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Abstract

The exposure of a stock’s return to exchange-rate changes is conventionally estimated by regres-
sion. Often, the market return is included as an additional regressor. By first orthogonalizing
the market return on the exchange rate one seems to have the best of both worlds: the market
factor cannot subsume part of the exposure present in a stock’s return, and the se of the esti-
mate beats both the simple- and the multiple-regression se’s. This last effect is illusory: since
the simple and the pseudo-multiple regression always produce the same exposure estimate,
given the sample, their precision must be identical too. Technically, the source of the problem
is that the uncertainty about the market’s exposure estimate is left out of the calculated se.
In published work, the calculated error variances should be corrected upward by 20 to 100
percent.

Keywords: Market Model, currency, exposure.
JEL-codes: .
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Introduction

A stock’s currency exposure is often measured by the slope coeficients of a regression of the

stock’s return on the percentage changes in the exchange rates. Such a vector of currency

exposures, suitably rescaled, tells us what positions should be taken in each currency’s forward

market to hedge the investment in the stock, at least if the hedger’s objective is to minimize

variance and no other hedges are used, see Stein (1960) and Johnson (1960). In a more

academic application, hedged-stock returns also show up in some versions of the International

CAPM, see Sercu (1980) or Adler and Dumas (1983). Thus, demonstrating that exposure

exists is a natural first step in testing the relevance of international asset pricing. Since Jorion

(1990) it is common practice to add the market return as an additional regressor. Why and

how (not) to do so is the issue in this note.

One possible user of this regression information may be the hedger: the multiple regres-

sion coefficients provide estimates of the Stein-Johnson hedges ratios if the hedge instruments

include not just currency forwards but also an index-futures contract. In academe, however,

the objective is not so much to obtain a hedge ratio, but to establish whether exchange-rate

exposure exists and is related to the firm’s business. Since the market model—the regression

of the stock’s return on the market return—is the workhorse, if anything, in empirical finance,

there is a general feeling that any reasonable return-generating process must include at least

the market. An additional motivation may have been that the additional regressor can improve

the power of the tests: the residual variance shrinks, which, everything else being the same,

reduces the variance of the estimator of exposure. On the other hand, there may be some

correlation between the market and exchange factors, which then undoes part or all of the gain

from the reduced residual variance: the more similar the regressors, the harder it is to sort out

their separate contributions. A related problem is that if all stocks have similar exposures to

currency factors (possibly up to a firm-specific factor common to all currencies), the market

return will exhibit this common exposure pattern too. Since a multiple regression coefficient

for the exchange rate measures exposure over and above that already present in the market

portfolio, strong similarities in the exchange-rate sensitivities of stocks would kill the chances

of finding convincing stock-specific currency effects. To obtain a lower residual noise without
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giving the market return the chance to subsume the individual currency effects, then, one can

first orthogonalise the market return on the exchange rate(s), as in a recent JBF article by

Pritamani, Shome and Singa (2004).1 Our message is that this practice is flawed, in the sense

that the drop of the estimator’s standard error is illusory and the significance tests unreliable.

Sometimes the reverse procedure is adopted, first orthogonalizing the exchange rate on the

market.2 This procedure produces the same exposure coefficient and standard error as the

genuine multiple regression; nothing is gained, but nothing is wrong either as long one is not

interested in the significance of the market sensitivity.

Section 1 presents the analytical arguments for the case where the market return is the

variable being orthogonalized, and Section 2 for the obverse case. In Section 3 we report some

Monte-Carlo illustrations; we conclude in Section 4.

1 Orthogonalizing the control variable on the variable of inter-
est

Consider an economy where returns on assets and percentage changes in exchange rates are

joint normal processes. This implies that linear “regression” relationships exist between any

individual variable on the one hand, and any subset of the other variables or pre-set linear

combinations. There is no single true generating process for any variable; the issue just is what

variables are observable for analysis or prediction. For simplicity of exposition we consider just

one foreign currency, whose percentage changes over period t are denoted by st; generalisation

to multiple currencies is simple.3 In terms of relative exposures,4 the original Dumas (1978)

regression is

Rj,t = α1,j + γ1,jst + u1,j,t, (1)

1Other recent papers are e.g. Bodnar and Wong, 2003; Bris and Koskinen, 2002; Entorf, Moebert and
Sonderhof, 2006; and Priestley and Odegaard, 2002

2See e.g. Glaum, Brunner and Himmel, 2000; Hagelin and Pamborg, 2002; and Jorion, 1991.

3Following Jorion, one also often collapses the various exchange-rate changes into a single variable, interpreted
as the percentage change in the value of a currency basket—typically a trade-weighted one. The objective is
to avoid multicollinearity. As Rees and Unni (2005) point out, this assumes that stocks’ exposures to the N
exchange rates are all proportional to the set of weights used in the basket, an assumption that is a priori
tenuous and empirically rejected in their tests. We will, however, assume a single exchange-rate regressor for
the sake of simplicity of exposition.

4The original Dumas (1978) regression was written in terms of values, so that the slope has the dimension of
an amount of forex units. For empirical purposes or in asset pricing theory one works with percentage changes
rather than values. So the regression provides a dimensionless relative exposure, an elasticity rather than a
partial derivative.
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where Rj,t denotes the stock’s return over period t. The merged version of (1) and the market

model is

Rj,t = α2,j + γ2,jst + β2,jRm,t + u2,j,t. (2)

The equation used in some studies, lastly, is a hybrid version,

Rj,t = α3,j + γ3,jst + β3,ju1,m,t + u3,j,t, (3)

where u1,m,t is the error from the market portfolio’s version of (1),

Rm,t = α1,m + γ1,mst + u1,m,t. (4)

In the above, the notation refers to the true parameters and errors rather than their estimates.

Actually, the statistical problems discussed in this paper stem from the use of imperfect es-

timates. However, to see the issues we need to understand the relations between the true

regressions first; and the results reviewed below for population moments also hold for sam-

ple moments and, therefore, for method-of-moments estimators like OLS. To identify the links

between the three regressions, substitute Equation (4) into (2):

Rj,t = α2,j + γ2,jst + β2,j [α1,m + γ1,mst + u1,m,t] + u2,j,t,

= [α2,j + β2,jα1,m]︸ ︷︷ ︸
= α3,j

+ [γ2,j + β2,jγ1,m]︸ ︷︷ ︸
= γ3,j = γ1,j

st + [β2,j ]︸ ︷︷ ︸
= β3,j

u1,m,t + u2,j,t︸ ︷︷ ︸
u3,j,t

. (5)

The underbrace comments deserve some comments. First, they claim that the square-bracketed

expressions must be the coefficients of the hybrid equation. To prove this, first note that the

array of regression coefficients is the unique vector that make the residuals orthogonal on the

regressors. Next note that u2,j , being orthogonal on s and Rm, is also orthogonal on linear

combinations of those two, like s and u1,m. Therefore Equation (5) indeed is a bona fide

regression of Rj on s and u1,m. The second comment is a corollary of the first: β3,j equals

β2,j—a result closely related to the Frisch-Waugh (1933) Theorem.5 The underbrace text on

the gammas mentions a third familiar result: the gamma in the hybrid regression equals the

simple gamma from (1). This is because the additional regressor in (3) relative to (1), u1,m,t,

is orthogonal on the original regressor, st; so adding this regressor to the simple equation will

not affect the original currency-exposure coefficient. (The result γ3,j = γ1,j can of course be

shown explicitly by working out the expression γ2,j + β2,jγ1,m.)

5The theorem says that if one first regresses both Rj and Rm on s, and then the residuals e1,j on e1,m, then
one gets the multiple coefficient β2,j and its t-statistic without having to run an explicit multiple regression.
It is easily shown that if one needs just the coefficient then one orthogonalization actually suffices, and that
including s as an additional regressor next to e1,m is a substitute for first orthogonalising Rj on s.
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Table 1: Exposure estimators and their standard errors

equation to be estimated
exposure
estimator conventional variance of estimate

Rj,t = α1,j + γ1,jst + u1,j,t
ĉov(Rj ,s)

v̂ar(s)
v̂ar(u1,j)∑

t
(sj,t−s)2

= v̂ar(u2,j)+β2
2,j v̂ar(u1,m)∑

t
(sj,t−s)2

Rj,t = α2,j + γ2,jst + β2,jRm,t + u2,j,t
γ̂1,j−β̂4,j γ̂1,m

1−ρ2
m,s

v̂ar(u2,j)∑
t
(sj,t−s)2(1−ρ̂2

m,s)

Rj,t = α3,j + γ3,jst + β3,ju1,m,t + u3,j,t
ĉov(Rj ,s)

v̂ar(s)
v̂ar(u2,j)∑

t
(sj,t−s)2

The issue of the paper is the sense, if any, behind the hybrid regression. Obviously, the

purpose is neither to detect whether Rm has any influence over and above s or vice versa, nor to

identify optimal hedge ratios when both currency and market-index futures are available: for

those purposes, the standard multiple regression would have been used. Instead, the rationale

must have been to come up with statistically more reliable gamma’s without letting the market

factor subsume the individual stocks’ exposures. The estimators and conventional sampling

errors for each gamma, in terms of the parameters and the (unobservable) error terms of the

regular multiple-regression, are given in Table 1. In that table, ĉov and v̂ar denote sample

moments, like ̂cov(x, y) =
∑N

t=1[(yt−y)(xt−x)]/(N −1), and ρ̂2
m,s denotes the sample squared

correlation between the two regressor. The beta referred to in the estimator for the second

equation is the familiar market-model beta,

Rj = α4,j + β4,jRm + u4,j . (6)

From the table it seems that the SE of ĉov(Rj , s)/v̂ar(s) depends on whether it is estimated

via the simple regression or the hybrid one, even though in any conceivable sample the two

regressions always generate exactly the same number.

At the risk of treading too familiar a path, let us quickly review some of the theory behind

the se’s. Much of basic regression theory starts with non-stochastic regressors. Suppose that

Rj,t measures yield in the t-th hydroponic test bed, Rm,t the amount of nutrients administered,

and st the amount of light administered. Familiarly, the simple regression coefficient γ1,j

would fail to measure the partial effect of lighting if, due to a careless design, s and Rm are

correlated across test beds. Even its se would be misleading because it would treat all yields

not explained by the amount of lighting as utterly unpredictable noise, while in reality part

of it stems from nutrient dosage, Rm. This matters: Rm is fixed by the researcher rather
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than being uncontrollable white noise; and its effect on Rj (and hence on γ1) can effectively

be taken into account in both the current sample and in any out-of-sample prediction. The

multiple regression output does take care of both aspects. If the regressors are correlated, he

simple regression coefficient would be relevant only if, for some reason, Rm cannot be observed

by the researcher in the current sample or in later predictions.

In the case of random regressors, much of the above can be salvaged via an interim step.

The interim step is that, conditional on the observed values of the regressors, the se of the

multiple regression coefficients would still work. For instance, in hypothetical Monte-Carlo

experiments where only the residuals are re-sampled, it does not really matter that the values

of the regressors were chosen, once and for all, via a random generator rather than by the

researcher: what does matter is that fixed regressors cannot contribute to variability in the

coefficients across Monte-Carlo samples. The unconditional se is then obtained by taking

expectations of the conditional one. Under standard assumptions, a conditional se on average

produces a fairly correct estimate of the unconditional se. One can be lucky or unlucky with

the sample’s second moments for the regressors, but on average the computed se’s still work.

The multiple coefficients still sort out the effects originating from Rm and s, and the se’s take

into account both the benefits of lower residuals and the possible problems stemming from of

correlated regressors.

In the case of orthogonalized regressors all of the above still works for the se conditional

on the sample, but the unconditional results would only hold if the orthogonalizing coefficient,

γ1,m, were non-random. To show this, we start from the uncontroversial multiple regression,

(2), and write it in matrix form, denoting B2 = (β2,j , γ2,j)′ and X = (Rm, s).6 In the next line

we linearly transform the regressors, postmultiplying X by a 2 × 2 full matrix G and taking

into account that there must be an offsetting correction G−1 in the coefficients:

Rj = XB2 + u2,j , (7)

= [XG][G−1B2] + u2,j . (8)

Thus, the regression coefficients B3 w.r.t. the rehashed regressors XG are given by

B3 = G−1B2, (9)

6We ignore the intercept. Think of demeaned returns, or, in a two-factor InCAPM context, of excess returns.
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for any G. We are interested in one specific transformation,

G =

[
1 0

−γ1,m 1

]
⇒ G−1 =

[
1 0

γ1,m 1

]
. (10)

The notation, above, by omitting hats, again refers to population values but also holds for

sample counterparts in the case of Method-of-Moment estimators like ols.

We now consider the variance-covariance matrix of the estimation errors in B̂3, denoted

V(B̂3), and we link this to the variance matrix of the orthodox regression. First consider the

se of the hybrid regression conditional on the regressors X. Below, we start by noting that, for

given X, G is nonrandom and can therefore be taken out of V(Ĝ−1B̂2). It then suffices to fill

out the variance-covariance matrix of B̂2—we use σ̂−2
m|s to denote 1/v̂ar(u1,m)—and simplify:

V(B̂3|X) = V(Ĝ−1B̂2|X),

= Ĝ−1V(B̂2|X)[Ĝ−1]′, (11)

=

[
1 0

γ̂1,m 1

]
1

N − 1

[
σ̂−2

m|s −γ̂1,m
1

N−1 σ̂−2
m|s

−γ̂1,mσ̂−2
m|s v̂ar(s)−1 − γ̂2

1,mσ̂−2
m|s

] [
1 γ̂1,m

0 1

]
v̂ar(u2,j),

=
1

N − 1

[
σ̂−2

m|s −γ̂1,mσ̂−2
m|s

0 v̂ar(s)−1

] [
1 γ̂1,m

0 1

]
v̂ar(u2,j),

=
1

N − 1

[
σ̂−2

m|s 0
0 v̂ar(s)−1

]
v̂ar(u2,j),

=
1

N − 1

[
v̂ar(s) 0

0 v̂ar(u1,m)

]−1

v̂ar(u3,j). (12)

This indeed is the variance-covariance matrix of the estimates of the regression of Rj on s and

û1,m. But the usual next step fails: the above is not an unbiased estimate of the unconditional

se. When X, and therefore Ĝ, are random, Ĝ can no longer be factored out of V(B̂3) as we

do in Equation (11). Stated differently, if we still factor out Ĝ regardless—which is what we

do if we accept the se in Equation (12)—we ignore the variance of Ĝ and its covariance with

B̂2 via X̂.

Explicitly working out these extra (co)variance terms is tedious, but the final result can

be obtained via a simple shortcut. If Ĝ is not fixed and not independent of B̂2, we can first

work out the product Ĝ−1B̂2 inside the V operator. We already know that this produces the

simple gamma and the multivariate beta estimates:

V(B̂3) = V(Ĝ−1B̂2),

= V(β̂1,j , γ̂2,j). (13)

This says that, in a regression where the market-return regressor has been orthogonalized on

the exchange-rate regressor, the se for the exposure coefficient is the one from the simple
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regression. The intuition of course is that the procedure deliberately cuts out the mechanism

for which the multiple regression is useful: sorting out the interactions between the regressors.

Instead, the additional regressor is first doctored so as to guarantee that its inclusion will never

lead to any revision of the simple regression coefficient for the regressor of interest, s. In light

of this, it is inevitable that inclusion of this doctored variable cannot really improve the se.

We now turn to a much briefer discussion of the case where the orthogonalisation is done

the other way: the market-correlated component is first taken out of s.

2 Orthogonalising the Variable of Interest on the Control Vari-
able

If s is orthogonalised on Rm using s = α4,s + β4,sRm + u4,s, then its coefficient is the same as

it would have been in the straightforward multiple regression, and so is its SE. The first claim

is analogous to our earlier result that β2,j = β3,j . The second claim follows from the inverse of

the covariance matrix in the multiple regression,

E(X′X)−1 =
1

N − 1

[
σ̂−2

s|m −β̂4,sσ̂
−2
s|m

−β̂4,sσ̂
−2
s|m v̂ar(Rm)−1 − β̂2

4,sσ̂
−2
s|m

]
. (14)

The first element is exactly the same as the first element in the regression with s orthogonalized

on Rm. To close the argument, note that the residual variances of the multiple and this

hybrid regression are the same. Thus, the first element of V(X)−1var(e) is unaffected by the

orthogonalization.7

3 Monte Carlo simulations

The Monte-Carlo simulations in Tabel 3 illustrate all of the above. In each set of simulations

we generate 10,000 times series of 50 records {Rj , Rm, s} each, as follows. The independent

random variables are s, u1,m and u2,j . From these we construct Rm = γ1,ms + u1,m and

Rj = γ2,js + β2,jRm + u2,j . Next we estimate Rm = α̂1,m + γ̂1,m s + e1,m and retrieve e1,m, the

estimates of u1,m. We then run the three regressions discussed in the text, plus a variant of

the hybrid, labeled regression 5, where in the orthogonalisation step we use the true market

exposure γ1,m rather than the sample’s estimate. We produce three sets of simulations. In

7The Frisch-Waugh requirement that one also orthogonalize Rj on Rm is necessary only if the second-pass
regression is also a simple one; here Rm is included into the regression.
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Table 2: Monte-Carlo simulation results

Simulation 1
Equation true γj γ̂j varOLS(γ̂j) var(γ̂j) var ratio
Rj,t = α2,j + γ2,jst + β2,jRm,t + u2,j,t 1.00 0.996 .1706 .1667 0.98
Rj,t = α1,j + γ1,jst + u1,j,t 2.25 2.249 .0864 .0855 0.99
Rj,t = α3,j + γ3,jst + β3,je1,m,t + u3,j,t 2.25 2.249 .0651 .0855 1.31
Rj,t = α5,j + γ5,jst + β5,ju1,m,t + u5,j,t 2.25 2.249 .0665 .0668 1.00

Simulation 2
Rj,t = α2,j + γ2,jst + β2,jRm,t + u2,j,t 1.00 0.999 .0122 .0121 1.01
Rj,t = α1,j + γ1,jst + u1,j,t 2.25 2.249 .2762 .2744 0.99
Rj,t = α3,j + γ3,jst + β3,je1,m,t + u3,j,t 2.25 2.249 .0106 .2744 25.89
Rj,t = α5,j + γ5,jst + β5,ju1,m,t + u5,j,t 2.25 2.250 .0109 .0109 1.00

Simulation 3
Rj,t = α2,j + γ2,jst + β2,jRm,t + u2,j,t 1.00 0.989 .9856 .9629 0.98
Rj,t = α1,j + γ1,jst + u1,j,t 2.25 2.249 .1382 .1377 1.00
Rj,t = α3,j + γ3,jst + β3,je1,m,t + u3,j,t 2.25 2.249 .1328 .1378 1.04
Rj,t = α5,j + γ5,jst + β5,ju1,m,t + u5,j,t 2.25 2.249 .1357 .1363 1.00

Key In each simulation we generate 10,000 samples, each of 50 records {Rj , Rm, s}, as follows. The
independent random variables are s, u1,m and u2,j . From these we construct Rm = γ1,ms + u1,m and
Rj = γ2,js + β2,jRm + u2,j . Lastly we estimate Rm = α̂1,m + γ̂1,m Rm + e1,m and retrieve e1,m,. We
then run the three regressions discussed in the text, plus a variant of the hybrid, regression 4, where we
use the true market exposure rather than the sample’s estimate. The assumed p.a. parameter values,
along with some implied numbers, are as follows:

Implied parameters
Assumed values volatilities market model Eq (1) for m Eq (1) for j

σs σu1m σu2j γ1m γ2j β2j σj σm β4j ρ2
jm γ1m ρ2

ms γ1j ρ2
js

S1 .20 .20 .35 1.25 1.00 1.00 .41 .21 1.06 .27 0.25 .06 0.50 .06
S2 .20 .50 .10 1.25 1.00 1.00 .56 .68 1.16 .91 1.25 .20 2.25 .44
S3 .20 .10 .50 1.25 1.00 1.00 .68 .27 1.70 .45 1.25 .86 2.25 .44

For each equation we show the mean of the 10,000 γ̂.,js, the average of the 10,000 error vari-
ances predicted by the regression program, and the cross-sectional variance of the 10,000 estimated
gamma’s. The ratio of the last two is then shown under the heading “var ratio”.

the first, we choose a realistic set of parameters producing a moderate bias in the estimated

variance, while the other two are characterized by a much stronger or much weaker bias,

respectively. The assumed per annum parameter values, along with some implied numbers,

are shown in the Key to the Table. In simulation S1, the numbers are calibrated to what one

gets with monthly data: per annum volatilities 20 and 40 for market and stock, respectively; a

market model that explains about one-quarter of the return variability; and a weak exposure

effect. In simulation S2, the market factor and the gamma’s are overemphasized relative to the

ideosyncratic variance, resulting in quite high ρ2s for the simple regressions and quite precise

estimates. In S3 the numbers are swapped, producing a high-power exposure regression with



Orthogonalized regressors and spurious precision 9

little genuine role for the market and, as a result, more imprecise estimates. For each equation

we show the mean of the 10,000 γ̂.,js, the average of the 10,000 error variances predicted by the

regression program, and then the cross-sectional variance of the 10,000 estimated gamma’s, a

reliable estimate for the true unconditional variance of the estimate. The last column then

shows the ratio of this true variance of the exposure estimate over the average variance produced

by OLS; any non-unit value of course signals that the regression output cannot be trusted.

In the two orthodox regressions, the multivariate and the simple, the ols-computed vari-

ances match the true variability across samples quite well. In the regression with the doctored

data, the third one, the regression program claims to come up with a se that is even better

than the multivariate while preserving the simple-regression estimate, but this se underesti-

mates the true one. The theoretical ratio of actual estimation variance over calculated variance

for the third regression, which from Table 1 equals 1 + β2
2,jvar(u1,m)/var(u2,j), equals 1.32 in

S1, 26 in S2, and 1.02 in S3 when calculated from the (known) population parameters; the

other variance ratios should all be equal to unity. This is close to what we see in the average

variances.

In S1, variance ratios tend to be somewhat below their predicted values. To see to what

extent this reflect a systematic effect rather than randomness, we add simulations S2 and S3

where estimates are much more precise or less precise, respectively, than in S1 and where the

potential of randomness in the variance ratios is accordingly higher or lower. We find no traces

of bias in the tight case, S2, and larger but unsystematic deviations in scenario S3, suggesting

that it all comes down to randomness.

The results for the fourth regression, where the orthogonalisation uses the true γ1,m rather

than the sample’s estimate, clearly illustrate that the problem originates from the variability of

the market’s gamma across samples: if there had been no such variability, then the se with the

orthogonalized regression would have been right on target. Unfortunately, given the weakness

of the link between stock returns and exchange-rate changes, in reality the variability of the

market’s gamma estimate is high.

4 Conclusion

By orthogonalizing the market return on the exchange rate one seems to have the best of

both worlds: the market factor cannot subsume part of the forex exposure present in a stock’s

return, and the se of the estimate beats both the simple- and the multiple-regression se’s.
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This last effect is illusory: since in any particular sample the simple and the pseudo-multiple

regression coefficients are always equal to one another, their precision must be identical too.

Technically, the source of the problem is that the uncertainty about the market’s exposure

estimate is left out of the calculated se.

How large the effect is in a real-world situation depends on the sample, but the order of

magnitude is easily calculated. Volatilities are about 0.20 p.a. for the market, and 0.30 to 0.40

for stocks (Hull, 1993). Low-volatility stocks tend to be large and low-beta, and vice versa:

Fama (1976) reports an average β = 0.61 and ρ2 = 0.20 for the 30 largest stocks, and β = 1.00

and ρ2 = 0.27 for average stocks. With low ρ2’s for the Dumas regression, the ratio of true

to reported variance, 1 + β2
2,jσ

2
1,m/σ2

2,j , is about 1.25 for Fama’s large stocks, 1.32 for Fama’s

average stocks, and between 1.56 and 2.25 for stocks with beta 1.5, depending on volatility

(0.30 or 0.40). So the divergence can easily be as large as the difference between e.g. Dickey-

Fuller and regular critical values and should not be ignored, especially as the estimator has no

other benefits.
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