optimal designs for the optometry experiment 
and compare them to the designs obtained by rounding the V-optimal continuous 

1 While a continuous design for an unblocked experiment is represented by a measure on the set 
of design points, a continuous design for a blocked experiment is represented by a measure on the 
set of blocks in the experiment. 
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Table 1: Values of Oi~ and w~ in the continuous V-optimal design for the optometry 
experiment. 

'" O!~ w~ 1- 2w~ 

0 0.000 0.333 0.333 
0.1 0.029 0.334 0.331 

0.25 0.059 0.338 0.324 
0.5 0.093 0.345 0.311 

0.75 0.115 0.351 0.299 
1 0.131 0.356 0.288 
2 0.167 0.370 0.260 
5 0.202 0.386 0.228 

10 0.218 0.394 0.212 
100 0.234 0.403 0.193 

CXJ 0.236 0.405 0.191 

designs. 

5 Exact V-optimal designs 

Chasalow (1992) computes the best possible exact designs with three factor levels, 
namely -1, 0 and 1, for the optometry experiment. His results are described in the 
first part of this section. In the second part, we show that the three-level designs 
can be improved to a large extent by using other factor levels as well. 

5.1 Three-level designs 

Chasalow (1992) uses complete enumeration to find the V-optimal three-level designs 
for the optometry experiment for several values of b. It turns out that the optim­
al three-level designs are supported on three different blocks: (1; 0), (-1; 0) and 
(-1; 1). If b is a multiple of three, then each of the blocks is used b/3 times in 
the V-optimal design. In that case, the V-optimal design is a balanced incomplete 
block design. If b is not a multiple of three, the three types of blocks are used with 
frequencies as equal as possible. Cheng (1995) shows that the designs derived by 
Chasalow are V-optimal among all minimum support designs -that is the set of 
designs with p distinct design points- for any strictly positive 'fl. 

5.2 'V-optimal designs 

The three-level designs described in Section 5.1 are not optimal when the number of 
support points is allowed to be more than the number of fixed model parameters p. 
In this section, we show that the V-optimal designs for the optometry experiment 
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possess four factor levels. The V-optimal designs are computed by combining the 
blocking algorithm of Goos and Vandebroek (2001) and the adjustment algorithm 
of Donev and Atkinson (1988). Analytical results for small numbers of b are used 
to evaluate this approach. 

5.2.1 Computing the V-optimal designs 

We have computed the V-optimal designs for the optometry experiment by combin­
ing the point exchange algorithm of Goos and Vandebroek (2001) and the adjustment 
algorithm of Donev and Atkinson (1988). The algorithm of Goos and Vandebroek 
computes V-optimal response surface designs in the presence of random block ef­
fects for a given number of blocks b, block size k and degree of correlation 1]. As 
in many other design construction algorithms, the design points are chosen from a 
set of candidate points. The algorithm produces the V-optimal three-level designs 
described in Section 5.1 when the default set of the candidate points -1, 0 and +1 
is used. However, it produces substantially better designs when a set of 21 equally 
spaced points between -1 and 1 is used. The adjustment algorithm of Donev and 
Atkinson is a method to improve the design obtained from a search over a grid. 
It calculates the effect of moving each design point a small amount, called a step, 
along each factor axis. The change that generates the greatest improvement is car­
ried out and the process is repeated until no further progress can be made. If no 
improvement can be found, the step length is halved and the process is repeated. 
The algorithm stops when the step length becomes smaller than a prespecified min­
imum step length. The maximum number of changes evaluated is 2mn, where m 
is the number of experimental factors. For the optometry experiment, m = 1 and 
the maximum number of changes is 2n. When one or more design points lie on the 
boundary of the experimental region [-1,1], the number of changes evaluated is less 
than 2n because points outside the experimental region are omitted. It turns out 
that the initial step size and the speed of the step-length reduction do not influence 
the efficiency of the resulting designs. A formal description of the adjustment al­
gorithm is given in the Appendix. The algorithm was implemented in FORTRAN 
77 and is available from the authors. In the sequel of this section, we will describe 
the computational results for several values of b. For small values of b, analytical 
results are used to evaluate the performance of the algorithmic approach. 

5.2.2 Designs with 2 blocks 

First, consider the problem of designing an optometry experiment with two blocks of 
two observations. Hence b = 2 and n = 4. When 1] = 0, the design problem reduces 
to the computation of a 4-point V-optimal completely randomized design, which 
has observations in the points -1, 0 and 1, one of which is duplicated. Typically, 
the symmetric design with the duplicated center point will be preferred because the 
linear effect can then be estimated independently of the intercept and the quadratic 
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Figure 2: V-optimal design points for the optometry experiment when b = 2. A • in­
dicates a design point from block 1, a 0 indicates a design point from block 
2. 

effect. When 'TJ > 0, the V-optimal designs generated by the algorithmic approach 
have four different factor levels: -1, -a7)' a7) and 1, where a7) > 0. The first block 
of the optimal design contains the points -1 and a'1' The second block contains the 
points -a7) and 1. It turns out that a smaller 'TJ results in a smaller a'1' When'TJ -+ 0, 
a'1 -+ 0. A similar result was found for continuous designs. We have displayed the 
optimal design points for several values of 'TJ in Figure 2. The figure clearly shows 
that a7) increases as 'TJ increases. Now, we will show how the exact V-optimal values 
for a7) can be computed analytically. It will also be shown that a7) approaches 1/3 
when 'TJ -+ 00. 

For notational simplicity, assume without loss of generality that 0'; = 1. Substituting 
b = 2, in (14), we then have 

2 

X'V-IX = X'X - c :L)X;12 )(X;12 )'. (15) 
i=l 

For the design problem at hand, the optimal design is of the form 

h [i:] ~ II 
-1 

1 1 a7) a2 

-a7) ;~ , 
1 

with 

Xl = [~ -1 :~] and X 2 = [~ -a7) a~] 
a7) 1 1 . 
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Table 2: V-optimal values for a." when 2 blocks of size 2 are used for quadratic regression 
on one variable 

7] c K, A a." 
0.1 0.0833 7.3889 -26.3241 0.085685 
0.25 0.1667 5.5556 -42.5926 0.161359 
0.5 0.2500 3.5000 -49.2500 0.220333 
1 0.3333 1.2222 -46.7407 0.266218 
2 0.4000 -0.7600 -38.4320 0.296215 
5 0.4545 -2.4876 -27.6409 0.317454 
10 0.4762 -3.1996 -22.3928 0.325202 

100 0.4975 -3.9155 -16.6980 0.332502 
00 0.5000 -4.0000 -16.0000 0.333333 

Substituting these results in (15), yields the following information matrix: 

The determinant of this matrix reaches a maximum when its first derivative with 
respect to a." is zero and its second derivative with respect to a." is strictly negative. 
These conditions are satisfied for 

with 

K, = 9 - 18c - 16c2 and A = -243(1 - c?c + 135(1 - c)(c - l)c + 250c3 . 

Substituting different values for c in (16) yields the corresponding optimal value for 
a.". For example, when 7] = 1, c = 1/3, K, = 11/9 and A = -47 + 7/27. As a result, 
the optimal value for a." is 0.266218. We have performed similar computations for 
other values of 7]. The results are given in Table 2. When 7] -t 00, C -t 1/2, K, -t -4 
and A -t -16. As a consequence, a." -t 1/3 when 7] -t 00. 

5.2.3 Designs with 3 blocks 

Now, consider the problem of designing an optometry experiment with three blocks. 
When 7] = 0, the V-optimal design has two observations in the points -1, 0 and 1. 
When 7] > 0, the algorithmic approach again produces designs with four different 
factor levels: -1, -b.", b." and 1, where b." > o. The first block of the optimal design 
contains the points -1 and 1. The second block contains the points -1 and b." and 
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Table 3: V-optimal values for b~ when 3 blocks of size 2 are used for quadratic regression 
on one variable 

'TJ e () T b~ 
{\ , 0.0833 23.8889 -46.9491 0.028434 V.l 

0.25 0.1667 20.5556 -80.0926 0.057676 
0.5 0.2500 17.000 -99.8750 0.086936 
1 0.3333 13.2222 -106.7407 0.115506 
2 0.4000 10.0400 -103.2320 0.137503 
5 0.4545 7.3306 -94.5830 0.154793 
10 0.4762 6.2290 -89.7398 0.161464 

100 0.4975 5.1293 -84.1963 0.167924 
00 0.5000 5.0000 -83.5000 0.168663 

the third block contains the points -b~ and 1. It turns out that b~ increases with 
'TJ. This result does not come as a surprise in view of the results of Cheng (1995), 
who proves that the V-optimal continuous design for the design problem at hand 
is supported on three blocks with a similar structure (see Section 4). Analytical 
computations analogous to those for b = 2 show that the V-optimal value for b~ is 
given by 

{IT + y'4()3 + T2) 
~ , (17) 

with 

() = 27 - 36e - 16e2 and T = -243(1 - e)2e + 135(1 - e)( e - 3)e + 250e3 . 

In Table 3, V-optimal values for b~ are given for several values of'TJ. The values found 
are different from those found by Cheng (1995) for the V-optimal continuous design. 
This is because the V-optimal continuous design does not have an equal weight on 
the three blocks whereas in the discrete case, the weight of each block is equal to one. 

The algorithmic approach produces values for a~ and b~ that closely approximate 
the ones analytically derived and displayed in Tables 2 and 3. This is illustrated in 
Table 4. 

5.2.4 Designs with 4 or 5 blocks 

The structure of the V-optimal designs with two or three blocks of size 2 for quad­
ratic regression on one variable appears to be constant for all values of 'TJ. As is 
demonstrated by the optimal designs for b = 4 displayed in Table 5, this is not 
always the case for larger values of b. In the table, the numbers ri represent the 
number of times the ith type of block is used in the experiment. When b = 4 
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Table 4: Comparison of the V-optimal values for a1) and b1) and the values computed by 
the adjustment algorithm (A.A.). 

a1) b1) 

'rI Exact A.A. Exact A.A. 
0.1 0.085685 0.085000 0.028434 0.027500 

0.25 0.161359 0.160000 0.057676 0.057500 
0.5 0.220333 0.220000 0.086936 0.087500 
1 0.266218 0.267500 0.115506 0.115000 
2 0.296215 0.297500 0.137503 0.137500 
5 0.317454 0.317500 0.154793 0.155000 
10 0.325202 0.325000 0.161464 0.162500 

100 0.332502 0.332500 0.167924 0.167500 

and 'rI is small, two equivalent V-optimal designs are supported on three different 
blocks. One design is supported on the blocks (-l;c1)), (-d1);l) and (-1;1), with 
o < c1) < dw The block (-1;~) appears twice in the optimal design, while the 
other two blocks appear only once. The mirror image of this design, obtained by 
multiplying its factor levels by -1, is equivalent. It turns out that both C1) and d1) 
are increasing functions of 'rI. When 'rI is large, the V-optimal designs with four 
blocks are supported on two different blocks (-1;11)) and (- f1); 1), with 0 < f." and 
j." an increasing function of 'rI. Both blocks are replicated twice. When b = 5, the 
V-optimal designs have two blocks of type (-1;91))' two blocks of type (-91); 1) and 
one block oftype (-1; 1), where 91) > 0 and increases with 'rI. Some V-optimal values 
of 91) are given in Table 5. 

5.2.5 Large numbers of blocks 

As for b = 4, the structure of the exact V-optimal designs with large numbers of 
blocks is not constant for all values of'rl. In addition, there is a growing resemblance 
between the exact V-optimal designs and the continuous V-optimal designs when b 
is further increased. The exact V-optimal designs are then supported on blocks of 
type (-1,81)) and (-t1)' 1), with 0 < 81) and 0 < t'7l and on the block (-1,1). The 
mirror images of these designs are V-optimal as well. Not surprizingly, 81) and t1) 
are increasing functions of'rl. In the optimal designs, the first two blocks are used 
with frequencies as equal as possible. Therefore, the absolute difference between Tl 

and T2 is at most one. In all cases where Tl is equal to T2, 81) and t1) are equal as 
well. In cases where Tl and T2 are different, 81) < t1) when Tl = T2 + 1 and 81) > t1) 
when Tl = T2 - 1. Some examples of V-optimal values for TIl T2, T3, 81) and t1) are 
given in the left hand panel of Table 6. For example, a V-optimal design for b = 49 
and 'r/ = 1 contains 18 blocks of type (-1;0.129), 17 blocks of type (-0.135;1) and 14 
blocks of type (-1;1). 
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Table 5: V-optimal designs with four or five blocks 
b r; "'1 Block 1 "'2 Block 2 "'3 Block 3 
4 0.1 2 (-ljO.025) 1 (-0.050j1 ) 1 (-lj1) 

1 (-ljO.050) 2 (-0.025j1) 1 (-lj1) 
0.5 2 (-ljO.080) 1 (-0.145j1) 1 (-lj1) 

1 (-ljO.145) 2 (-0.080j1) 1 (-lj1) 
1 2 (-ljO.106) 1 (-0.185j1) 1 (-lj1) 

1 (-ljO.185) 2 (-0.106j1) 1 (-lj1) 
5 2 ( -ljO.318) 2 (-0.318j1 ) 
10 2 (-ljO.325) 2 (-0.325j1 ) 

5 0.1 2 (-ljO.043) 2 (-0.043j1 ) 1 (-lj1) 
0.5 2 (-ljO.129) 2 (-0.129j1) 1 (-lj1) 
1 2 (-ljO.168) 2 (-0.168i1) 1 (-IiI) 
5 2 (-1 jO.215) 2 (-0.215i1 ) 1 (-lj1) 
10 2 ( -ljO.223) 2 (-0.223j1 ) 1 (-lj1) 

5.2.6 Efficiency comparisons 

Comparing the exact V-optimal designs with the three-level designs described in 
Section 5.1 in terms of V-efficiency shows that the former are more efficient than 
the latter, especially for large degrees of correlation. For b = 2, the exact V-optimal 
design is 0.26% more efficient than the best three-level design when r; = 0.1, whereas 
it is 9.68% more efficient when r; = 10. For b = 5, the V-optimal design is 0.08% 
more efficient when r; = 0.1 and 3.51% more efficient when r; = 10. For large b, 
the efficiency comparisons are given in the middle panel of Table 6. For r; = 0.1, 
the three-level designs are on average 0.04% less efficient than the V-optimal ones. 
However, they are 2.25% less efficient when TJ = 10. This is not unexpected because 
the V-optimal designs for small r; strongly resemble the three-level designs, while 
both the design points and the numbers of replicates of the blocks are completely 
different for larger values of r;. The relative performance of the designs isindepend­
ent of the number of subjects available, provided it is large. 

For large numbers of subjects, rounding the continuous V-optimal design, that is 
setting "'1 = "'2 = [bw~l and "'3 = b - "'1 - "'2, turns out to be a good design option, 
although it does not yield the exact V-optimal design. Firstly, the factor levels 
obtained by rounding the continuous design are slightly different from those of the 
exact V-optimal design. Secondly, rounding the weights w~ and 1 - 2w~ of the 
continuous design does not always produce the optimal numbers of replicates "'i. 
Suppose, we would like to construct a design with 49 blocks from the V-optimal 
continuous design for r; = 1. As can be seen from Table 1, the weight w~ assigned 
to the blocks of type (-ljO.131) and (-0.131j 1) is 0.356. In a design with 49 
blocks, this type of block should thus be used 49 x 0.356 = 17.444 times. Rounding 
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this value to the nearest integer gives us Tl = T2 = 17, and hence T3 = 15. The 
resulting V-criterion value is nearly identical to that of the V-optimal design with 
Tl = 18, T2 = 17 and T3 = 14 given in Table 6. As a result, rounding the continuous 
'TLoptimal design produces a design that is only slightly less efficient than the u­
optimal design. This is also the case for other values of band 7/, even though the 
factor levels Cl'1J of the continuous designs are different from the levels of the exact 
V-optimal designs. This is illustrated in the right panel of Table 6. 

6 Discussion 

A common feature of all V-optimal designs for the problem under consideration 
is that they possess four different design points. As was illustrated in Figure 2, 
the design points move away from the center point when the degree of correlation 
T/ grows larger. In addition, the number of times T3 the block (-1; 1) appears in 
the optimal designs decreases with increasing T/, while the opposite is true for the 
other blocks. A similar behaviour was encountered when examining the continuous 
V-optimal designs. 

It turns out that the exact V-optimal designs are substantially more efficient than 
the best possible three-level designs, especially for the large degrees of correlation 
experienced in practice. It is thus worthwhile to consider other factor levels than 
-1, 0 and 1 when designing the optometry experiment. It also turns out that, 
although it does not produce the exact V-optimal design, rounding the continuous 
V-optimal designs is an excellent design option for this design problem, such that 
an algorithmic approach does not add much value. From a practical point of view, 
it is also important to stress that the efficiency of the designs obtained in this way 
does not heavily depend on 7/. This is because both the factor levels and the block 
weights of the continuous designs do not vary much when 7/ is large as is mostly the 
case in practical applications. 
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Appendix: The adjustment algorithm. 

We denote by s the step length and by S the minimum step length. Let the starting 
design D = {I, 2, ... ,n} be composed of n design points with coordinates Ci = 
(Cil' Ci2, ... , Cim), i = 1,2, ... , n, let J be the set of all integers up to m and let K 
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Table 6: Comparison of three design options for the optometry experiment. The number of replicates of block i is denoted by rio For 

all design options in the table, block 3 is given by (-1;1). 

DESIGN DESIGN OPTIONS 
PROBLEM EXACT D-OPTIMAL DESIGNS THREE-LEVEL DESIGNS ROUNDED CONTINUOUS D-OPTIMAL DESIGNS 

b 1) )'1 1'2 1'3 Block 1 Block 2 1'1 = 1'2 1'3 Block 1 Block 2 rel.eff. 1'1 = )'2 7'3 Block 1 Block 2 rel.eff. 

36 0.1 12 12 12 ( -1;0.028) (-0.028;1) 12 12 (-1;0) (0;1) 0.999587 12 12 (-1;0.029) (-0.029;1) 0.999999 
0.5 13 12 11 (-1;0.091) (-0.098;1) 12 12 (-1;0) (0;1) 0.995755 12 12 (-1;0.093) (-0.093;1) 0.999898 

1 13 13 10 (-1;0.135) (-0.135;1) 12 12 (-1;0) (0;1) 0.991312 13 10 (-1;0.131) (-0.131;1) 0.999990 
5 14 14 8 (-1;0.205) (-0.205;1) 12 12 (-1;0) (0;1) 0.980342 14 8 (-1;0.202) (-0.202;1) 0.999995 
10 14 14 8 (-1;0.212) (-0.212;1) 12 12 (-1;0) (0;1) 0.977565 14 8 (-1;0.218) (-0.218;1) 0.999975 

48 0.1 16 16 16 (-1;0.028) (-0.028;1) 16 16 (-1;0) (0;1) 0.999588 16 16 (-1;0.029) (-0.029;1) 1.000000 
0.5 17 16 15 (-1;0.090) (-0.095;1) 16 16 (-1;0) (0;1) 0.995669 17 14 (-1;0.093) (-0.093;1) 0.999887 
1 17 17 14 (-1;0.130) (-0.130;1) 16 16 (-1;0) (0;1) 0.991267 17 14 (-1;0.131) (-0.131;1) 0.999999 
5 19 18 11 (-1;0.198) (-0.205;1) 16 16 (-1;0) (0;1) 0.980452 19 10 (-1;0.202) (-0.202;1) 0.999927 
10 19 19 10 (-1;0.219) (-0.219;1) 16 16 (-1;0) (0;1) 0.977539 19 10 (-1;0.218) (-0.218;1) 0.999999 

49 0.1 17 16 16 (-1;0.028) (-0.030;1) 16 17 (-1;0) (0;1) 0.999572 16 17 (-1;0.029) (-0.029;1) 0.999954 
0.5 17 17 15 (-1;0.094) (-0.094;1) 16 17 (-1;0) (0;1) 0.995479 17 15 (-1;0.093) (-0.09:~;1) 0.999999 
1 18 17 14 (-1;0.129) (-0.135;1) 16 17 (-1;0) (0;1) 0.991245 17 15 (-1;0.131) (-0.131;1) 0.999925 

5 19 19 11 (-1;0.204) (-0.204;1) 16 17 (-1;0) (0;1) 0.980207 19 11 (-1;0.202) (-0.202;1) 0.999998 

10 19 19 11 (-1;0.211) (-0.211;1) 16 17 (-1;0) (0;1) 0.977459 19 11 (-1;0.218) (-0.218;1) 0.999965 

60 0.1 20 20 20 (-1;0.028) (-0.028;1) 20 20 (-1;0) (0;1) 0.999588 20 20 (-1;0.029) (-0.029;1) 1.000000 
0.5 21 21 18 (-1;0.096) (-0.096;1) 20 20 (-1;0) (0;1) 0.995639 21 18 (-1;0.093) (-0.09:~;1) 0.999995 
1 21 21 18 (-1;0.127) (-0.127;1) 20 20 (-1;0) (0;1) 0.991327 21 18 (-1;0.131) (-0.131;1) 0.999990 

5 23 23 14 (-1;0.199) (-0.199;1) 20 20 (-1;0) (0;1) 0.980344 23 14 (-1;0.202) (-0.202;1) 0.999995 
10 24 24 12 (-1;0.223) . (-0.223;1) 20 20 (-1;()L_ (0;1) 0.977578 24 12 (-1;0.218) (-0.218;1) 0.999979 

---- _. -



be the set of the integers 1 and 2. The steps of the adjustment algorithm are as 
follows: 

1. Specify sand S. 

2. Compute the determinant 1) and the information matrix M of the starting design. 

3. Evaluate design changes. 

(a) Set 0 = 1. 

(b) Vi E D, Vj E J, Vk E I<: 

i. Compute the effect Oijk = V' /1) of replacing the jth coordinate of the ith 
design point Cij with Cij+S x (_I)k. 

ii. If Oijk > 8, then 0 = Oijk and store i* = i, j* = j and k* = k. 

4. If 0> 1, then go to step 5, else go to step 6. 

5. Carry out the best exchange. 

(a) Replace Ci*j* with Ci*j* + S X (_I)k-. 

(b) Update V and M and go to step 3. 

6. Set S = s/2. 

7. If S ~ S, go to step 3, else stop. 
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